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-known methods for solving the shape-from-shading problem require
reflectance map. Here we show how the shape-from-shading problem
ren the reflectance map is not available, but is known to have a given
unknown parameters. This happens, for example, when the surface is
ajnbertian, but the direction to the light source is not known. We give
ithm that alternately estimates the surface shape and the light source
f the unit normal in parameterizing the reflectance map, rather than
tereographic coordinates, simplifies the analysis. Our approach also
ive scheme for computing shape from shading thiat adjusts the current
ocal normals toward or away from the direction of the light source. The
dtment is proportional to the current difference between the predicted
brightness. We also develop generalizations to less constrained forms

ps.
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1. Introduction
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E, and a reflectance map, R, the shape-from-shading problem may be
thaf of recovering a smooth surface, z(z,y), satisfying the image irradiance

)

2 of E. Any given boundary conditions on 2(z,y) should also be satisfied.
es the form of a first-order partial differential equation (Horn, 1970 &
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n tal

in tigs formulation are a number of assumptions, the principal one being that
a surface patch does not depend on its position in space. Another is

that an imgge dppicts a smooth surface of homogencous reflectance. Several algorithms

have been d
Ikeuchi & F
One of ¢

evisgd to tackle the problem, notably those of Horn (1975), Strat (1979), and
orn [1981).

e mpny difficulties these schemes face in practice is that the reflectance map

is typically not khown. The reflectance map specifies how the brightness of a surface patch
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its grientation under given circumstances. It therefore encodes information

eflecfing properties of the surface, and information about the distribution

y offthe light sources. In fact, the reflectance map can be computed from
onal reflectance-distribution function and the light source arrangement, as
Sjoberg (1979).

courftering a new scene, the information required to determine the reflectance
ly n§t available. Yet without this information, the shape-from-shading prob-
mulated, much less solved. The dilemma may be resolved if a calibration
shape appears in the scene, since the reflectance map can be computed
lere we wish to consider the situation where we are not that fortunate.

ge.
rest
H34)
that
tion
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g to evaluate how some basic assumptions can resolve this impasse.
as looked at the problem of recovering shape from shading under the
the image depicts a Lambertian surface illuminated by a point source
5 unknown. Under the additional assumption that the surface is locally
norinals are shown to be recoverable by a local operation. This method
on the iterative propagation of information across the image.

sorfe serious drawbacks to the local approach, however. One problem is that
mption is very restrictive. In fact, spheres are the only surfaces whose
ilical. So this method naturally computes incorrect normals for other

ay be acceptable. Iurther, the constraining effect of known occluding
¥s cannot be incorporated into the local method. This is unfortunate

; mals provide powerful boundary conditions on the shape-from-shading

problem, as

account nei

great deal,
We now

when calculating the normal at a point, nearby normals may differ a
iqularly in the presence of noise.
seht an alternative approach that does not suffer from these disadvantages.
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ativg scheme for shape and source direction

to rpcover the shape of a smooth surface depicted in an image, F, that is
Jgion (Y in the zy-plane. Let the shape of the surface be characterized
n, that associates a unit normal with each point in 2. The problem
id n(z,y) over (1. Assume for now that the object has a Lambertian

ar

tion,

l

try Jto solve the image irradiance equation as it stands, we obtain a set of
quaffions equivalent to the characteristic strip equations. Here, however, we
tive pcheme lending itself to a parallel implementation on a grid, as originally
Hojn (1970). Further, a shape-from-shading problem that has noisy image
1l n§t have a theorctical solution. A minimization approach will, however,
covdry of a shape that fits the given data best, in a sense determined by the
oser.

a smpoth shape, n, and a source direction, s, that minimize

//H(E(a:, y) — n(z,y) - ss)2 dz dy.

exis}s, and there are no errors in brightness measurements, then the image

fuatpn will have becn satisfied (although there is no guarantee that the

will He integrable; see Horn & Brooks, 1985).
1dop| a regularizing component (Poggio & Torre, 1984) by incorporating the

//n (n3(z,9) + ns(z,y)) dz dy,

gnded to select a particularly smooth solution from a possibly infinite set of
Notefthat a subscript here denotes partial differentiation, and that squaring
uivafent to taking the dot-product with itself. Finally, we wish to insist that
e unig length. This is accomplished with the constraint

Y(z,y) €.

(

nz(:c,y) =1




2. An iterativie

Combining

which is to
relative imy
function us
1985).
Minimiz
and that I

schdne for shape and source direction 3

he three terms gives the composite functional

[(n,{) = //2 [(l& -n- 5)2 +A(n2 + ni) + p(z,y)(n® — 1)| dzdy

e nfinimized with respect to n and s. Here, A is a scalar that weights the
ortafpce of the regularization term, while p(z,y) is a Lagrangian multiplier
d tofimpose the constraint that n(z,y) be a unit vector (seec Horn & Brooks,

ng I§is a problem in the calculus of variations. First, assume that s is known
is tq be minimized by a suitable choice of n. Extrema of functionals are

the solutions of fhe associated Euler equations (see Courant and Hilbert, 1953). The

functional
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litutipn, it follows that 7 has the Euler equation
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ete Ipproximation to the Laplacian operator is given by
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{Vzn}@'j ~ E‘z‘(nij - nj),

in which € is theristancc between adjacent picture cells in the image, and fi;; is the local
[d

average of
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Hence we miy trpnslate the Euler equation into the discrete form

o 4x
(Eij - w5 - s)s + :Z(HU —155) = pij iy = 0.

Rearranging thisfin order to isolate n;; on one side yields the iterative scheme

that compu
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fies sinpe, given the light source direction. Other approximations for the

Laplacian miay ldhd to improved results, at the cost of increased computation. For ex-

ample, if we

usc fhe more accurate 9-point approximation for the Laplacian, in which
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many array accesses are needed (and the constant multiplier 62/4)\
). The simple 5-point approximation was adequate for our purposes.

direqtion of the vector being computed. Since u is intended to ensure that
norhalized, we can simply do this explicitly, as in
k+1 P € k
1 o ,
m” == ij '+’ E‘X(I’JU nl] S)S
k+1 k-1 k+1
nij - mij /‘mij l

side
oblefr in conventional calculus. Computing the partial derivative of I with

the problem of minimizing I with respect to s, given that n is known.

we fhave
oI
5= ~~//n2(E-—n-s)n dzdy = 0,
- // En dzdy + // (n-s)n dzdy = 0.
0 ' Ja
(n-s)n = (nTs)n = n(nTs) = (nnl)s,
stitufion we have

// En dzdy = [// nn’ d:cdy} S,
Q1 1]

, axi] also the integral of (nn7), are 3 x 3 matrices. From this we finally
1 cquation

-1
S = [// nn? dz dyJ // En dcdy.
9] Y]

otes phe inverse of a matrix. A discrete version of this formula, in which the

rephced by sums, is casily obtained. An iterative scheme in both n and s
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tage of the fact that s need not be a unit vector. If the brightness of the
we can normalize 8 so that it is a unit vector. Then the determination
htly more complex, since it involves a constrained minimization.

nd performance of the scheme

e scheme has two components: one concerned with the recovery of shape,

hed with the determination of the source direction. The shape-recovery
n intuitively satisfying form. In essence, a new normal is computed by
erage, and adjusting this cither toward or away [rom the source. The
len of the adjustment is determined by the brightness error of the current

ven ghape, a new source direction is computed by a single pass through the

pe-recovery, no iteration is necessary. The 3x3 matrix (m‘17) is summed
as is the vector (/2 n). The source direction can then be computed using
tion or even Cramer’s method (sce Korn and Korn, 1968). The source-

1iporkent has been tested on a number of images and shapes. When the data
10isef the estimate of source direction is extremely accurate. Furthermore,
naingvery good in the face of significant noise. For example, a synthetic image
d offa sphere illuminated by a point source in the direction (-1, 3, S)T. The
uanfized to 255 irradiance levels, and the correct surface normal was given

250 image points. (Gaussian noise was added to the image giving an
ion 1n irradiance values of 34. Despite this, the source-finder computed
urce direction that was only 2.7° in error. I[Further trials gave similar

rection estimates are robust because the whole image is used. Theo-

lemi is highly over-determined, as source direction is recoverable from
Using the whoie image

ever] that noise effects are significantly reduced.

pe-angl-source-from-shading problem for a point light source and Lambertian

ural two-way ambiguity. I the image irradiance equation is satisfied
pe ny and the source direction sy, it will also be satisfied by the dual
rce direction sg where

and

ng = 2z(ny - 2) — ny 83 == 22(sy - 8) — 8y,
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ing direction. Ilere, both source direction and surface normals are
e viewing direction. This is easily verified by observing that

) . (22(81 . 2) - Sl)

Z) —2(ny - 2)(s1-2) —2(sy - 2)(ny-2) +ny - 81

initfal values for the normals, the shape-and-source scheme will head for
thed of these solutions. The dual shape and source direction can then be
mmpdiately using the equations given above.

prespnt two examples of the program at work. Each (synthetic) image con-

sidered He
(3,2,9)7.

be deterhn'
rection. O
sequentinll
allel imple
the Gauss-

cted]a Lambertian surface illuminated by a point source in the direction
he ighages each contained more than 1000 points at which normals were to
d. ormals were assigned an initial value of (0,0,1)T, as was the source di-
ludigg boundary normals were given. The equations for n;; could be solved
the Gauss-Seidel algorithm. Since we are ultimately interested in par-
ion on a grid, we used the Jacobi method instead (despite the fact that
method has slightly better convergence properties).

e portrayed a hemisphere viewed from directly overhead. After 100
= 0.005, the average angular difference between estimated and correct
than 3° The maximum such deviation was less than 2.5 times the
he estimate of the light source direction, at this time, had errors in
th angles of 1.4° and 1.6° respectively.

average an
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age depicted a cylinder with rounded, hemispherical ends, viewed from
ndicular to its axis. After 60 iterations, this time with A = 0.003, the
rror in surface normal was less than 5° A further 30 iterations brought
4°, The maximum error remained somewhat larger, however, due to the
to smooth the intersection between the cylinder and the hemispheres.
muth and zenith angles for the source were 7.3° and 1.1° respectively,
iterations. These, too, improved slowly with further processing.

as sometimes slow in converging. After rapid initial improvements, the
ould decrease appreciably. However, one might expect the scheme to be
of the current iterative methods, given the disadvantage of not knowing
irection. Convergence could be accelerated by employing multigrid
ropagate information across the image more quickly (see Terzopoulos,
ly, in the examples considered, a reasonable estimate for the source
ained after only a few iterations. Subsequent processing just improved

scllemes for other reflectance maps

wo more new iterative schemes: the first extends the shape-and-source
r sifjuations in which a simple model of the sky is also included; the second
defcloped above to find shape from shading, given a general reflectance
s ndt recover source direction.

ent
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4.1. In:f:onr bor
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captures the sit
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Here, a co m;;rol the relative intensity of the sun and the sky. We can now gencrate a
method of
in accordange wih the reflectance map R,,.

We seek||to nfinimize

//n | E Ja(n-s) - *3*(1+n- z))2+)\(ni+n§)+,u(m,y)(n2—1) dz dy,

with respeg to Joth n and s. Fixing s for the time being, we are required to minimize
the above £ i#nal with respect to n alone. The Euler equation for this problem is

(E —a(n-s)—l—;‘z(l%-n-i)) (as+ 1523) + AV?n — un =0.

Treating u s before, the following scheme is obtained:

‘2
mffl - n e 4A (E R.s.s (n:c])) (a Sk + l:-2_0{2)
k+1 k+1/!mk+1 .

the presentgtion
We now |pssuge n to be fixed and minimize the functional with respect to s. This we
do, as beforg, byfdifferentiating with respect to s and equating the result to zero. Thus

we have
—2//(E—a(n-s) e ﬁ—n-i))an dzdy =0.
Q

Here, the 1%Eect nce map, R, has been substituted back into the equation to improve
b,

Expanding

[~ %2040 -8)ndedy = [[ aln-o)n dsdy.
0 ]

Noting as bgforefthat (n-s)n = (nnT)s, the equation becomes

Q(E_ 1.;&(1_}_11.2))11 dzdy = a [//nnnT d:z:dy] 3

Thus we obfain fhe equation in s given by

[//nn d:cdy] // L-2(1 +n-2)) n dzdy.

€2}
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te in discrete form and combine with the iterative scheme for n derived
e

2

— € —Y A
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— k+1/lmk+l
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ssumed to be known. Interestingly, the computation of s proceeds as

(E - R)Ra + AV?n — pn = 0,

rive the scheme

2
mf! = 8 4+ 15 (B — B(n;)) Ra(ng)
k+1 k+l/|mk+l )

ectance map. It is simply derived, and is expressed elegantly in terins

This is perhjps %;e most appealing of the current shape-from-shading schemes that deal

of unit normals,
of Tkeuchi apd H

Father than a two-parameter system such as the stereographic fg space
rn.

5. An altefnat}ve use of the unit normal constraint

Recall that/ i defiving the shape-and-source finder, we avoided solving for the Lagrangian

multiplier gz, y}

Instead, we normalized the estimate for n after each iteration. We

to Ininimize the functional

now derive 'lSCh me in which the mulliplier is dealt with explicitly.

In seeki.j

TG

(z,y) - R(lﬂ(m,y)))2 +A(nl +n) + u(z,y)(n® - 1)| dzdy,
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thefSuler equation

(E -~ R)Ry + AV?n — un = 0.
ot froduct of this with n we find that

p = (E — R)(Ry -n)+ X(V?n - n),

ng for u in the Euler equation, we get

(E - R)[Ra — (R - n)n] + A[V?n — (V?n-n)n] = 0.

T

(x-n)n = (n"x)n = n(nx) = (nn7)x,

and letting M be the 3 x 3 matrix

M:I—nnT,

n reduces to
M [(E — R)Ra + AV?n] = 0.

uatfon in components orthogonal to n, since

T

=[(I-nn®)n=n- (mn")n=n-n@n) =n-n(n-n)=0.

n thls provides only two constraints on the solution vector n. The remaining

n’? | 1. Note that, because M is singular, we cannot simply eliminate M
atioph above by multiplying through by its inverse.
tandard finite difference approximation such as
| 4
2 -
Vn =~ E—z(n —n),
h logpl average of n given earlier, we can write the Euler equation in the

‘ -] -0

¢ bgng, we omit subscripts.) We can then develop an iterative scheme in
w Vhlue, m, say, is used for the center term in the above approximation,

M [(E ~R)Rn +

while all otHer tgms are computed using the old value of n. This way we obtain
€2
Mm=M [ﬁ + :IX(E - R)Rn] .
Now let m # p § vn, where p L. n. Then m? = p? 4+ v? and Mm = Mp = p, since
Mn = 0, and sofwe get

_ €
p—M[H*{"ZX(E—R)Rn].
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v n, parallel to the old normal vector n, is computed using

v=1+/1-p2

erefare theoretically two solutions for v, one positive and one negative. The
e ldhds to a new estimate close to the previous one, while the negative value
onefplmost opposite to the old one. 1t is clear that one should use the positive

findlly have the scheme
k+1 b kT (kL € k k
Py = (I-njjng; ) n; + a(Eij — R(n;})) Bn(nj;)
k+1 _ _k+1 k k+1
nij - pij + n,; 1- (pij )2‘
: coupled with the source-recovery component given earlier, when R(n) = n-s.
bprofch a solution with this scheme, p will be small, since n & n and £ =~ R.

thelearly stages of iteration, it may be necessary to place an artificial limit

it §f adjustment made away from the old normal. That is, one may have to

limit the n*ugni 1de of p so that problems do not arise in computing v using the equation

above.
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1, can be arrived at most easily using the pseudoinverse of the matrix
ded fhis approach in the exposition here since the solution can also be found
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tio of unit normal vectors for describing surface orientation was important

at tie normal be of unit length. The Euler equation for this calculs of varia-
|‘ waqd shown to be a second-order partial differential equation in the unknown
|
|

al fgnction. A convergent iterative scheme solved it in the discrete domain.
tior§ of the light source can be determined in closed form if the surface shape

Duriffg any iteration a source-direction estimate can be obtained using the
1ate] of the surface shape. The iterations for obtaining increasingly accu-

s offthe surface shape can be interlaced with estimation of the light-source
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hted and tested this method for recovering shape and source direction. We
ed aftwo-way ambiguity that can appear in the solution. Further, we showed
dnd the shape-from-shading component of the iterative scheme to more general

reflectancema
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