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Abstract: Before corresponding points in images taken with two cameras can be
used to recover distances to objects in a scene, one has to determine the position
and orientation of one camera relative to the other. This is the classic photogram-
metric problem of relative orientation, central to the interpretation of binocular
stereo information. Iterative methods for determining relative orientation were
developed long ago; without them we would not have most of the topographic
maps we do today. Relative orientation is also of importance in the recovery of
motion and shape from an image sequence when successive frames are widely
separated in time. Workers in motion vision are rediscovering some of the meth-
ods of photogrammetry.

Described here is a simple iterative scheme for recovering relative orientation
that, unlike existing methods, does not require a good initial guess for the baseline
and the rotation. The data required is a pair of bundles of corresponding rays
from the two projection centers to points in the scene. It is well known that at
least five pairs of rays are needed. Less appears to be known about the existence
of multiple solutions and their interpretation. These issues are discussed here.
The unambiguous determination of all of the parameters of relative orientation
is not possible when the observed points lie on a critical surface. These surfaces
and their degenerate forms are analysed as well.
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1. Introduction

The coordinates of corresponding points in two images can be used to
determine the positions of points in the environment, provided that the
position and orientation of one of the cameras with respect to the other is
known. Given the internal geometry of the cameras, including its principal
distance and the location of the principal point, rays can be constructed
by connecting the points in the images to their corresponding projection
centers. These rays, when extended, intersect at the point in the scene
that gave rise to the image points. This is how binocular stereo data is
used to determine the positions of points in the environment after the
correspondence problem has been solved.

It is also the method used in motion vision when feature points are
tracked and the image displacements that occur in the time between two
successive frames are relatively large (see for example [Ullman 79] and
[Tsai & Huang 84]). The connection between these two problems has not
attracted much attention before, nor has the relationship of motion vi-
sion to some aspects of photogrammetry (but see [Longuet-Higgins 81]).
It turns out, for example, that the well known motion field equations
[Longuet-Higgins & Prazdny 80] [Bruss & Horn 83] are just the parallax
equations of photogrammetry [Hallert 60] [Moffit & Mikhail 80] that occur
in the incremental adjustment of relative orientation. Most papers on rel-
ative orientation only give the equation for y-parallax, corresponding to
the equation for the y-component of the motion field (see for example
the first equation in [Gill 64], equation (1) in [Jochmann 65], and equation
(6) in [Oswal 67]). Some papers actually give equations for both x- and
y-parallax (see for example equation (9) in [Bender 67]).

In both binocular stereo and large displacement motion vision anal-
ysis, it is necessary to first determine the relative orientation of one cam-
era with respect to the other. The relative orientation can be found if a
sufficiently large set of pairs of corresponding rays have been identified
[Thompson 59b, 68] [Ghosh 72] [Schwidefsky 73] [Schwidefsky & Acker-
mann 76] [Slama et al. 80] [Moffit & Mikhail 80] [Wolf 83] [Horn 86].

Let us use the terms left and right to identify the two cameras (in the
case of the application to motion vision these will be the camera posi-
tions and orientations corresponding to the earlier and the later frames
respectively)1. The ray from the center of projection of the left camera

1In what follows we use the coordinate system of the right (or later) camera as the
reference. One can simply interchange left and right if it happens to be more
convenient to use the coordinate system of the left (or earlier) camera. The
solution obtained in this fashion will the exact inverse of the solution obtained
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to the center of projection of the right camera is called the baseline (see
Fig. 1). A coordinate system can be erected at each projection center, with
one axis along the optical axis, that is, perpendicular to the image plane.
The other two axes are in each case parallel to two convenient orthog-
onal directions in the image plane (such as the edges of the image, or
lines connecting pairs of fiducial marks)2. The rotation of the left camera
coordinate system with respect to the right is called the orientation.

Figure 1. Points in the environment are viewed from two camera po-
sitions. The relative orientation is the direction of the baseline b, and
the rotation relating the left and right coordinate systems. The direc-
tions of rays to at least five scene points must be known in both camera
coordinate systems.

Note that we cannot determine the length of the baseline without knowl-
edge about the length of a line in the scene, since the ray directions are
unchanged if we scale all of the distances in the scene and the baseline by
the same positive scale-factor. This means that we should treat the base-
line as a unit vector, and that there are really only five unknowns—three
for the rotation and two for the direction of the baseline3.

the other way.
2Actually, any coordinate system rigidly attached to the image forming system
may be used.

3If we treat the baseline as a unit vector, its actual length becomes the unit of
length for all other quantities.
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2. Existing Solution Methods

Various empirical procedures have been devised for determining the rela-
tive orientation in an analog fashion. Most commonly used are stereoplot-
ters, optical devices that permit viewing of image pairs and superimposed
synthetic features called floating marks. Differences in ray direction par-
allel to the baseline are called horizontal disparities (orx-parallaxes), while
differences in ray direction orthogonal to the baseline are called vertical
disparities (or y-parallaxes)4. Horizontal disparities encode distances to
points on the surface and are the quantities sought after in measurement
of the underlying topography. There should be no vertical disparities
when the device is adjusted to the correct relative orientation, since the
rays from the left and right projection center must lie in a plane that
contains the baseline (an epipolar plane) if they are to intersect.

The methods used in practice to determine the correct relative ori-
entation depend on successive adjustments to eliminate the vertical dis-
parity at each of five or six image points that are arranged in one or an-
other specially designed pattern [Sailor 60] [Thompson 64] [Slama et al. 80]
[Moffit & Mikhail 80] and [Wolf 74]. In each of these adjustments, a sin-
gle parameter of the relative orientation is varied in order to remove the
vertical disparity at one of the points. Which adjustment is made to elim-
inate the vertical disparity at a specific point depends on the particular
method chosen. In each case, however, one of the adjustments, rather
than being guided visually, is made by an amount that is calculated, using
the measured values of earlier adjustments. The calculation is based on
the assumptions that the surface being viewed can be approximated by
a plane, that the baseline is roughly parallel to this plane, and that the
optical axes of the two cameras are roughly perpendicular to this plane5.

The whole process is iterative in nature, since the reduction of vertical
disparity at one point by means of an adjustment of a single parameter of
the relative orientation disturbs the vertical disparity at the other points.
Convergence is usually rapid if a good initial guess is available. It can be
slow, however, when the assumptions on which the calculation is based
are violated, such as in “accidented” or hilly terrain [Van Der Weele 59–60].
These methods typically use Euler angles to represent three-dimensional

4This naming convention stems from the observation that, in the usual viewing
arrangement, horizontal disparities correspond to left-right displacements in
the image, whereas vertical disparities correspond to up-down displacements.

5While these very restrictive assumptions are reasonable in the case of typical
aerial photography, they are generally not reasonable in the case of terrestrial
or industrial photogrammetry, or in robotics.
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rotations [Korn & Korn 68] (traditionally denoted by the greek letters κ,
φ, and ω). Euler angles have a number of shortcomings for describing
rotations that become particularly noticeable when these angles become
large6.

There also exist related digital procedures that converge rapidly when
a good initial guess of the relative orientation is available, as is usually the
case when one is interpreting aerial photography [Slama et al. 80]. Not all
of these methods use Euler angles. Thompson [1959b], for example, uses
twice the Gibb’s vector [Korn & Korn 68] to represent rotations. These
procedures may fail to converge to the correct solution when the initial
guess is far off the mark. In the application to motion vision, approx-
imate translational and rotational components of the motion are often
not known initially, so a procedure that depends on good initial guesses
is not particularly useful. Also, in terrestrial, close-range [Okamoto 81]
and industrial photogrammetry [Fraser & Brown 86] good initial guesses
are typically harder to come by than they are in aerial photography.

Normally, the directions of the rays are obtained from points gener-
ated by projection onto a planar imaging surface. In this case the direc-
tions are confined to the field of view as determined by the active area of
the image plane and its distance to the center of projection. The field of
view is always less than a hemisphere, since only points in front of the
camera can be imaged7. The method described here applies, however, no
matter how the directions to points in the scene are determined. There
is no restriction on the possible ray directions. We do assume, however,
that we can tell which of two opposite semi-infinite line-segments the
point lies on. If a point lies on the correct line-segment we will say that
it lies in front of the camera, otherwise it will be considered to be behind
the camera (even when these terms do not strictly apply).

The problem of relative orientation is generally considered solved,
and so has received little attention in the photogrammetric literature in
recent times [Van Der Weele 59–60]. In the annual index of Photogrammet-
ric Engineering, for example, there is only one reference to the subject in
the last ten years [Ghilani 83] and six in the decade before that. This is very
little in comparison to the large number of papers on this subject in the
fifties, as well as the sixties, including [Gill 64] [Sailor 65] [Jochmann 65]
[Ghosh 66] [Forrest 66] and [Oswal 67].

In this paper we discuss the relationship of relative orientation to the

6The angles tend to be small in traditional applications to photographs taken
from the air, but often are quite large in the case of terrestrial photogrammetry.

7The field of view is, however, larger than a hemisphere in some fish-eye lenses,
where there is significant radial distortion.
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problem of motion vision in the situation where the motion between the
exposure of successive frames is relatively large. Also, a new iterative al-
gorithm is described, as well as a way of dealing with the situation when
there is no initial guess available for the rotation or the direction of the
baseline. The advantages of the unit quaternion notation for represent-
ing rotations are illustrated as well. Finally, we discuss critical surfaces,
surface shapes that lead to difficulties in establishing a unique relative
orientation.

(One of the reviewers pointed out that L. Hinsken recently obtained a
method for computing the relative orientation based on a parameteriza-
tion of the rotation matrix that is similar to the unit quaternion represen-
tation used here [Hinsken 87, 88]. In his work, the unknown parameters
are the rotations of the left and right cameras with respect to a coordinate
system fixed to the baseline, while here the unknowns are the direction
of the baseline and the rotation of a coordinate system fixed to one of the
cameras in a coordinate system fixed to the other camera. Hinsken also
addresses the simultaneously orientation of more than two bundles of
rays, but says little about multiple solutions, critical surfaces, and meth-
ods for searching the space of unknown parameters.)

3. Coplanarity Condition

If the ray from the left camera and the corresponding ray from the right
camera are to intersect, they must to lie in a plane that also contains the
baseline. Thus, if b is the vector representing the baseline, rr the ray from
the right projection center to the point in the scene and rl the ray from
the left projection center to the point in the scene, then the triple product

[b r′l rr ] (1)
equals zero, where r′l = Rot(rl) is the left ray rotated into the right cam-
era’s coordinate system8. This is the coplanarity condition (see Fig. 2).

We obtain one such constraint from each pair of rays. There will be
an infinite number of solutions for the baseline and the rotation when
there are fewer than five pairs of rays, since there are five unknowns and
each pair of rays yields only one constraint. Conversely, if there are more
than five pairs of rays, the constraints are likely to be inconsistent as the
result of small errors in the measurements. In this case, no exact solution
of the set of constraint equations will exist, and it makes sense instead
to minimize the sum of squares of errors in the constraint equations. In

8The baseline vector b is here also assumed to be measured in the coordinate
system of the right camera.
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Figure 2. Two rays approach closest where they are intersected by a line
perpendicular to both. If there is no measurement error, and the rela-
tive orientation has been recovered correctly, then the two rays actually
intersect. In this case the two rays and the baseline lie in a common
plane.

practice, one should use more than five pairs of rays in order to reduce
the influence of measurement errors [Jochmann 65] [Ghosh 66]. We shall
see later that the added information also allows one to eliminate spurious
apparent solutions.

In the above we have singled out one of the two image-forming sys-
tems to provide the reference coordinate system. It should be emphasized
that we obtain the exact inverse of the solution if we chose to use a coor-
dinate system aligned with the other image-forming system instead.

4. What is the Appropriate Error Term?

In this section we discuss the weights w by which the squares of the
triple products [b r′l rr ] should be multiplied in the total sum of errors.
The reader may wish to skip this section upon first reading, but keep in
mind that there is some rational basis for choosing these weights. Also
note that one can typically compute a good approximation to the exact
least-squares solution without introducing the weighting factors.
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The triple product t = [b r′l rr ] is zero when the left and right ray are
coplanar with the baseline. The triple product itself is, however, not the
ideal measure of departure from best fit. It is worthwhile exploring the
geometry of the two rays more carefully to see this. Consider the points
on the rays where they approach each other the closest (see Fig. 2). The
line connecting these points will be perpendicular to both rays, and hence
parallel to (r′l × rr ). As a consequence, we can write

α r′l + γ (r′l × rr ) = b+ β rr , (2)
where α and β are proportional to the distances along the left and the
right ray to the points where they approach most closely, while γ is pro-
portional to the shortest distance between the rays. We can find γ by
taking the dot-product of the equality above with r′l × rr . We obtain

γ
∥∥∥r′l × rr

∥∥∥2 = [b r′l rr ]. (3)
Similarly, taking dot-products with rr×(r′l×rr ) and r′l×(r′l×rr ), we obtain

α
∥∥∥r′l × rr

∥∥∥2 = (b× rr ) · (r′l × rr ),

β
∥∥∥r′l × rr

∥∥∥2 = (b× r′l) · (r′l × rr ).
(4)

Clearly, α
∥∥∥r′l
∥∥∥ and β‖rr‖ are the distances along the rays to the points of

closest approach9.

Later we will be more concerned with the signs of α and β. Normally,
the points where the two rays approach the closest will be in front of both
cameras, that is, both α and β will be positive. If the estimated baseline
or rotation is in error, however, then it is possible for one or both of the
calculated parameters α and β to come out negative. We will use this
observation later to distinguish among different apparent solutions. We
will call a solution where all distances are positive a positive solution. In
photogrammetry one is typically only interested in positive solutions.

The perpendicular distance between the left and the right ray is

d = γ
∥∥∥r′l × rr

∥∥∥ = [b r′l rr ]∥∥∥r′l × rr
∥∥∥ . (5)

This distance itself, however, is also not the ideal measure of departure
from best fit, since the measurement errors are in the image, not in the
scene (see also the discussion in [Gennert 87]). A least-squares procedure
should be based on the error in determining the direction of the rays,
not on the distance of closest approach. We need to relate variations in

9The dot-products of the cross-products can, of course, be expanded out in
terms of differences of products of dot-products.
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ray direction to variations in the perpendicular distance between the rays,
and hence the triple product.

Suppose that there is a change δθl in the vertical disparity of the left
ray direction and δθr in the vertical disparity of the right ray direction.
That is, r′l and rr are changed by adding

δr′l =
r′l × rr∥∥∥r′l × rr

∥∥∥
∥∥∥r′l
∥∥∥δθl and δrr = r′l × rr∥∥∥r′l × rr

∥∥∥ ‖rr‖δθr , (6)

respectively. Then, from Fig. 3, we see that the change in the perpendic-
ular distance d is just δθl times the distance form the left center of pro-
jection to the point of closest approach on the left ray, minus δθr times
the distance from the right center of projection to the point of closest
approach on the right ray, or

δd = α
∥∥∥r′l
∥∥∥δθl − β‖rr‖δθr . (7)

From equation (5) we see that the corresponding change in the triple prod-
uct is

δt =
∥∥∥r′l × rr

∥∥∥ δd.
Thus if the variance in the determination of the vertical disparity of the left
ray is σ 2

l , and the variance in the determination of the vertical disparity
of the right ray is σ 2

r , then the variance in the triple product will be10

σ 2
t =

∥∥∥r′l × rr
∥∥∥2
σ 2
d, (8)

or

σ 2
t =

∥∥∥r′l × rr
∥∥∥2
(
α2
∥∥∥r′l
∥∥∥2
σ 2
l + β2 ‖rr‖2 σ 2

r

)
. (9)

This implies that we should apply a weight

w = σ 2
0 /σ

2
t (10)

to the square of each triple product in the sum to be minimized, where
σ 2

0 is arbitrary (see page 65 in [Mikhail & Ackerman 76]). Written out in
full we have

w =
∥∥∥r′l × rr

∥∥∥2
σ 2

0(
(b× rr ) · (r′l × rr )

)2
∥∥∥r′l
∥∥∥2
σ 2
l +

(
(b× r′l) · (r′l × rr )

)2 ‖rr‖2 σ 2
r

.

(11)

10The error in determining the direction of a ray depends on image position,
since a fixed interval in the image corresponds to a larger angular interval in
the middle of the image than it does at the periphery. The reason is that the
middle of the image is closer to the center of projection than is the periphery. In
any case, one can determine what the variance of the error in vertical disparity
is, given the image position and the estimated error in determining positions
in the image.
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(Note again that errors in the horizontal disparity do not influence the
computed relative orientation; instead influencing errors in the distances
recovered using the relative orientation).

Introduction of the weighting factors makes the sum to be minimized
quite complicated, since changes in baseline and rotation affect both nu-
merators and denominators of the terms in the total error sum. Near
the correct solution, the triple products will be small and so changes in
the estimated rotation and baseline will tend to induce changes in the
triple products that are relatively large compared to the magnitudes of
the triple products themselves. The changes in the weights, on the other
hand, will generally be small compared to the weights themselves. This
suggests that one should be able to treat the weights as constant during
a particular iterative step.

Also note that one can compute a good approximation to the solution
without introducing the weighting factors at all. This approximation can
then be used to start an iterative procedure that does take the weights
into account, but treats them as constant during each iterative step. This
works well because changes in the weights become relatively small as the
solution is approached.

5. Least Squares Solution for the Baseline

If the rotation is known, it is easy to find the best fit baseline, as we show
next. This is useful, despite the fact that we do not usually know the
rotation. The reason is that the ability to find the best baseline, given
a rotation, reduces the dimensionality of the search space from five to
three. This makes it much easier to systematically explore the space of
possible starting values for the iterative algorithm.

Let {rl,i} and {rr ,i}, for i = 1 . . . n, be corresponding bundles of left
and right rays. We wish to minimize

E =
n∑
i=1

wi [b r′l,i rr ,i]2 =
n∑
i=1

wi
(
b · (r′l,i × rr ,i)

)2, (12)

subject to the condition b · b = 1, where r′l,i is the rotated left ray rl,i, as
before. If we let ci = r′l,i× rr ,i, we can rewrite the sum in the simpler form

E =
n∑
i=1

wi (b · ci)2 = bT

⎛
⎝ n∑
i=1

wi cicTi

⎞
⎠b, (13)

where we have used the equivalence b · ci = bTci, which depends on the
interpretation of column vectors as 3 × 1 matrices. The term cic

T
i is a
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Figure 3. Variations in the triple product t = [b r′l rr ] can be related to
variations in the perpendicular distance d between the two rays. Vari-
ations in this distance, in turn, can be related to variations in the mea-
surement of the directions of the left and right rays. These relationships
can be used to arrive at weighting factors that allow minimization of er-
rors in image positions while working with the sums of squares of triple
products.

dyadic product, a 3× 3 matrix obtained by multiplying a 3× 1 matrix by
a 1× 3 matrix.

The error sum is a quadratic form involving the real symmetric ma-
trix11.

C =
n∑
i=1

wi cicTi . (14)

The minimum of such a quadratic form is the smallest eigenvalue of the
matrix C , attained when b is the corresponding unit eigenvector (see, for
example, the discussion of Rayleigh’s quotient in [Korn & Korn 68]). This
can be verified by introducing a Lagrangian multiplier λ and minimizing

E′ = bTC b+ λ(1− bTb), (15)
subject to the condition bTb = 1. Differentiating with respect to b and

11The terms in the sum of dyadic products forming the matrix C contain the
weights discussed in the previous section. This only makes sense, however, if a
guess is already available for the baseline—unit weights may be used otherwise.
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setting the result equal to zero yields

C b = λb. (16)
The error corresponding to a particular solution of this equation is found
by premultiplying by bT :

E = bTC b = λbTb = λ. (17)
The three eigenvalues of the real symmetric matrix C are non-negative,
and can be found in closed form by solving a cubic equation, while each
of the corresponding eigenvectors has components that are the solution
of three homogeneous equations in three unknowns [Korn & Korn 68].
If the data are relatively free of measurement error, then the smallest
eigenvalue will be much smaller than the other two, and a reasonable
approximation to the sought-after result can be obtained by solving for the
eigenvector using the assumption that the smallest eigenvalue is actually
zero. This way one need not even solve the cubic equation (see also [Horn
& Weldon 88]).

If b is a unit eigenvector, so is −b. Changing the sense of the baseline
does not change the magnitude of the error term [b r′l rr ]. It does, how-
ever, change the signs of α, β and γ. One can decide which sense of the
baseline direction is appropriate by determining the signs of αi and βi
for i = 1 . . . n. Ideally, they should all be positive, but when the baseline
and the rotation are incorrect they may not be.

The solution for the optimal baseline is not unique unless there are at
least two pairs of corresponding rays. The reason is that the eigenvector
we are looking for is not uniquely determined if more than one of the
eigenvalues is zero, and the matrix has rank less than two if it is the sum
of fewer than two dyadic products of independent vectors. This is not a
significant restriction, however, since we need at least five pairs of rays
to solve for the rotation anyway.

6. Iterative Improvement of Relative Orientation.

If one ignores the orthonormality of the rotation matrix, a set of nine ho-
mogeneous linear equations can be obtained by a transformation of the
coplanarity conditions that was first described in [Thompson 59b]. These
equations can be solved when eight pairs of corresponding ray directions
are known [Rinner 63] [Longuet-Higgins 81]. This is not a least-squares
method that can make use of redundant measurements, nor can it be ap-
plied when fewer than eight points are given. The method is also strongly
affected by measurement errors and fails for certain configurations of
points [Longuet-Higgins 84].
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No true closed-form solution of the least-squares problem has been
found for the general case, where both baseline and rotation are unknown.
However, it is possible to determine how the overall error is affected by
small changes in the baseline and small changes in the rotation. This
allows one to make iterative adjustments to the baseline and the rotation
that reduce the sum of squares of errors.

We can represent a small change in the baseline by an infinitesimal
quantity δb. If this change is to leave the length of the baseline unaltered,
then

‖b+ δb‖2 = ‖b‖2 , (18)
or

‖b‖2 + 2b · δb+ ‖δb‖2 = ‖b‖2 . (19)
If we ignore quantities of second-order, we obtain

δb · b = 0,
that is, δb must be perpendicular to b.

A small change in the rotation can be represented by an infinitesimal
rotation vector δωω. The direction of this vector is parallel to the axis of
rotation, while its magnitude is the angle of rotation. This incremental
rotation takes the rotated left ray, r′l, into

r′′l = r′l + (δωω× r′l). (20)
This follows from Rodrigues’ formula for the rotation of a vector r

cosθ r+ sinθ (ωω× r)+ (1− cosθ)(ωω · r)ωω (21)
if we let θ = ‖δωω‖, ωω = δωω/‖δωω‖, and note that δωω is an infinitesimal
quantity. Finally then, we see that t = [b r′l rr ] becomes

t + δt = [(b+ δb) (r′l + δωω× r′l) rr ], (22)
or,

[b r′l rr ] + [δb r′l rr ] + [b (δωω× r′l) rr ], (23)
if we ignore the term [δb (δωω × r′l) rr ], because it contains the product
of two infinitesimal quantities. We can expand two of the triple products
in the expression above and obtain

[b r′l rr ]+ (r′l × rr ) · δb+ (rr × b) · (δωω× r′l), (24)
or

t + c · δb+ d · δωω, (25)
for short, where

t = [b r′l rr ], c = r′l × rr , and d = r′l × (rr × b). (26)
Now, we are trying to minimize

E =
n∑
i=1

wi (ti + ci · δb+ di · δωω)2 , (27)
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subject to the condition b·δb = 0. We can introduce a Lagrange multiplier
in order to deal with the constraint. Instead of minimizing E itself, we then
have to minimize:

E′ = E + 2λ(b · δb), (28)
(where the factor of two is introduced to simplify the algebra later). Dif-
ferentiating E′ with respect to δb, and setting the result equal to zero
yields

n∑
i=1

wi (ti + ci · δb+ di · δωω) ci + λb = 0. (29)

By taking the dot-product of this expression with b, and using the fact
that b · b = 1 one can see that

λ = −
n∑
i=1

wi ti (ti + ci · δb+ di · δωω) , (30)

which means that −λ is equal to the total error when one is at a stationary
points, where δb and δωω are equal to zero.

If we differentiate E′ with respect to δωω and set this result also equal
to zero, we obtain

n∑
i=1

wi (ti + ci · δb+ di · δωω)di = 0. (31)

Finally, if we differentiate E′ with respect to λ we get back the constraint

b · δb = 0. (32)
The two vector equations and the one scalar equation (equations (29),
(31) & (32)) constitute seven linear scalar equations in the six unknown
components of δb and δωω and the unknown Lagrangian multiplier λ. We
can rewrite them in the more compact form:

C δb + F δωω + λb = −c

FT δb+Dδωω = −d

bT δb = 0

(33)

or ⎛
⎜⎝
C F b
FT D 0
bT 0T 0

⎞
⎟⎠
⎛
⎜⎝
δb
δωω
λ

⎞
⎟⎠ = −

⎛
⎜⎝

c
d
0

⎞
⎟⎠ (34)

where

C =
n∑
i=1

wi cicTi , F =
n∑
i=1

wi cidTi , and D =
n∑
i=1

wi didTi , (35)

while

c =
n∑
i=1

wi ti ci and d =
n∑
i=1

wi ti di. (36)
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The above gives us a way of finding small changes in the baseline and
rotation that reduce the overall error sum12. The equations shown (equa-
tion (34)) are the symmetric normal equations (see also page 229 in [Mikhail
& Ackerman 76]) and yield incremental adjustments for the rotation and
the baseline13. This method can be applied iteratively to locate a mini-
mum. Numerical experiments confirm that it converges rapidly when a
good initial guess is available.

7. Singularities and Sensitivity to Errors

The computation of the incremental adjustments cannot be carried out
with precision when the coefficient matrix becomes ill-conditioned. This
occurs when there are fewer than five pairs of rays, as well as for certain
rare configurations of points in the scene (see the discussion of critical sur-
faces later). The coefficient matrix may also become ill-conditioned when
the iterative process approaches a stationary point that is not a minimum,
as is often found between two nearby local minima. At such points the
total error will typically still be quite large, yet vary rather slowly over
a significant region of parameter space. In this situation the correction
terms δb and δωω that are computed may become very large. Since the
whole method is based on the assumption that these adjustements are
small, it is important to limit their magnitude14.

To guard against bad data points (and local minima of the error func-
tion) it is important to compute the total error before accepting a solution.
It should be compared against what is expected, given the variance of the
error in the vertical disparity of the ray directions. The estimate σ̂ 2

0 of the
variance factor σ 2

0 can be obtained from the weighted error sum

E =
n∑
i=1

wi [b r′l,i rr ,i]2 (37)

12It is also possible to reduce the problem to the solution of six linear equations
in six unknowns by first eliminating the Lagrangian multiplier λ using b ·b = 1
[Horn 87c], but this leads to an asymmetrical coefficient matrix that requires
more work to set up. One of the reviewers pointed out that the symmetric
normal equations can be solved directly, as shown above.

13Note that the customary savings of about half the computation when solving a
system of equations with symmetric coefficient matrix cannot be fully achieved
here since the last element on the main diagonal is zero. It may also be of
interest to note that the top left 6× 6 submatrix has at most rank n, since it is
the sum of n dyadic products—it thus happens to be singular when n = 5.

14The exact size of the limit is not very important, a limit between 1/10 and 1 on
the combined magnitudes of δb and δωω appears to work quite well.



8. Adjusting the Baseline and the Rotation 15

using the updated values of the rotation and the baseline, or from the
approximation

E =
n∑
i=1

wi (ti + ci · δb+ di · δωω)2 , (38)

using the computed increments δb and δωω, and the old values of the
rotation and the baseline. We have

σ̂ 2
0 = E/(n− 5), (39)

where n is the number of pairs of rays (see also page 115 in [Mikhail &
Ackerman 76]). A χ2-test with five degrees of freedom can be applied to
σ̂ 2

0 /σ
2
0 to test whether the estimated variance factor deviates significantly

from the assumed value.

The inverse of the normal matrix introduced above has great signifi-
cance, since from it can be derived the covariance matrix for the unknown
orientation parameters (the elements of δb and δωω) using the covariance
matrix of the quantities (c and d) appearing on the right hand side of the
normal equations (see also page 230 [Mikhail & Ackerman 76]). It is im-
portant to point out, however, that the variances of the six parameters
do not tell the whole story, since the covariances (off-diagonal elements)
can become very large, particularly in ill-conditioned cases. In such cases,
the total error may vary appreciable when any one of the parameters is
changed individually, yet a carefully chosen combination of changes in
the parameters may leave the total error almost unchanged. In these sit-
uations, movement along special directions in parameter space may yield
changes in total error that are a million-fold smaller than changes induced
by movement in other directions. This means that for the same change in
the total error, movement in parameter space in these special directions
can be a thousand-fold larger than in other directions.

Ideally, a sensitivity analysis should be performed to check the sta-
bility of the solution [Förstner 87].

8. Adjusting the Baseline and the Rotation

The iterative adjustment of the baseline is straightforward:

bn+1 = bn + δbn, (40)

where bn is the baseline estimate at the beginning of the n-th iteration,
while δbn is the adjustment computed during the n-th iteration, as dis-
cussed in the previous section. If δbn is not infinitesimal, the result will
not be a unit vector. We can, and should, normalize the result by dividing
by its magnitude.
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8.1 Adjustment of Rotation using Unit Quaternions

Adjusting the rotation is a little harder. Rotations are conveniently rep-
resented by unit quaternions [Stuelpnagle 64] [Salamin 79] [Taylor 82]
[Horn 86, 87a]. The groundwork for the application of the unit quater-
nion notation in photogrammetry was laid by Thompson [1959a], Schut
[1958–59] and Pope [1970]. A positive rotation about the axis ωω through
an angle θ is represented by the unit quaternion

q̊ = cos(θ/2)+ sin(θ/2) ωω, (41)

where ωω is assumed to be a unit vector. Composition of rotations cor-
responds to multiplication of the corresponding unit quaternions. The
rotated version of a vector r is computed using

r̊′ = q̊ r̊ q̊∗, (42)

where q̊∗ is the conjugate of the quaternion q̊, that is, the quaternion ob-
tained by changing the sign of the vector part. Here, r̊ is a purely imaginary
quaternion with vector part r, while r̊′ is a purely imaginary quaternion
with vector part r′. The above can also be written in the form

r′ = (q2
0 − q · q) r+ 2(q · r)q+ 2q0(q× r), (43)

where q0 and q are the scalar and vector parts of the unit quaternion q̊
(see also [Horn 86]).

The infinitesimal rotation δωω corresponds to the quaternion

δω̊ = 1+ 1
2
δωω. (44)

We can adjust the rotation q̊ by premultiplying with δω̊, that is,

q̊n+1 = δω̊n q̊n. (45)

If δωωn is not infinitesimal, δω̊n will not be a unit quaternion, and so
the result of the adjustment will not be a unit quaternion either. This
undesirable state of affairs can be avoided by using either of the two unit
quaternions

δω̊ =
√

1− 1
4
‖δωω‖2 + 1

2
δωω, (46)

or

δω̊ =
(
1+ 1

2
δωω

)/√
1+ 1

4
‖δωω‖2 . (47)

Alternatively, one can simply normalize the product by dividing by its
magnitude.
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8.2 Adjustment of Rotation using Orthonormal Matrices

The adjustment of rotation is a little trickier if orthonormal matrices are
used to represent rotations. We can write the relationship

r′ = r+ (δωω× r), (48)
in the form

r′ = r+W r, (49)
where the skew-symmetric matrix W is defined by

W =
⎛
⎜⎝

0 −δωωz δωωy

δωωz 0 −δωωx

−δωωy δωωx 0

⎞
⎟⎠ , (50)

in terms of the components of rotation vector δωω = (δωωx,δωωy,δωωz)T .
Consequently we may write r′ = Q r, where Q = I +W , or

Q =
⎛
⎜⎝

1 −δωωz δωωy

δωωz 1 −δωωx

−δωωy δωωx 1

⎞
⎟⎠ , (51)

One could then attempt to adjust the rotation by multiplication of the
matrices Q and R as follows:

Rn+1 = QnRn. (52)
The problem is that Q is not orthonormal unless δωω is infinitesimal. In
practice this means that the rotation matrix will depart more and more
from orthonormality as more and more iterative adjustments are made. It
is possible to re-normalize this matrix by finding the nearest orthonormal
matrix, but this is complicated, involving the determination of the square-
root of a symmetric matrix [Horn et al. 88]15.

To avoid this problem, we should really start with an orthonormal
matrix to represent the incremental rotation. We can use either of the two
unit quaternions in equations (46) or (47) to construct the corresponding
orthonormal matrix

Q =
⎛
⎜⎝
q2

0 + q2
x − q2

y − q2
z 2(qxqy − q0qz) 2(qxqz + q0qy)

2(qyqx + q0qz) q2
0 − q2

x + q2
y − q2

z 2(qyqz − q0qx)
2(qzqx − q0qy) 2(qzqy + q0qx) q2

0 − q2
x − q2

y + q2
z

⎞
⎟⎠ ,
(53)

where q0 is the scalar part of the quaternion δω̊, while qx , qy , qz are
the components of the vector part.16 Then the adjustment of rotation is

15This is another place where the unit quaternion representation has a distinct
advantage: it is trivial to find the nearest unit quaternion to a quaternion that
does not have unit magnitude.

16This expression for the orthonormal normal matrix in terms of the components
of the corresponding unit quaternion can be obtained directly by expanding
r̊′ = q̊ r̊ q̊∗ or by means of Rodrigues’ formula [Horn 86, 87a].
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accomplished using
Rn+1 = QnRn. (54)

Note, however, that the resulting matrices will still tend to depart slightly
from orthonormality due to numerical inaccuracies. This may be a prob-
lem if many iterations are required.

9. Ambiguities

9.1 Inherent Ambiguities and Dual Solution

The iterative adjustment described above may arrive at a number of appar-
ently different solutions. Some of these are just different representations
of the same solution, while others are related to the correct solution by
a simple transformation. First of all, note that −q̊ represents the same
rotation as q̊, since

(−q̊) r̊ (−q̊∗) = q̊ r̊ q̊∗. (55)
That is, antipodal points on the unit sphere in four dimensions represent
the same rotation. If desired, one can prevent any confusion by ensur-
ing that the first nonzero component of the resulting unit quaternion is
positive, or that the largest component is positive.

Next, note that the triple product, [b r′l rr ], changes sign, but not
magnitude, when we replace b with −b. Thus the two possible senses of
the baseline yield the same sum of squares of errors. However, changing
the sign of b does change the signs of both α and β. All scene points
imaged are in front of the camera, so the distances should all be positive.
In the presence of noise, it is possible that some of the distances turn
out to be negative, but with reasonable data almost all of them should
be positive. This normally allows one to pick the correct sense for the
baseline.

Not so obvious is another possibility: Suppose we turn all of the left
measurements through π radians about the baseline, in addition to the
rotation already determined. That is, replace q̊ by q̊′ = b̊ q̊, where b̊ is a
purely imaginary quaternion with vector part b. The triple product can
be written in the form

t = [b r′l rr ] = Rot(rl) · (rr × b) = (q̊ r̊l q̊
∗) · (̊rr b̊), (56)

where r̊l and r̊r are purely imaginary quaternion with vector part rl and rr
respectively. If we replace q̊ by q̊′ = b̊ q̊, we obtain for the triple product

t′ = (b̊ q̊ r̊l q̊
∗ b̊∗) · (̊rr b̊) = (b̊ q̊ r̊l q̊

∗) · (̊rr b̊ b̊), (57)
or

t′ = (b̊ q̊ r̊l q̊
∗) · (−b · b)̊rr = −(b̊ q̊ r̊l q̊

∗) · r̊r , (58)
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or
t′ = −(q̊ r̊l q̊

∗) · (b̊∗ r̊r ) = −(q̊ r̊l q̊
∗) · (̊rr b̊) = −t, (59)

where we have repeatedly used special properties of purely imaginary
quaternions, as well as the fact that b · b = 1. We conclude that the sign
of the triple product is changed by the added rotation, but its magnitude
is not. Thus the total error is undisturbed when the left rays are rotated
through π radians about the baseline. The solution obtained this way will
be called the dual of the other solution.

We can obtain the same result using vector notation: We replace r′l
with

r′′l = 2(b · r′l)b− r′l. (60)
using Rodrigues’ formula for the rotation of a vector r

cosθ r+ sinθ (ωω× r)+ (1− cosθ)(ωω · r)ωω, (61)
with θ = π and ωω = b. Then the triple product [b r′l rr ] turns into

2(b · r′l)[b b rr ]− [b r′l rr ] = −[b r′l rr ]. (62)
This, once again, reverses the sign of the error term, but not its magnitude
Thus the sum of squares of errors is unaltered. The signs of α and β are
affected, however, although this time not in as simple a way as when the
sense of the baseline was reversed.

If [b r′l rr ] = 0, we find that exactly one of α and β changes sign. This
can be shown as follows: The triple product will be zero when the left and
right rays are coplanar with the baseline. In this case we have γ = 0, and
so

α r′l = b+ β rr , (63)
Taking the cross-product with b we obtain

α(r′l × b) = β(rr × b), (64)
If we now replace r′l by r′′l = 2(b · r′l)b− r′l, we have for the new distances
α′ and β′ along the rays:

−α′ (r′l × b) = β′ (rr × b), (65)
We conclude that the productα′β′ has sign opposite to that of the product
αβ. So if α and β are both positive, one of α′ or β′ must be negative.

In the presence of measurement error the triple product will not be
exactly equal to zero. If the rays are nearly coplanar with the baseline,
however, we find that one of α and β almost always changes sign. With
very poor data, it is possible that both change sign17. In any case, we can
reject a solution in which roughly half the distances are negative. More-
over, we can find the correct solution directly by introducing an additional

17Even with totally random ray directions, however, this only happens 27.3% of
the time, as determined by Monte Carlo simulation.
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rotation of π radians about the baseline, that is, by computing the dual
of the solution.

9.2 Remaining Ambiguity

If we take care of the three apparent two-way ambiguities discussed in
the previous section, we find that in practice a unique solution is found,
provided that a sufficiently large number of ray pairs are available. That is,
the method converges to the unique global minimum from every possibly
starting point in parameter space18.

Several local minima in the sum of squares of errors appear when
only a few more than the minimum of five ray pairs are available (as is
common in practice). This means that one has to repeat the iteration with
different starting values for the rotation in order to locate the global min-
imum. A starting value for the baseline can be found in each case using
the closed-form method described in section 5. To search the parame-
ter space effectively, one needs a way of efficiently sampling the space
of rotations. The space of rotations is isomorphic to the unit sphere in
four dimensions, with antipodal points identified. The rotation groups of
the regular polyhedra provide convenient means of uniformly sampling
the space of rotations. The group of rotations of the tetrahedron has 12
elements, that of the hexahedron and the octahedron has 24, and that of
the icosahedron and the dodecahedron has 60 (representations of these
groups are given in Appendix A for convenience). One can use these as
starting values for the rotation. Alternatively, one can just generate a
number of randomly placed points on the unit sphere in four dimensions
as starting values for the rotation19.

9.3 Number of Solutions Given Five Pairs of Rays

When there are exactly five pairs of rays, the situation is different again. In
this case, we have five nonlinear equations (equation (1)) in five unknowns
and so in general expect to find a finite number of exact solutions. That
is, it is possible to find baselines and rotations that satisfy the coplanarity
conditions exactly and reduce the sum of squares of errors to zero.

18It has been shown that at most three essentially different relative orientations
are compatible with a given sufficiently large number of ray pairs [Longuet-
Higgins 88]—in practice one typically finds just one.

19We see here another advantage of the unit quaternion representation. It is not
clear how one would sample the space of rotations using orthonormal matrices
directly.
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We can in fact easily express the coplanarity constraint as a polyno-
mial in the components of b and q̊. Noting that r′l = Rot(rl) and that the
triple product can be written in the form

t = [b r′l rr ] = (q̊ r̊l q̊
∗) · (̊rr b̊) (66)

we can expand equation (1), using equation (53), into(
(q2

0+q2
x−q2

y−q2
z)lx+2(qxqy−q0qz)ly+2(qxqz+q0qy)lz

)
(rybz−rzby)+(

2(qyqx+q0qz)lx+(q2
0−q2

x+q2
y−q2

z)ly+2(qyqz−q0qx)lz
)
(rzbx−rxbz)+(

2(qzqx−q0qy)lx+2(qzqy+q0qx)ly+(q2
0−q2

x−q2
y+q2

z)lz
)
(rxby−rybx)
= 0 (67)

where b = (bx, by, bz)T , rl = (lx, ly , lz)T , rr = (rx, ry, rz)T , while q̊ =
(q0, qx, qy, qz)T . This equation is linear in the components of b and
quadratic in the components of q̊. When there are five ray pairs, there
are five such equations. Together with the quadratic equations b · b = 1
and q̊ · q̊ = 1, they constitute seven polynomial equations in the seven
components of b and q̊. An upper bound on the number of solutions is
given by the product of the orders of the equations, which is 27 = 128 in
this case20. Note however that the equations are not changed if we change
the sign of either b or q̊. Taking this into account, we see that there can
be at most 32 distinct solutions. Not all of these need be real, of course.

In practice it is found that the number of solutions is typically a mul-
tiple of four (if we ignore reversals of q̊ and b). With randomly chosen ray
directions, about half of the cases lead to eight solutions, slightly more
than a quarter have four solutions, while slightly less than a quarter have
twelve. Less frequent are cases with sixteen solutions and a very small
number of randomly generated test cases lead to twenty solutions, which
appears to be the maximum number possible. Ray bundles for which
there is no solutions at all are equally rare, but do exist. When one of the
solutions corresponds to a critical surface, then the number of solutions
is not a multiple of four—such cases correspond to places in ray param-
eter space that lie on the border between regions in which the number of
solutions are different multiples of four. In this situation, small changes
in the ray directions increase or decrease the number of solutions by two.

It has been brought to my attention, after receiving the comments
of the reviewers, that it has recently been shown that there can be at
most twenty solutions [Faugeras & Maybank 89] of the relative orientation
problem whenn = 5, and that there exist pairs of ray bundles that actually

20The three components of the baseline vector b can be eliminated fairly easily,
because the equations are linear and homogeneous in these components. This
leaves a smaller number of higher order equations in the four components of
q̊.
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lead to twenty solutions [Netravali & et al. 89]21. Typically there is one
positive solution (or none), although several positive solutions may exist
for a given set of ray bundles.

The ambiguities discussed above are, of course, of little concern if
a reasonable initial guess is available. Note that methods that apply to
the special case when there are five pairs of rays do not generalize to the
least-squares problem when a larger number of ray pairs are available. In
practice one should use more than five ray pairs, both to improve accuracy
and to have a way of judging how large the errors might be.

10. Summary of the Algorithm

Consider first the case where we have an initial guess for the rotation.
We start by finding the best-fit baseline direction using the closed-form
method described in section 5. We may wish to determine the correct
sense of the baseline by choosing the one that makes most of the signs
of the distances positive. Then we proceed as follows:

• For each pair of corresponding rays, we compute r′l,i, the left ray di-
rection rl,i rotated into the right camera coordinate system, using
the present guess for the rotation (equations (42), (43) or using equa-
tion (53)).

• We then compute the cross-product ci = r′l,i × rr ,i, the double cross-
product di = r′l,i × (rr ,i × b) and the triple-product ti = [b r′l,i rr ,i].

• If desired, we then compute the appropriate weighting factor wi as
discussed in section 4 (equation (11)).

• We accumulate the (weighted) dyadic products wi cicTi , wi cidTi and
wi didTi , as well as the (weighted) vectors wi tici and wi tidi. The
totals of these quantities over all ray pairs give us the matrices C , F ,
D and the vectors c and d (equations (35) & (36)).

• We can now solve for the increment in the baseline δb and the in-
crement in the rotation δωω using the method derived in section 6
(equation (34)).

• We adjust the baseline and the rotation using the methods discussed
in section 8 (equations (40), (45) or (53), (54)), and recompute the sum
of the squares of the error terms (equation (12)).

21Since dual solutions (obtained by rotating the left ray bundle through π about
the baseline) are apparently not counted by these authors, they actually claim
that the maximum number of solutions is ten.
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The new orientation parameters are then used in the next iteration of the
above sequence of steps. As is the case with many iterative procedures,
it is important to know when to stop. One could stop after either a fixed
number of iterations or when the error becomes less than some prede-
termined threshold. Another approach would be to check on the size of
the increments in the baseline and the rotation These become smaller and
smaller as the solution is approached, although their absolute size does
not appear to provide a reliable stopping criterion.

The total error typically becomes small after a few iterations and no
longer decreases at each step, because of limited accuracy in the arith-
metic operations. So one could stop the iteration the first time the error
increases. The total error may, however, also increase when the surfaces
of constant error in parameter space are very elongated in certain direc-
tions, as happens when the problem is ill-conditioned. In this case a step
in the direction of the local gradient can cause one to skip right across
the local “valley floor.” It is thus wise to first check whether smaller steps
in the given direction reduce the total error. The iteration is only stopped
when small steps also increase the error.

When the decision has been made to stop the iteration, a check of
the signs of the distances along the rays is in order. If most of them are
negative, the baseline direction should be reversed. If neither sense of the
baseline direction yields mostly positive distances, one needs to consider
the dual solution (rotation of the left ray bundle through π radians about
the baseline b).

It makes sense also to check whether the solution is reasonable or
whether it has perhaps been spoilt by some gross error in the data, such
as incorrect correspondence between rays. When more than five pairs of
rays are available, recomputation of the result using sub-sets obtained by
omitting one ray at a time yield useful test results. These computations
do not take much work, since a good guess for the solution is available in
each case.

It is, of course, also useful to compute the total error E and to es-
timate the variance factor, as suggested in section 7. Finally, it may be
desirable to estimate the standard deviations of the error in the six un-
known parameters using the inverse of the matrix of coefficients of the
symmetric normal equations, as indicated in section 7.

11. Search of Parameter Space and Statistics

If an initial guess is not available, one proceeds as follows:
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• For each rotation in the chosen group of rotations, perform the above
iteration to obtain a candidate baseline and rotation.

• Choose the solution that has all positive signs of the distances along
rays and yields the smallest total error.

When there are many pairs of rays, the iterative algorithm will converge to
the global minimum error solution from any initial guess for the rotation.
There is no need to sample the space of rotations in this case.

Also, instead of sampling the space of rotations in a systematic way
using a finite group of rotations, one can generate points randomly dis-
tributed on the surface of the unit sphere in four-dimensional space. This
provides a simpler means of generating initial guesses, although more ini-
tial guesses have to be tried than when a systematic procedure is used,
since the space of rotations will not be sampled evenly.

The method as presented minimizes the sum of the squares of the
weighted triple products [b r′l rr ]. We assumed that the weighting factors
vary slowly during the iterative process, so that we can to use the current
estimates of the baseline and rotation in computing the weighting factors.
That is, when taking derivatives, the weighting factors are treated as con-
stants. This is a good approximation when the parameters vary slowly, as
they will when one is close to a minimum.

The method described above can be interpreted as a straight-forward
weighted least-squares optimization, which does not allow estimation of
uncertainty in the parameters. One can also apply more sophisticated
analyses to this problem, such as best linear unbiased estimation, which
does not require any assumptions to be made about the distribution of
the errors, only that their standard deviations be known. The standard
deviations of the resultant parameters can then be used to evaluate their
uncertainty, although no testing of confidence intervals is possible. Fi-
nally, one may apply maximum likelihood estimation of the orientation
parameters, where the observation errors are assumed to be distributed
in a Gaussian fashion with known standard deviations. This allows one to
derive confidence regions for the estimate orientation parameters, which
can be treated as quantities that contain an error that is distributed in
Gaussian fashion also.

12. Critical Surfaces

In certain rare cases, relative orientation cannot be accurately recovered,
even when there are five or more pairs of rays. Normally, each error term
varies linearly with distance in parameter space from the location of an
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extremum, and so the sum of squares of errors varies quadratically. There
are situations, however, where the error terms to not vary linearly with
distance, but quadratically or higher order, in certain special directions
in parameter space. In this case, the sum of squares of errors does not
vary quadratically with distance from the extremum, but as a function
of the fourth or even higher power of this distance. This makes it very
difficult to accurately locate the extremum. In this case, the total error
is not significantly affected by a change in the rotation, as long as this
change is accompanied by an appropriate corresponding change in the
baseline. It turns out that this problem arises only when the observed
scene points lie on certain surfaces called Gefährliche Flächen or critical
surfaces [Brandenberger 47] [Hofmann 49] [Zeller 52] [Schwidefsky 73].
We show next that only points on certain hyperboloids of one sheet and
their degenerate forms can lead to this kind of problem.

We could try to find a direction of movement in parameter space (δb,
δωω) that leaves the total error unaffected (to second order) when given a
particular surface. Instead, we will take the critical direction of motion in
the parameter space as given, and try to find a surface for which the total
error does not change (to second order).

Let R be a point on the surface, measured in the right camera coordi-
nate system. Then

β rr = R and α r′l = b+ R, (68)
for some positive α and β. In the absence of measurement errors,

[b r′l rr ] = 1
αβ
[b (b+ R) R] = 0. (69)

We noted earlier that when we change the baseline and the rotation slightly,
the triple product [b r′l rr ] becomes

[(b+ δb) (r′l + δωω× r′l) rr ], (70)
or, if we ignore higher-order terms,

[b r′l rr ]+ (r′l × rr ) · δb+ (rr × b) · (δωω× r′l). (71)
The problem we are focusing on here arises when this error term is un-
changed (to second order) for small movement in some direction in the
parameter space. That is when

(r′l × rr ) · δb+ (rr × b) · (δωω× r′l) = 0, (72)
for some δb and δωω. Introducing the coordinates of the imaged points
we obtain:

1
αβ

((
(b+ R)× R

) · δb+ (R × b) · (δωω× (b+ R)
)) = 0, (73)

or
(R × b) · (δωω× R)+ (R × b) · (δωω× b)+ [b R δb] = 0. (74)
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If we expand the first of the dot-products of the cross-products, we can
write this equation in the form

(R · b)(δωω · R)− (b · δωω)(R · R)+ L · R = 0, (75)
where

L =  × b, while  = b× δωω+ δb. (76)
The expression on the left-hand side contains a part that is quadratic in R
and a part that is linear. The expression is clearly quadratic in X, Y , and
Z , the components of the vector R = (X, Y , Z)T . Thus a surface leading
to the kind of problem described above must be a quadric surface [Korn
& Korn 68].

Note that there is no constant term in the equation of the surface,
so R = 0 satisfies the equation (75). This means that the surface passes
through the right projection center. It is easy to verify that R = −b satis-
fies the equation also, which means that the surface passes through the
left projection center as well. In fact, the whole baseline (and its exten-
sions), R = kb, lies in the surface. This means that we must be dealing
with a ruled quadric surface. It can consequently not be an ellipsoid or
hyperboloid of two sheets, or one of their degenerate forms. The sur-
face must be a hyperboloid of one sheet, or one of its degenerate forms.
Additional information about the properties of these surfaces is given in
Appendix B, while the degenerate forms are explored in Appendix C (see
also [Negahdaripour 89]).

It should be apparent that this kind of ambiguity is quite rare. This
is nevertheless an issue of practical importance, since the accuracy of the
solution is reduced if the points lie near some critical surface. A textbook
case of this occurs in aerial photography of a roughly U-shaped valley
taken along a flight line parallel to the axis of the valley from a height
above the valley floor approximately equal to the width of the valley. In
this case, the surface can be approximated by a portion of a circular cylin-
der with the baseline lying on the cylinder. This means that it is close
to one of the degenerate forms of the hyperboloid of one sheet (see Ap-
pendix C).

Note that hyperboloids of one sheet and their degenerate forms are
exactly the surfaces that lead to ambiguity in the case of motion vision.
The coordinate systems and symbols have been chosen here to make the
correspondence between the two problems more apparent. The relation-
ship between the two situations is nevertheless not quite as transparent
as I had thought at first [Horn 87b]:

In the case of the ambiguity of the motion field, we are dealing with
a two-way ambiguity arising from infinitesimal displacements in camera
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position and orientation. In the case of relative orientation, on the other
hand, we are dealing with an elongated region in parameter space within
which the error varies more slowly than quadratically, arising from images
taken with cameras that have finite differences in position and orientation.
Also note that the symbol δωω stands for a small change in a finite rotation
here, while it refers to a difference in instantaneous rotational velocities
in the motion vision case.

In practice, the relative orientation problem becomes ill-conditioned
near a solution that corresponds to ray-intersections that lie close to a
critical surface. In this case the surfaces of constant error in parameter
space become very elongated and the location of the true minimum is not
well defined. In addition, iterative algorithms based on local lineariza-
tion tend to require many steps for convergence in this situation. It is
important to point out that a given pair of bundles of corresponding rays
may lead to poor behavior near one particular solution, yet be perfectly
well-behaved near other solutions. In general these sorts of problems are
more likely to be found when the fields of view of one or both cameras are
small. It is possible, however, to have ill-conditioned problems with wide
fields of view. Conversely, a small field of view does not automatically
lead to poor behavior.

Difficulties are also encountered when two local minima are near one
another, since the surfaces of constant error in this case tend to be elon-
gated along the direction in parameter space connecting the two minima
and there is a saddle point somewhere between the two minima. At the
saddle point the normal matrix is likely to be singular.

13. Conclusions

Methods for recovering the relative orientation of two cameras are of im-
portance in both binocular stereo and motion vision. A new iterative
method for finding the relative orientation has been described here. It
can be used even when there is no initial guess available for the rotation
or the baseline. The new method does not use Euler angles to represent
the orientation and it does not require that the measured points be ar-
ranged in a particular pattern, as some previous methods do.

When there are many pairs of corresponding rays, the iterative method
finds the global minimum from any starting point in parameter space. Lo-
cal minima in the sum of squares of errors occur, however, when there are
relatively few pairs of corresponding rays available. Method for efficiently
locating the global minimum in this case were discussed. When only five
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pairs of corresponding rays are given, several exact solutions of the copla-
narity equations can be found. Typically only one of these is a positive
solution, that is, one that yields positive distances to all the points in the
scene. This allows one to pick the correct solution even when there is no
initial guess available.

The solution cannot be determined with accuracy when the scene
points lie on a critical surface.
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Appendix A—Rotation Groups of Regular Polyhedra

Each of the rotation groups of the regular polyhedra can be generated
from two judiciously chosen elements. For convenience, however, an ex-
plicit representation of all of the elements of each of the groups is given
here. The number of different component values occurring in the unit
quaternions representing the rotations can be kept low by careful choice
of the alignment of the polyhedron with the coordinate axes. The attitudes
of the polyhedra here were selected to minimize the number of different
numerical values that occur in the components of the unit quaternions.
A different representation of the group is obtained if the vector parts of
each of the unit quaternions is rotated in the same way. This just corre-
sponds to the rotation group of the polyhedron in a different attitude with
respect to the underlying coordinate system. This observation leads to a
convenient way of generating finer systematic sampling patterns of the
space of rotations than the ones provided directly by the rotation group
of a regular polyhedron in a particular alignment with the coordinate axes
(see also [Brou 83]).

The components of the unit quaternions here may take on the values
0 and 1, as well as the following:

a =
√

5− 1
4

, b = 1
2
, c = 1√

2
, and d =

√
5+ 1
4

. (77)

Here are the unit quaternions for the twelve elements of the rotation group
of the tetrahedron:
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(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
(b, b, b, b) (b, b, b, -b) (b, b, -b, b) (b, b, -b, -b)
(b, -b, b, b) (b, -b, b, -b) (b, -b, -b, b) (b, -b, -b, -b)

(78)

Here are the unit quaternions for the twenty-four elements of the rotation
group of the octahedron and the hexahedron (cube):

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
(0, 0, c, c) (0, 0, c, -c) (0, c, 0, c) (0, c, 0, -c)
(0, c, c, 0) (0, c, -c, 0) (c, 0, 0, c) (c, 0, 0, -c)
(c, 0, c, 0) (c, 0, -c, 0) (c, c, 0, 0) (c, -c, 0, 0)
(b, b, b, b) (b, b, b, -b) (b, b, -b, b) (b, b, -b, -b)
(b, -b, b, b) (b, -b, b, -b) (b, -b, -b, b) (b, -b, -b, -b)

(79)

Here are the unit quaternions for the sixty elements of the rotation group
of the icosahedon and the dodecahedron:

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
(0, a, b, d) (0, a, b, -d) (0, a, -b, d) (0, a, -b, -d)
(0, b, d, a) (0, b, d, -a) (0, b, -d, a) (0, b, -d, -a)
(0, d, a, b) (0, d, a, -b) (0, d, -a, b) (0, d, -a, -b)
(a, 0, d, b) (a, 0, d, -b) (a, 0, -d, b) (a, 0, -d, -b)
(b, 0, a, d) (b, 0, a, -d) (b, 0, -a, d) (b, 0, -a, -d)
(d, 0, b, a) (d, 0, b, -a) (d, 0, -b, a) (d, 0, -b, -a)
(a, b, 0, d) (a, b, 0, -d) (a, -b, 0, d) (a, -b, 0, -d)
(b, d, 0, a) (b, d, 0, -a) (b, -d, 0, a) (b, -d, 0, -a)
(d, a, 0, b) (d, a, 0, -b) (d, -a, 0, b) (d, -a, 0, -b)
(a, d, b, 0) (a, d, -b, 0) (a, -d, b, 0) (a, -d, -b, 0)
(b, a, d, 0) (b, a, -d, 0) (b, -a, d, 0) (b, -a, -d, 0)
(d, b, a, 0) (d, b, -a, 0) (d, -b, a, 0) (d, -b, -a, 0)
(b, b, b, b) (b, b, b, -b) (b, b, -b, b) (b, b, -b, -b)
(b, -b, b, b) (b, -b, b, -b) (b, -b, -b, b) (b, -b, -b, -b)

(80)

Remember that changing the signs of all the components of a unit quater-
nion does not change the rotation that it represents.

Appendix B—Some Properties of Critical Surfaces

In this appendix we develop some more of the properties of the critical
surfaces. The equation of a critical surface can be written in the form

(R × b) · (δωω× R)+ L · R = 0, (81)
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or
(R · b)(δωω · R)− (b · δωω)(R · R)+ L · R = 0, (82)

where
L =  × b, while  = b× δωω+ δb. (83)

It is helpful to first establish some simple relationships between the quan-
tities appearing in the formula above. We start with the observations that
 · b = 0, that  · δωω = δb · δωω, and  × δb = −(δb · δωω)b.

We can also expand L to yield,

L = δωω− (b · δωω)b+ δb× b. (84)
It follows that L · b = 0, that L · δb = δωω · δb, and

L × b = −(b× δωω+ δb) = −,
L × δωω = (δb · δωω)b− (b · δωω). (85)

We have already established that R = kb is an equation for one of the
rulings passing through the origin. A hyperboloid of one sheet has two
intersecting families of rulings, so there should be a second ruling passing
through the origin. Consider the vector S defined by

S = (L × δωω)× L, (86)
which can be written in the form

S = (L · L)δωω− (L · δωω)L, (87)
or

S = (δωω · δb) + (b · δωω)( · )b, (88)
so that S · b = (b · δωω)( · ) and S · δωω = (δωω · δb)2 + (b · δωω)2( · ).

If we substitute R = kS into the formula

(R × b) · (δωω× R)+ L · R, (89)
we obtain zero, since L · S = 0 and

S× b = (δωω · δb)L (90)
is orthogonal to

S× δωω = −(L · δωω)L × δωω. (91)
We conclude that R = kS is an equation for the other ruling that passes
through the right projection center.

There are two families of parallel planes that cut an ellipsoid in cir-
cular cross-sections [Hilbert & Cohn-Vossen 53]. Similarly, there are two
families of parallel planes that cut a hyperboloid of one sheet in circular
cross-sections. One of these families consists of planes perpendicular to
the baseline, that is, with common normal b. We can see this by substi-
tuting R · b = k in the equation of the critical surface. We obtain

k(δωω · R)− (b · δωω)(R · R)+ L · R = 0, (92)
or

(b · δωω)(R · R)− (kδωω+ L) · R = 0. (93)
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This is the equation of a sphere, since the only second-order term in R is
a multiple of

R · R = X2 + Y 2 + Z2. (94)
We can conclude that the intersection of the critical surface and the plane
is also the intersection of this sphere and the plane, and so must be a
circle. The same applies to the intersection of the critical surface and the
family of planes with common normal δωω, since we get

(b · δωω)(R · R)− (kb+ L) · R = 0, (95)
when we substitute R · δωω = k into the equation of the critical surface.

The equation of the critical surface is given in the implicit form f(R) =
0. The equation of a tangent plane to such a surface can be obtained by
differentiating with respect to R:

N = (R × δωω)× b+ (R × b)× δωω+ L (96)
or

N = (R · b)δωω+ (R · δωω)b− 2(b · δωω)R + L (97)
The tangent plane at the origin has normal L. This tangent plane contains
the baseline (since L · b = 0), as well as the other ruling passing through
the origin (since L · S = 0). Note that the normal to the tangent plane is
not constant along either of these rulings, as they would be if we were
dealing with a developable surface.

In the above we have not considered a large number of degenerate
situations that can occur. The reader is referred to Appendix C for a
detailed analysis of these.

Appendix C—Degenerate Critical Surfaces

There are a number of special alignments of the infinitesimal change in
the rotation, δωω, with the baseline, b, and the infinitesimal change in the
baseline δb that lead to degenerate forms of the hyperboloid of one sheet.

One of the rulings passing through the origin is given by R = kb,
while the other is given by R = kS. If these two rulings become parallel,
we are dealing with a degenerate form that has only one set of rulings,
that is a conical surface. Now

S = (δωω · δb) + (b · δωω)( · )b, (98)
is parallel to b only when (δωω · δb) = 0, since  is perpendicular to b. In
this case

δb · δωω = 0 and δb · b = 0, (99)
so δb = k(b×δωω) for some constant k. Consequently  = (k+1)(b×δωω),
The vertex of the conical surface must lie on the baseline since the baseline
is a ruling, and every ruling passes through the vertex. It can be shown
that the vertex actually lies at R = −(k+ 1)b.
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We also know that cross-sections in planes perpendicular to the base-
line are circles. This tells us that we are dealing with elliptical cones. Right
circular cones cannot be critical surfaces. It can be shown that the main
axis of the elliptical cone lies in the direction b+ δωω.

A special case of the special case above occurs when

‖b× δωω‖ = 0, (100)
that is δωω ‖ b. Here δωω = kb for some constant k and so  = δb and
L = δb× b. The equation of the surface becomes

k(R · b)2 − k(b · b)(R · R)+ L · R = 0, (101)
or

k‖R × b‖2 + (δb× b) · R = 0. (102)
This is the equation of a circular cylinder with axis parallel to the baseline.
In essence, the vertex of the cone has receded to infinity along the baseline.

Another special case arises when the radius of the circular cross-
sections with planes perpendicular to the baseline becomes infinite. In
this case we obtain straight lines, and hence rulings, in these planes. The
hyperbolic paraboloid is the degenerate form that has the property that
each of its two sets of rulings can be obtained by cutting the surface with
a set of parallel planes [Hilbert & Cohn-Vossen 53]. This happens when
δωω is perpendicular to b, that is, b ·δωω = 0. The equation of the surface
in this case simplifies to

(R · b)(δωω · R)+ L · R = 0. (103)
The intersection of this surface with any plane perpendicular to the base-
line is a straight line. We can show this by substituting

R · b = k, (104)
into the equation of the surface. We obtain

(kδωω+ L) · R = 0, (105)
that is, the equation of another plane. Now the intersection of two planes
is a straight line. So we may conclude that the intersection of the surface
and the original plane is a straight line. We can show in the same way that
the intersection of the surface with any plane perpendicular to δωω is a
straight line by substituting

R · δωω = k (106)
into the equation of the surface. It can be shown that the saddle point of
the hyperbolic paraboloid surface lies on the baseline.

A special case of particular interest arises when δωω is perpendicular
to both b and δb, that is,

b · δωω = 0 and δb · δωω = 0, (107)
and so δωω = k(δb × b), for some constant k. Then  = (k + 1)δb and
L = (k+ 1)(δb× b). The equation of the surface becomes

k(R · b)
(
(δb× b) · R

)+ (k+ 1)
(
(δb× b) · R

) = 0, (108)
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or just (
k(R · b)+ (k+ 1)

)(
(δb× b) · R

) = 0. (109)
so either

(δb× b) · R = 0 or k(R · b)+ (k+ 1) = 0. (110)
The first of these is the equation of a plane containing the baseline b
and the vector δb. The second is the equation of a plane perpendicular
to the baseline. So the solution degenerates in this case into a surface
consisting of two intersecting planes. One of these planes appears only
as a line in each of the two images, since it passes through both projection
centers, and so does not really contribute to the image. It is fortunate that
planes can only be degenerate surfaces if they are perpendicular to the
baseline, since surfaces that are almost planar occur frequently in aerial
photography22.

To summarize then, we have the following degenerate cases:

• elliptical cones when δωω ⊥ δb,

• circular cylinders when δωω ‖ b,

• hyperbolic paraboloids when δωω ⊥ b,

• intersecting planes when δωω ⊥ δb and δωω ⊥ b.

For further details, and a proof that not all hyperboloids of one sheet
passing through the origin lead to critical surfaces, see [Horn 87b].

22The baseline was nearly perpendicular to the surface in the sequence of pho-
tographs obtained by the Ranger spacecraft as it crashed into the lunar surface.
This made photogrammetric analysis difficult.


