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LINES, LINF-SEGME•TS, REPRESENTATIONS AND CALCULATIONS:

There are many ways of representing a line by an appropriate
equation. A minimum of two parameters is required. Unfortunately
these parameters tend to become singular near certain angles.

Special purpose tests must be made to handle these cases.
The more redundant 3 and 4 parameter representations not only

solve this problem but simplify the opfrations required to
manipulate lines and points.

Let @ be the inclin ation of the line to the x-axis andp its
perpendicular distance from the origin.

Let (xo,yo) , (xl, y,) and (x&,yL) be points on the line. Then
some equations for a line are:

y -(tan O)x - ... m . .m

cos 8

y mx c r c
x - (cot e)y+- +

sin 0

X-xi

xSix I

Y-yj

2. -

S. (x-x,)(y-y 1) - (y-v I )(x-x) = 0

Let taixn- ) 4 + (y -ya )

(x-x*) sin 6 - (y-yo) cos es 0

x -x
cos e= sin 8 Y-Yr

C

x sin e - y cos 0 +Ya 0 -an -(x sin 6 - y cos 6)

This last formulation is nice from a number of
is always non-singular, easy to use and allows
eqations to be formulated neatly. Note that we
polarity, by multiplying the whole equation by
a preferred direction along or across the line
This allows us to represent directed lines.

points of view. It
the least-squares
have a choice of
-1. We can choose
in this fashion.

Now we get on to using this representation. First we note that the
equation of a line at right angles through a point (x3,y 3 ) is:

(x-x 3 ) cos ' + (y-y3 ) sin a = 0



Our line and one point
transformation:

xi cos 9

Y' sin 9

The inverse is:

x-x, cos

Y-Yo sin

(x,,y,) on it implicitly define a coordinate

sin

-cos Y-Y,

-sin

cos y

The separation (perpendicular to the line) of two points:

(x.-x) sin e - (y 2 -y,) cos e (A)

In particular the distance of a point from the line is :

x sin 8 -y cos e +p

Not surprisingly the equation shows the line to consist of points
with zero distance from the line.

The separation (along the line) of two points:

f- It _ ý J (- -- ý4 CLf 1

?O;I'l(

- >



In particular suppose that the end-points of a line segment are (x ,y, )
and (x ,yZ).Then a point lies in the band generated by projecting
this line segment perpendicular to the line if:

L(x-x,) cos e i (y-y,) sin 6e [(x-x ) cos e +(y-y,) sin 8~ 0

This can be used
the line segment

to determine
from (x.,y,)

if q point on the
to (x.,y.).

line lies within

The sine of the angle between two lines:

hA= sin(O,-e9) = sin E, cos %. - cos 8, sin 9A

We use this in the equation for the intersection of two lines:

x (cos 9, - cos ep )/01

y = (sin fp, - sin e*e, )/

Naturally if A& 0, the lines are par allel and we loose.
To find out if two line-segments intersect, we use these equations
to find the intersection of the correSponding lines, then apply
the above "band" test twice to see if this point is inside both
line-segments.

Nextpto project a point perpendicularly onto the line we perform
two opposite rotations about the origin:

, .1--

x,: x e cos e4yo sin

x.L xx cos f -y, sin &

y2=- x sin e+y, cos 0
rL)



Next we get to least-squares fitting a line to a set of points:

We minimise
points from

the sum of squares of perpendicular distances of the
the line (moment of inertia):

e 2 (x i sin 0 - yicos 0 4o )2

Se 2 2 sin 0 xi - cos Y i·i

For this to be 0 we must have:

p a -(x, sin e- y. cos 0)

x , x i /n

where

Y, -. Yoi

That is the line passes through the centre of gravity of the points.

Changing coordinates to a system relative to this favoured point we get:

X' . X.--X
i o0 i Yi-Yo

e2  ý (Xi_.x ) sin - (yi-yo) cos 8T 2
L

S (x'!~. ZZx sin e - Y' cos 8 )2
i

(sin 9)2 x
i

-2(sin 0)(cos a) Ex{y!.4. (cos 4)2T_ y
. i 1.. 1

S 1/2 xI - y x y- .y cos 2r - 2 xi i._ -4~ sin 280



Note that we can find some of these terms as follows:

x . r x2

For compactness let:

For compactness let:

at 2 1xy'

-d = b sin 20
de

'L- Y -i i iI I

- a cos 28

For this to be zero we must have:

tan 20 = a/b , i~. in 20 a a/c cos 28 a b/c

cos cos 20

2

sine 3 0 sin 28

2 cos 9

If a:=0 so is sin 0. Again we can choose to multiply the whole
to decide the direction.

thing by -1

An equivalent way of getting this last result is the following:

-1i4 •tan 20) =6-1 -b 4 c-b .
tan 0- 60

(tan 20) a a C+b

cos -% 1/S 1 (t an ) 2) Wb

2
n x

o
yi2 - n Yo2

t

- n Xo Y

We get:

Now

And

b+c

=2c

(a/2c)/ b~c
2c

Z y,

c a2 4 b2



Different least-squares fits can be described (for example one which
minimises the sum of squares of distance parrallel to the y-axis), but
this one has the property that the fit does not depend on the coordinate
system (invariant with rotation for example).

Note that while trigonometric functions appear all over these results,
none ever get evaluated. Trigonometric functions are a most useful
intellectual crutch, there is however seldom a need to actually
use them in numeric calculations. One can us ually replace them
using the well-known relationships amongst them and reduce the required
operations to +,- ,4,/ and aj ' only. In the above formulas
for least-square fitting for example the only requirment is for two
square root evaluations.

We ought to also check that we in fact have a minimum:

d 2
2 e w n> 0

2 2 2 2  5
d 2 a+b 2 2-e 2 b cos 24 + 2a sin 20 = 2 a - 2 a 4b 0
de2 c

So indeed we have a minimum. We might also want to know the average. errorb
And the average error if instead we had chosen the worst line (one at
right angles to the best line).

22 U 2e2 (sin 8)2Lxi - 2 cos & sin 8&x'Y 4 (cos )2 Yi

e2  (cos )2 4x. + 2 sin e cos 6 l.xty; (s i n &)
2 -x'

Let d Lx' 4 y- then we can also write the above as:

2
e 2 1/2 ( d-c )

2
e = 1/2 ( d+c )

The ratio can be used as a "form-factor".

Note that all of this line-fitting can be modified to handle weighted
points by simple multiplying the coordinates (xiY i) by the weights wi,
and using 2. wi instead of n.i



Now suppose we are given several lines and are required to find
a point with minimum sum of .squares of perpendicular distance.

e 2 ( x sin Bi - y cos 9i+P  
) 2

e . 1 1,

x 2 Z(sin & )2

2 XZ sin i

d 2 2
Xe 2 = 2( xZ(sin i) 2 -dX 1

d
" e = 2(-x sin i

-2xy Zsin 0. cos 8. + y2Z(cos &.)2
SI 1

yl cos Pi = 2
9 1 ri ir

y sin O cos 9. +z . sin R.)
£ i 1 *

cos i4-+y (cos
i

i ) 2 - - Pi cos i )

Let A ar (sin 8 2 * : (cos ei ) 2 - ( ( sin @i cos Ri)2

This will only be zero if all the lines are parallel. Solving the
above set of equations in x and y we get:

x~~ Et 6i CoB 0 ) f sin 8i "4y- (• Si cos Si)fisin Si if

Esin 9. cos i. ie os Bi

S (sin 1 2 icos  i81) ,j

We also ought to check whether this gives us a minimum:

2 2
Se 2 -w 2 (sin 9 ) 2 > 0

d 2 2
e 2

dy2

f(cos di)2

We can weight the lines by simply

multiplying sin 9i, cos 8i' /*i
by the weights wi.



PROJECTION OF A RECTANGULAR CORNER:

Given that the tri-hedral vertex is formed by three planes meeting

ar right angles, find the inclinations of the three lines or,f*,'

relative to the image plane. Let these angles be a,b1#c . Note that

the angle between the plane containingElA relative to the view vector

is also qrand so on for the other sides of the object.

This information is useful in defining the elevation and rotation

of the eye relative to the coordinate system implicitly defined by the

rectangular object. The angles can also be used to correct the fore-

shortening introduced by the inclination of the lines relative to the

image plane,

Now consider the following spherical triangle:



Using a spherical trigonometry formula we get:

= cos C -a)
2

cos(T -b)
2

+ sin( -a) sin( -b) cos C
2 2

= sin a sin b + cos a cos b cos C

cos C

cos B

cos A

= -tan a tan b

= -tan c tan a

-ý tan b tan c

2 cos B cos C
tan~a a ,

cos A

cos a --- -

1 + tanra

and by symmetry:

cos A

cos A cos B cos C

Where a<0 if and only if A > 1.

So we have the angle of the line ed relative to the image plane. As

mentioned this also gives us the inclination of the plane containing

A and 9' relative to the view vector. The others are found by symmetry.

To get the "unforshortened" length of the lines, that is the length in

the image if they had been oriented at right angles to the view vector,

we just divide by the cosine of the inclination angle:

u = 04f / cos a

We also note that the cosines needed in the formulae can be obtained

simply by using dot-products:

cont need to use trig-functions at all, only +,-,*,/ and

So we don't need to use trig-functions at all, only +,-,*,/ and ,t'

0 = COS
2
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A few other random formulae in this relation:

Since A + B + C = 2 r , cos A = cos B cos C - sin B sin C

cos A
cos a 0 A

sin B sin C
because of that.

tan 'a

sin a F tana
1 + tanea

cos B cos C

- sin B sin C

Another derivation not involving spherical triangles is as follows:

Using the formulae for plane triangles:

Csin a , sin b)2 + x2 = 2

x2 = cos2a + cos 2b - 2 cos a cos b cos C

2 = (sin2a + cos2a) + (sin2b + cos2b) - 2 sin a sin b - 2 cos a cos b cos

cos C = - tan a tan b as before

cos B cos C

/cos B cos C - cos A
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RELATIONS BETWEEN SIDES AND ANGLES OF ANY PLANE TRIANGLE:

sin A

a

sin B

b

sin C

c
( = diameter of circumscribed circle)

a2  b2 + 2 - 2bc cos A

a = b cos C + c cos B

RELATIONS

sin A

sin a

IN ANY SPHERICAL TRIANGLE:

sin B

sin b

sin C

sin c

cos a = cos b cos c + sin b sin c cos A

cos A = - cos B cos C + sin B sin C cos a

b, c are the length of the arc on a unit sphere, alternatively

can think of them as the angle (in radians) subtended by the

at the centre of the sphere)

(a.

one

arc
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PROXIMITY FINDING:

In the later phases of line-finding programs it is often necessary

to repeatetly locate lines that are close together, lines that pass

close to a given vertex and so on. To do this efficiently we require

a fast access method to locate likely candidates for more sensitive

tests. First consider the problem of deciding if two points are close

together.

To tell if x and y are close together we can quantise both (by dividing

by the quantisation interval size and truncating). If the two numbers

[x/d] and [y/d] are the same we win, but it may be that x and y just

straddle a boundary defined by our truncation algorithm. We need

a second, interlaced set of boundaries and calculate [x/d+.5], [y/d+.5].

Now if either pair of numbers matches we know that Jx-yy(d. Conversly if

jx-yk(d/2 we are guaranteed that at least one pair will match.

This method only comes into its own if we have large sets of points. We

then simply find the two integer-codes for each one and add it to the

appropriate buckets. To find which points are near a given point we

determine its two integer-codes and collect the union of the two

corresponding buckets.

• __J L.. L.-A "-_. L- -J L * ' L,'tt

This method can now be extended to n dimensions. We need at least n+l sets

of buckets if we use n-tetrahedrons. It may be more convenient to use 2n

sets of buckets if the unit cell is an n-cube.(d/n versus d/2 min sep)

Line-segments and curves can be handled by entering each point on them

into the system. In practice one will only enter a set of points separated

by the minimum distance guaranteed by the geometry used. Retrieval works

in a symmetric way.
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LEAST SQUARES SOLUTION OF AN OVERDETERMINED SET OF EQUATIONS:

Let us write the equations as follows:

Ax=y+e

Where A is a given m by n matrix ( .m>n), x is the unknown n-vector,

y is a given m-vector and e is an m-vector of errors which we are

trying to minimise.

eTe = CA x - y)T (A x - y)

= (xT AT - y) (A x - y)

= T AT Ax - yT Ax - xT ATy +yT y

d T T T T T T T T
-- ee = xT A + (A A x)T yT A- (AT T 0
dx

So: T AT A = yT A for this to be 0

AT A x = AT y

x = (AT A) -1 AT y

d %
-cp eTe = 2 ATA
dx%

The diagonal elements of this will clearly be postive so we do have

a minimum.
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LEAST SQUARES CURVE FITTING:

Suppose we have a function g(x) defined at the n points xl, x2 etc.,

and that we are trying to fit a function f(x) which depends on the

m parameters al, a2 etc. so as to minimise the sum of squares of

errors at the points xl, x2 etc. Let ei be the error at point xi.

e i = f(xi) -. g(x i )

Let e be the n-vector of errors, f the n-vector of fitted values, 9 the

n-vector of defined values. Then we are trying to minimise:

eTe = (f - g)T.(f_ )
T

by varying the parameter m-vector a. The derivative of e e w.r.t.

to this vector must be zero (and the second derivative positive).

df df
(f - ) 0- = 0 where - is an n by m matrix

da da

df df
So d = df or written out in full:

da da

~o., ckA%
4(c~a 6La) aA

w , , 9A

iHwL AA . -

d~eL 14A 1k

Ma , o)4A

Na dCx

To be able to solve these equations we choose a particularly simple

form for f(x) namely . ajf.(xi ) = f(xi) , that is a linear one.

In this case the terms in the matrix df/da, namely df(xi)/daj become:

4

HI

i - A

glD('j I A-a k. ek v., (A k
I

I
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dfdf. = f.(x i)

da 1

So the matrices become quite simple and let us denote them by FT

dfF = df = f (xi)

We also note that because of the simple dependence of f(x) on the

parameters ai we get:

f= F a

And we can rewrite the main equation as:

FT = FTF a

Since FTF is square we can attempt to invert it and get:

a = (FTF)-l FTg

So inverting the normal matrix allows us to solve for the parameters a.
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EXAMPLE OF FITTING A STRAIGHT LINE:

f(x) = al + a2 x

Here a= (al, a2)

FT = 1

• xI

... n1

.,.. x

Let A = nZxl - (lxi)2,

TF1 I I4 -Zxi(FTF) - = - n& F1

and let yi = g(xi)

f 2 (x)=x

n

F F =

,zi

Zxi'
2xj
'T I

then

FT 1

-rxi i

a = (FTF) 1 FT g =
l xý -,xi 1y
'Ad x n xiyiiiIx E.hl~xi I I~in

al = ( x" i .y - 1xi I xiY i

a2 = ( -Zxi- Yi + n xiY i ) /a

Note that this is an unsymmetrical method different from the one
demonstrated elsewhere in this memo and not suited for fitting

lines in a line-drawing for example.

g-- (Y1' Y2' ':' Yn) fl ( x ) =l



-17-

APPLICATION TO FITTING A POLYNOMIAL:

f(x) = Zaj xi

a = (ao, a, ... am-l)

fj(x) =

FT a

FTF

T

1 1

X1  X2

m-l
x1I

£x i Ix:

fx i i x2

E:x
:x -i

x 1

xyi

rxiY
i

rxm-rl1i Y

and let y = g(xi)

9g=. (Yo1' Y '' ...

1

... X

m-1

S. x

. x

The "normal" matrix

a = (FTF) - 1 FTAt this stage we obtain the parameters
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FITTING EXPONENTIALS:

VA.% X.

f(xi) = a. (sj)

fj(x) = (sj)x

x x
s s0 0

TX xo x1
FT i s1 si

x x
mo m1

sm-i sm-i

g = (O',Yl,

Xn-l0

s n - 1

Xn-
sm-1

(FTF)ij = (ss ) Now suppose we have regular intervals xk k=r

Let s! = sT and s'. = s
3 3

T ' h% = ks (= ')n)/(ks5s,.(FTF)ij (sisj)k = (ss) k  (1- (ss )n)/(

Next take the special case: sa = e(2 i/n)a w = e-(2j/n)

(FTF)i=0O for i+jf0 or n (FTF)ij=n for i+j= 0 or n

1 0 0 00 1 00 00

000 01 1 000 01

(FTF)=  n 000 1 0 (FTF) = -- 000 1 0
Sn a a

0 1 0 00 010 00

1w-Ok wk w Ok Yk

(Fre I w uw-lk Yk wal k  Yk

w- (n-1)ky w(n-1)k y k

Where we used w(n-a )k - ak . Note: a is the discrete F.T. of .

I
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APPLICATION TO FITTING NON HARMONICALLY RELATED SINES AND COSINES:

Assume regular sample intervals: xi = i·'. Let si = 21•if, where 4i

are the frequencies of the various components. The si should be non-zero,

positive and unique.

f(x i ) = a + a. cos(s i) +
Jl 3 sj 3 ) "

cos(s 1) cos(2sl)

cos(s ) cos(2s )

1 cos(s ) cos(2s )

0 sin(s I) sin(2s1 )

0 sin(s 2) sin(2s2)

0 sin(sm) sin(2sm)

I..

C. C

bj sin(sj i)

1

cos((n-1)s 1)

cos((n-l)s
2)

cos((n-l)sm)

sin((n-l)s 1)

sin((n-l)s
2 )

sin((n-l)s M)

Now note that 2 cos A cos

2 sin A cos

2 sin A sin

cos(A+B) + cos(A-B)

sin(A+B) + sin(A-B)

cos(A-B) - cos(A+B) and let s =O

(FTF)i,j =

(-I

(FTF) i j+m= ,
VLZa

cos(s k)cos(s k)

cos(s i k)sin(s k)

= (1/2) 2 cos((si+s )k) + r- cos((s j-si )k)

for 0 Ci4m and 04j< m

= (1/2) Z sin((si+s )k) +Xsin((s -si)k)

for O 4iAm and 14j m

(FTF)i+mj+m=Z sin(sik)sin(s k) = (1/2) r cos((s -si)k) - cos((si+s )k)

for li(m and 14j m

The other terms can be found using the symmetry of (FTF).
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Now M ejw k  = (1 - eJwn)/(1 - ejw )
.or

= (ejwn/2/ejw/2) (eJwn/
2 _ e-jwn/2)/(eJW/2 - e-jw/2

= ejw(n-1)/2 sin(nw/2) / sin(w/2)

Now since cos(A) = Re ( ejA ) and sin(A) = Ig ( ejA ):

r. cos(wk) = cos(w(n-1)/2) sin(nw/2) / sin(w/2)

= (12) ( sin(w/2) + sin((2n-)w/2))/ sin(w/2)

= (1/2) (1 + sin((2n-)w/2) / sin(w/2) )

unless w =0 in which case the sum is n.

J.sin(wk) = sin(w(n-l)/2) sin(nw/2) / sin(w/2)

= (1/2) ( cos(w/2) - cos((2n-l)w/2))/ sin(w/2)

unless w =0 in which case the sum is 0.

S1 sin((2n-l)(s.+s )/2) sin((2n-l)(s.i-s.)/2)
(FTF).. =-(2 + 1 + 1

14 sin((s i +s )/2) sin((si-s )/2)

for 0(i/m and 04jdm and ifj. If i=j, the third term is 2n-1.

for i = j = 0, the second and third term become 2n-1.

(TF) =1 cos((s.+s.)/2) - cos((2n-1)(s.+sj)/2)
(FTF) = -( +

ij+m 4 sin((si+s )/2)

cos((s -si)/2) - cos((2n-1)(sj-si)/2)

sin((sj-si)/2)

for 0fidm and 1ljom and i fj. If i=j, the second term is 0.

1 sin.((2n-1)(s i-s)/2) sin((2n-1)(sj+s )/2)
(FTF) = -( - 1i+m,j+m 4 sin((sj-si)/2) sin((si+s )/2)

for l(i(m and l(j(m and ifj. If i=j the first term is 2n-1.
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The first element in this array is n, the other diagonals are near n/2,

while most of the other terms are small, of the order of I. The only

large elements will be the result of two narrowly separated frequencies,

This makes for good numerical stability when inverting (FTF) by the

simplest methods.

When the frequencies are harmonically related , we have si=(2T i/n).

Then all off-diagonal terms will be 0, and those on the diagonal will

be exactly n/2 except the first which will be n. The inverse of (FTF)

then is also diagonal with the first element I/n and the rest 2/n. We

are back to discrete fourier transforms in this case.

Note that if we use:

sin(A+B) = sin A cos B + cos A sin B

sin(A-B) = sin A cos B - cos A sin B

cos(A+B) = cos A cos B - sin A sin B

cos(A-B) = cos A cos B + sin A sin B

we can obtain all the entries in the array using only a few operations

on sin(si/2), cos(si/2) and sin((2n-l)si/2), cos(( 2n-l)si/2) .
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SOLVING SETS OF SIMULTANEOUS LINEAR DIFFERENCE EQUATIONS:

(Xl)n+l = all (Xl)n + a12 (X2)n

(X2)n+
l

(Xm)n+
l

= a21 (Xl)n + a22 (x2)n

= aml (Xl)n + am2 (x2)n

-n+1 A n

S+ alm(xm)
n

" . + a2m(xm)n

., + amm(xm)
n

where A is the given coefficient set

Assume a solution of the form rn for each xi:

where a is a m-vector of parameters

r(arn) = A(arn) (A-Ir)a = 0 since rn f 0

A non-zero solution for a requires that det(A-Ir) = 0. The possible

a's are eigenvectors, the possible r's are eigenvalues of the matrix A.

The determinant is a polynomial of degree m in r and will usually have

m solutions, possible complex. We get the usual problems if two roots

coincide and have to introduce additional solutions of the form nrn

n2 rn and so on. Having found r, we can solve for a using some

normalising conditions (since any multiple will also be a solution).

Then using the linearity of the set of equations we can add up the

solutions into a more general one:

Often we are (ronly interested in

Often we are only interested in sta

where rj are the various solutions

ibility and just check the roots:

Irj ( 1

x = a r n
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EXAMPLE FOR A TWO VARIABLE SYSTEM:

(x1)n+1= all (xln)

= a N )

a12(x2)n

n

(all - r) al2

det a21  (a22 - r) = (all-r)(a 22-r) - a12a21 = 0

(a11a22 - al2a21) - (all + a22)r + r2 = 0

r = (1/2

r = (1/2

Stability:

Case 1:

Case 2:

Case 3:

Case 2 &3

Substituting:

Case 1:

) (

When

4b?

4b

4b

4b (

(all+a 22) + (all+a 22)2 -4(alla 22-a12a21) %

(all+a 22) + (all-a 22)2 + 4 a12a21

is (a +J a2 - 4b I 4(L ?

ac Complex roots

a
2

a
2

a2

Real roots

Real roots

Real roots

laI( 2 for stability

a) o. a+a~2-4b 2

a( b+l

a40. -a+Ia2-4b < 2

-a (b+l

al<b+l for stability

122
)2

2 1all+a221 < 2
-4 a12a21 > (all-a

Case 2 & 3: Opposite of above relatio

122'

pns lal1 +a2 21(l+(a1 la 2 2 -al 2a21)

2 n+1 21 1 n 22 2

4(a a -a a ) > (a +a
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MULTI-DIMENSIONAL NEWTON-RAPHSON ZERO-FINDING:

Suppose wehave n functions Fi each of n parameters aj . We are trying

to find values for the aj 's such that the Fi's are all zero.

Assume we have the value a at step n for the paroaeter vector.

This gives us the value for the function vector F = F(a n)

Now consider a small change da.. in a. To a first approximation we get:

F(an + da) = F(an ) + F'(a ) da

Where F'(a ) is the matrix of derivatives:

dF1 dF1  dF1

dal da2  dan

dF2 dF2  dFn

dal da2  da2

dFn dFn dFn

daI da2 dan

For F(a + da) = 0 we need -F( ) = F'(a ) da

So da = - (F')- 1 F

an+ =  an - (Fn)-1 Fn

So we iterate to a solution, requiring one matrix inversion per step.

There are better methods, but few simpler. For bad hill-climbing type

problems one can use the method of conjugate directions and various

variations such as the so-called mixed method which is also fairly

rapid.
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SIMPLE INTERPOLATION OF A FUNCTION FROM A STORED GRID:

Rectangular grid: Suppose the origin is xo, Yo and the spacing d.

To find an interpolated value at a point x, y calculate as follows:

x' = (x- x0 )/d y' = (y- )/d

i = [x'] j = [y']

i =x' - i Aj =y' -j

f(x,y)? fij (1-ai- &Aj- &ij)+fi+l,jAi(l-Aj)

+fij+1(1-Ai)AJ + fi+1,j+1iA

Triangular grid: Again origin at xo,Y o

x' = ( (x-x 0 )-(y-y))/d y =(y-yo)/d
2 2

i = [x'] j = [y']

i=x,-i j -=y'-j

f (yV) f (I-A i-hi) + f_ - Ai + f A_ 4 gjti
9 '. I i+1 j· * Ijl

I I!4i#,.

'1

h

d
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WHAT ELLIPSE IS IT:

Given an ellipse in the form:

A x2 + B xy + C y2 + D x + E y + F = 0

Determine its center, angular orientation and ma'or and minor axes.

x = (BE - 2CD)/(B2 - 4AC) Yo = (2EA - DB)/(B 2 - 4AC)

xo, Yo are the center because we can expand as follows:

A(x-x ) 2+B(x-x )(y-y )+C(y-yo) +F'=O

A x2 + B xy + C y2  + (-2Ax o-By)x + (-2Cy -Bx )y

+ (F'+Ax2+Bx y +Cy2) = 0
.00 0

So we have:

2Ax0 + By0 = -D

Bx0 +2Cy o = -E

Solving this set of equations we get the above expression for x , yo.

We also now have a useful new quantity:

F' = F -(Ax 2 + Bxoyo + Cyo2

The orientation of the ellipse is found as follows:

tan 2 9 = B/(A-C)

And the major and minor axes can be found as well:

a = -2F'/((A+C)--JB 2 +(A-C) 2 )

b = -2F'/((A+C)+ B2 +(A-C) 2 ")
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These last results follow from expansion after change of coordinates:

x cos 9 + y sin 9 2 -x sin 9 + y cos ) 2
( ) +( ) =1

cos 2
+ -- ) x +

a

2 sin 9 cos 6(-
a

1 1

b

sin 9
xy + (=

a

Identifying the appropriate terms with A, B, C and F' we get:

B/(-F')

(A-C)/(-F')

1 1
= sin 29 (- - -)

a b
1 1

= cos 29 (0 - )
a b

Since 2 sin 9 cos 9 = sin 28 and (cos 9)2 - (sin 8)2 = cos 28

(A+C)/(-F')
1 1

a b

Its also clear that:

1 1
a b

= B2 + (A-C) 2'ý/,+F (Assuming

The rest follows from these simple equations.

"Xvo.

sin e
(-

b

cos 9

b
y = 1

a > b)
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APPROXIMATION TO n!

Stirling's formula: n; ' 2 (n/e) n

Better approximation: n! 1 2w7 (n/e) n e

The fractional error of the latter is much smaller. For n=1O for

example it is .27E-5 versus .8E-2 and for n=50 it is .22E-7 versus .1E-3.

This is useful in calculating large binomial coefficients.

OBTAINING A NORMALLY DISTRIBUTED RANDOM VARIABLE FROM ONE UNIFORMLY

DISTRIBUTED:

Suppose xi is the output of our random (pseudo ...) number generator.

1. (.Z xi - 6)/6

2. A-2 log xi  sin(2wxWi+ 1

3. Let f(x)'be the distribution we are aiming for. Now integrate it:

F(x) = f(+) d-~

A random variable distributed as desired will be (F-1)(xi)

MULTIPLICATIVE RANDOM GENERATORS:

xi+ l = Akx i (mod p) p a large prime

A a primitive root of p, k not a factor of p-l.

Example: p =2 35 -31 A =5 k =5

p = 231 - A =7 k= 5

Additive congruential generators are better though.
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FAST IN-POSITION MATRIX INVERSE:

Do i = 0 ( 1 ) n-l

com * a(i,i)

a(i,i) 4 1.

Do j = 0 (1

a(i,j) 4 a(i
End

Do k = 0 (1

com 4 a(k,i)
a(k,i) 4 0.

) n-1

,j) / com

) n-l and i ý k

Do j = 0 ( 1 ) n-l

a(k,j) # a(k,j) - a(i,j) * com

'End

End

End

Note that rows and columns are never shuffled and that there will be

matrices which while not singular will cause this procedure to fail.

The matrix is n by n and stored in the array a(i,j) where i and j

range from 0 to n-l.

GENERATING A BIT-REVERSING TABLE:

b(O) 4 0

m (1

Do i = 0 ( 1 ) In-i

Do j = 0 ( 1 ) m-l

b(j) < b(j)*2

b(j+m) 4 b(j)+.l

End

m 4 m*2
End
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SOME FOURIER TRANSFORM METHODS FOR IMAGES:

Fourier transforms for images are two-dimensional and two-sided. In this

they differ from time-series type transforms which are one-dimensional

and often pertain to one-sided functions (Impulse responses must be 0 for

negative values of time).

The general formula for n-dimensions is:

gu) W=

f(x) =

1

!(•
n/2(2irr)

1"" "72
--- -4

V
V

f(x) e

g(u) e

(Note: f and g are complex)

-i u.x

+i u.x

Where x is the n-dimensional source-space vector, u is the n-dimensional

transform-space vector and g is the transform of f. For two dimensions:

G0 o

g(u,v) = 1 f(x,y) e
2 Tr o J o

f(x,y) =- - g(u,v) e
ffI rso

-i (ux+vy)

+i (ux+vy)

dx dy

du dv

Many functions of interest are rotationally symmetric and can be dealt

with by use of the one-dimensional integrals obtained after introducing

the polar coordinates (r, 8) for(x, y)and ( , B) for(u, v).

f(r)rJ(r)dgp, = e f r) r Jo0(rfo ) dr

f (r)

Where Jo is the zeroth order Bessel function.

Note that f and g are now real-valued.

oD
,fo' g(9 )r' Jor)



-31-

This follows from:

- f(r) e -i (r cos / cos +

21 r
Sf(r) e-i r cos (-) d

21T "We can apply these results to a f(rew) druseful examples:

We can apply these results to a few useful examples:

The pillb

rtsin " sin )d9 dr

I dr

ox: f(r) = 1 for r ( R, 0 otherwise. This is
function produced by defocusing.

g(p) = rJo(rp/) dr = J(X )dx

g(c) R2 JI ( Rf ) *=
R= 'R Since xJo(x)

(Rp)

the point-spread

R

=P J1 (x)

= xJ 1 (x)

So the function Jl(x)/x plays the role here that Sin x/x plays for

one-dimensional systems.

The gaussian:
(r) = e

f(r) = e .r

00(1) 2r 2 = Z( 2 r)g(/) e re r Jo0 (rp ) dr = T e' 3.

Since e•- x2 Jn (bx) xn+1 dx
b (a - "

(2a)n+ I
e -

The gaussian has some interesting properties. First it is the

only rotationally symmetric function that can be factored into

a product of a function of x and a function of y. Secondly it is

the only function that "transforms into itself".
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The gaussian is also a good first approximation to point-spread

functions in some devices(at least for small r).

A scatter function: f(r) = e f r / r

Analysis of total reflections in the face-plate of an imaging

device leads to an equation of this form (at least for large r).

fo 0 sorp) r/r

e (rr ) dr

dr

I_4r + J 2I
I.

Note on scalina: For the gaussian we have the following relationship:

rH H = 1.386 (rH = 1.177"cr pH = 1.177/0-)

where rH is the half-intensity radius in the source soace,

and rH is the half-intensity radius in the transform space.
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HOW COHERENT MONOCHROMATIC LIGHT AND A LENS DO FOURIER TRANSFORMS:

Let f be the focal length of the lens and X the wavelength of light.

Plane monochromatic coherent light enters from the left and passes

through. the transoarency, being then focused by the lens on the image plane.

We assume that x and u are relatively small compared to f, so that

@ will be small. We then have for the distance that the ray has to travel

from the point x on the source plane to the point u on the image plane:

f/cos 9 + f cos e + x sin 9 f(2 + 04/4 + S6/120 ... )+x(9 - 83/6 .. )

For small 0 this is approximately: 2f + x 9

The phase-shift in radians is then: (2f + x @) * 2wr/X

We can ignore the constant part of this and considering that light

will arrive at the point u from all over the transparancy we get:

21r X

g(u) = f(x) e 2wi X dx

Where f(x) is the amount of light passed through at the point x.

Now extend this to two dimensions and we finally have:

" cc/ 2 -wi ( 3x u + 1v
g(u,v) = f f(x,y) e dx dy

-ob - Q

Note that g(u,v) is complex. We can get an idea of scaling from this
equation.
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SOME HEURISTICS FOR.TELLING WHAT HAPPENS WHEN YOU TRANSFORM A FUNCTION

Source domain Transform domain

Periodic

Symmetric (about 0)

Non-zero for finite distance

Compact

Sharp transitions

Sample of f(t)

Sum of f(t) and g(t)

Convolution of f(t) and g(t)

Time shift of f(t) by

Integral of f(t)

Differential of f(t)

These rules apply going either way in

used simultaneously. Discrete fourier

periodic and discrete in both domains,

Discrete (non-zero only for some f)

Real

Non-zero out to infinity

Spread-out

Lots of high frequency components

Periodic copies of F(w)

Sum of F(w) and G(w)

Product of F(w) and G(w)

Multiply F(w) by ejw

Divide by jw-

Multiply by jw

the transformation and may be

transforms for example are both
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MEASURING MODULATION TRANSFER FUNCTION USING SQUARE WAVES:

It is very hard to produce images in which the intensity varies

sinusoidally. Yet such images are required in the traditional deter-

mination of frequency response or modulation transfer function. An

alternative is the use of simple-to-produce square wave intensity

modulated images. Then however we have to recover the transfer function

from the measured results.

Let t be one of the spacial dimensions and . = (2-•r)/T, where T is the

repetition interval. The input can be analysed into:
~-I

f(t) = 1/2 + Z b(n) cos nwt where b(n) = (2/-r n)(-1)L

for n odd, 0 otherwise

Let the transfer function be a(w ). Then the output will be:

g(t) = (1/2)a + _ b(n) a(n w ) cos nwt
S0

0o
We can easily normalise to let ao = 1. Let c(w) = - b(n)a(n ).

The problem is to recover a(uw ) from c(w). In the case of square-waves:

c(w) = (2/-r)( ( ) a(w a(3w)+j.a(5w ) a(7u )+!a(9w )-wa(llw) ... )

c(3t )= (2/1-)( a(3%)- a(9j)+fa(15w) ... )

c(5wv)= (2/ti)( a(5w)-a(15w) ... )

c(7w)= (2/ir)( a(7?) ... )

Now add appropriate high-order terms to c( w) to cancel out high-order

terms of a(u>) and get:

a r It)
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CONVOLUTIONS OF PILL-BOXES:

With a line:
-4-

Clearly the convolution is 2 2  = 2 R - () 2  for <R

This then gives us the intensity profile of a defocused line.

Convolution of a pill-box with a step:

We simply integrate the above:

j 2 T7 dx

S R2  x2 + R2 sin-1 R

It -R

1 1 1 + 1

j(r' .rR 2( + (-1( ) + ( () 1

So we have the intensity profile of a defocused edge.

This can be rewritten in a slightly different form using:

1-1
sin -I x + cos -  x -

2

We can also use this to find the convolution of two pillboxes as

2 F( - -)
2

I r'--r
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WHAT A DEFOCUSED EDGE LOOKS LIKE:

Vertical:relative intensity, horizontal: (distance from edge/defocus radius)

Central slope: 2/(w R), 10% to 90% distance = 1.38 R

Derivative is (2/1wR)l - (r/R)2'
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A LINEAR THEORY OF FEATURE POINT MARKING

A first step in many line-finding programs is a process for

determining which points in the image are likely to be on an edge.

This is usually done by locating areas of rapid intensity variations.

Various ad hoc linear and non-linear techniques of varying support

in the image are brought into play. It would be useful to have an

anchor point on this spectrum of possible procedures. Since a lot is

known about linear methods we might ask what linear method applied

to a somewhat idealised image would do the job.

Given a function f(x,y) which is constant within polygonal areas

in the imagewe are looking for a convolution function h(x,y) which

when applied to f(x,y) will be zero everywhere except on the edges,

g(x,y) = f(x-x',y-y') h(x',y') dx' dy'

To attempt to answer this question we might start by asking what values

we expect g(x,y) to take on the edges. Linearity considerations dictate

that it somehow be proportional to the intensity step. In addition it

must reflect the orientation of the step, to insure that superposition

will work. A combination of a negative and a positive pulse will do the

trick, provided the area under each is equal to the intensity step.

Since the image is actually two-dimensional we will have two oulse walls

running along each edge.
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Note by the way that the regions of uniform intensity dont have to be

polygonal. Now it is pretty hard to guess what form h(x,y) will take.

A way i- get a handle on this is to ask the inverse question: what

h'(x,y) when convolved with g(x,y) will produce f(x,y) ?

0* be
f(x,y) =If g(x-x',y-y')h'(x',y') dx' dy'

Well it helps to look at some simple cases first. In particular if we

only have one contour (one closed curve made of the double pulsed wall)

we expect to get 0 if the convolution is about a point outside this

contour and the intensity step if the point is inside the contour.

A and C illustrate the above statements, while B and D are special cases

useful for deriving equations. From D in particular we find that

21fr (d/dr) h'(r) = 1. This is assuming that h must be rotationally

symmetric which is clear from the other examples. We also noted that

convolling with the double pulse wall is just like taking the derivative.

h'(r) = (1/2"M") f (/r) dr = - (1/21r) log r

f ·e
14 ~`
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Since this function also does the right thing for example B we have the

desired result. Now we need to find h(x,y) from this. We do this by

finding the fourier transform of h'(x,y) and noting that it must be the

algebraic inverse of the transform of h(x,y). Since the functions are

rotationally symmetric we get:

H'() = -(1/2¶r)j clog r r J(r, ) dr

Integrating by parts and using /xJo(x) dx = xJ1 (x) as well asfJl(x) dx

J (x) we obtain:

H'(r) = (1/242)

To obtain the transform of h(x,y) we just invert this:

H( ) = I/H'(p) = 2rp 2

When we try to inverse transform this we get into convergence difficulties

and soon discover that we have to expand our universe to that of generalised

functions if we expect to win, even if we use convergence factors. It then

also becomes reasonable to guess at the answer. Consider the sequence of

"functions" obtained by repeatetly differentiating a unit sten. The first

is a pulse at the origin, the second two pulses of opposite sign. This

function corresponds to (d/dx) in the following sense: if we convolve

it with a function f(x) we obtain the derivative f'(x). Similarly the next

member of this sequence consists of a negative, a double height posicive

and another negative pulse and corresponds to (d2/dx2 ) and so on.

When we try to transform these "functions" we obtain the following:

T(d/dx) = iu, T(d2/dx2) = _-u2 , T(d/dy)= iv , T(d2/dy2) = -v2 And:

T( d2/dx2 + d2/dy2 )=-u 2 -v2  2

So our h(x,y) is some multiple of the laplacian ( d2/dx2 + d2/dy2 t
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One can amuse oneself by showing that the convolution of h(x,y) and

h'(x,y) is in fact zero everywhere except at the origin as it ought

to be:

h(x,y)4h'(x,y) = (d2/dx2+d2/dy2)(-1/2ir) log r

d/dx log r = d/dx (1/2) log(x2 +y2) = x/(x2 +y2)

d2/dx2 log r =-(x2y2 )/(x2 +y2 )

d2/dy2 log r = (x2-y2)/(x2+y2) by symmetry

(d2/dx2+d2/dy2) log r = 0 except for x=y=O

So log r is the function which has the surprising property of having

a curvature at each point which is exactly opposite to the curvature

at right angles. Next we might be interested in a discreet approximation

to the laplacian, particularly a rotationally symmetric one( B) :
.- P~ S 0

A

;r ~BC.

Now since we have all this nice linear theory ala Wiener available we

might as well mention that if the image is corrupted by gaussian spatially

independent noise we can apply his results to produce a least squares

approximation to g(x,y). We then find our convolution functions more spread

out than the laplacian and in fact they will contain a central peak surrounded
by a larger negative depression ( C). The only problem is that only
some part of the noise in the image satisfies the criterion, a great deal

of it not being spatially independent and whats worse, there is no reason
to suppose that a least squares approximation to our pulse walls would

be at all useful. Anyway, here it is, our anchor point for the spectrum
of feature point (or inhomogeneous) finders.

i I ýý

Lý0ý
'0.
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FAST FOURIER TRANSFORM

Once we have bit-reversed the complex array x containing the function

to be transformed we proceed as follows, assuming In = log2 n.

n 4 2tl1~

itn + n/2

igr 4 n/2

iga * 2

is 1

Do i =1 (1 ) In

Do ist = 0 ( iga) n-l

Do k = ist ( 1 ) ist+is-l , iwb = 0 ( igr )

a * x(k+is)*w(iwb)+x(k)

b + x(k+is)*w(iwb+itn)+x(k)

x(k) 4 a

x(k+is) 4 b

End

End

igr (- igr/2

is < iga

iga 4 iga*2

End

2j ai

Where w(a) = e n

Note that the arrays x and w are complex valued and dimension n.
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CONTRAST IN A RECTANGULAR CORNER:.

One of the problems in generating line-drawings from complex scenes

is that in addition to the contrast-reduction due to scatter in the

imaging device there is also a great reduction in contrast due to

mutual illumination. To get a handle on this problem, consider the

simple case of two semi-infinite planes meeting at right-angles. The

light is incident at an angle tw.r.t. one of the planes. The surface

is such thatp of the incident light is reflected. Clearly for any

point on one of the half-planes one half is reflected into empty space,
the rest onto the other surface. Light incident at any point is a sum

of the light from the source and that reflected from the other plane.

If both planes are semi-infinite the intensity on each one will be

uniform since a point receives an amount of light from the other plane

that does not depend on the position of the point.

1 = (= /2) 12 + a cost(

12 = (I/2) Il + a sine(

i = (cos. + (/2) sine) a / (1 - (p/2) 2)

12 = (sinA + ( /2) cosa() a / (1 - (p /2)2)

11 2  ((p - . -(os -- )sin ) 2 cosd -sind
Contrast = ,= I- .. si

+1 2 ((ff/L-*)cos'4+(r &+sind) 24f cosoc+sinoed

T:,
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Contrast = tI I tan(i -/4)I
11+1 2 2- (

In the absence of reflection this will be Itan(L-r /4)1, so the

contrast is reduced by a factor

(2-r )/(2+f )

This factor ranges from 1/3 to 1 asp ranges from 1 to 0. So for

objects that reflect most of the incident light, such as our white

cubes this effect is worst, reducing the contrast by a factor 3.

If we consider finite half-planes things get more hairy and the

intensity on a given plane is no longer independent of position,

falling off as one goes outward from the corner. In the corner

itself however the situation is unchanged in the limit. So as far

as the contrast across the edge -in the image is concerned we can

still use the above formula. Note that with finite half-planes a

rigouous analysis would require knowledge of the distribution of

reflected light with angle which was not needed in the above.

If we consider other angles we find that the problem increases as the

angle gets smaller.

Suppose the. angle between the two planes is 1r/k instead ofir/2. Then

instead of ( /2) we have (l-l/k)f . The reduction in contrast then is:

1 - ( - 1/k)p

1 + (1 - 1/k)1i

And when = 1, the worst case, we have a reduction of 1/(2k-1).

It is clear that gray blocks are very much better in this respect than

white ones. For example iff= .5 instead of 1.0, the reduction is only

3/5 instead of 1/3 for the contrast.
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SCATTER IN OUR IMAGE DISSECTOR (TVC):

A considerable reduction in contrast in our image dissector is

caused by scatter of the incident light. This scatter goes undetected

when one concerns oneself with the point-spread function because it

corresponds to a very low, very wide skirt around the central blob.

The size of the central blob is determined by the resolution of the

device (or visa versa) and in our case has a half-intensity radius of

around .09 mm (in the centre of the field of view). The scatter skirt

however extends easily to the edge of the field of view 38 mm away.

It is so Tow that it would go undetected due to dim-cutoff if we are

looking at point sources. Only when it is integrated over large areas

is its effect noticable. It turns out that about 33 % of the incident

light is scattered in this way. This causes a dramatic reduction of

contrast.

Several causes can be traced for this ohenomenan. The lens contributes

some small amount of scatter but the major defects occur because of

multiple reflections in the face-plate and reflection from the aperture

plate at the end of the drift-tube. It is not known whether any electron

optic effects come into this as well. The light enters the face plate

and is partially absorbed by the photocathode; some light is however

reflected and may bounce repeatetly inside the face-plate. Some fraction

of the light also passes right through the photo-cathode and strikes the

shiny nickel .(8).arparture plate only to be reflected onto the back of

the photo-cathode.

These problems could be ameliorated by optically coating the face-plate

to avoid multiple reflections or to use a fiber-optic front-plate. The

arperture plate clearly ought to be made of some more reasonable material

(to avoid the magnetic problems) and should be fairly non-reflective.

(We might expect by the way that the front-plate scatter is worse for

larger iris diameter (lower f-stops) because the light will be entering

the face-plate from larger angles relative to the optical axis)
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As pointed out this phenomena only occurs when we are integrating

signals over large areas. To measure the effect then we have to

illuminate large areas. One method involves the use of a series of

white discs on a black background to be viewed by the image dissector.

For each size dis-a-one records the intensity at the centre. This

method suffers from the fact that it is hard to find paper surfaces

that have a high reflectivity (>)50%) and others having a low

reflectivity (<(10%). The observed effect is then considerably lower

than expected, in addition the scatter in the lens is included.

A better method is that of removing the lens, using a point source of

light (such as a distant lamp reflected in a metal sphere) and using the

iris to allow variable diameter circles of light to fall on the

photocathode. We observe in this way the integral of this scatter

function. Let the point-spread function be rotationally symmetric, f(r).

F(r) = 2wjf(4) id

If we wist we can differentiate the observed function and get:

21r f(r) r

There is some reason to suppose that f(r) can be approximated by e- r/r

W.
IS.

0"

0. ?rnW Bl~urtILI
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We can use our results to estimate the intensity at various points

in an image consisting of large polygonal areas of uniform intensity.

.02.

IN~iJNSI"* 0

Lets look at the intensity at the

assuming 33 % spill-over:

Al (900 out of 3600 illuminated)

A2 (

points Al, A2, Bl, B2, Cl, C2

1. - .33 (3/4) = .75

) 0. + .33 (1/4) = .08

81 (1800 out of 3600 Illuminated)

B2 (

1. - .33 (1/2) = .84

) O0 + .33 (1/2) = .18

C1 (2700 out of 3600 illuminated) 1. - .33 (1/4) = .92

) 0. + .33 (3/4) = .25C2 (
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WHY THE VIRTUAL IMAGE OF A POINT-SOURCE LOOKS EQUALLY BRIGHT FROM

ALL DIRECTIONS:

Consider the small surface ring where the

an angle 9 w.r.t to the surface normal.

light is incident at

The incident area is: 2trr2 sin 9 cos 6 d9 =,r 2 sin 29 d9

Light falling into this ring is reflected at an angle 29 w.r.t

to the incident ray and with a spread 2 d9. At the distance R,

the light reflected from the ring is spread into an area

2 R2 sin 28 2 d@. The intensity per unit area at distance R is:

I ('r r2 sin 20 de)/(21rR 2 sin 29 2 de) = I (r/R)2 / 4

So its independent of what angle one is looking at it from.

This has implications for reflectivity models of surfaces made of

spherical particles. It is also useful in producing point-sources

with very small source areas.

(We are assuming both source and observer distant from the sphere).

Note that the factor of 4 comes from the fact that the incident area is
2 2

rr , while the light is reflected into an area 41rR
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GLOB-TRACKING:

Suppose we have an intensity glob such as a ping-pong ball against

a dark background. The object is to track it using the random access

camera. Define a two-dimensional pattern of points. The spread and

position of this pattern will be servoed using the intensities read.

At each step input the intensities, find their maximum and minimum,

IMAX and IMIN. If IMAX is too small, go into search mode, otherwise

calculate the following sums

I Xi I.i 'Yi i li

Then adjust the position:

ZIX.M.." - am-.. X i *I
60000 - ZYv. I .0.

n+1 n n

Then adjust the size of the pattern:

IMAX'-IMIN'

1A, ( 1 +0 ( .. 1) )= ( + ( IMAX -IMIN

Where (IMAX' - IMIN') is the desired state of intensity range.

Usually a I >9, L eg G1 =1/2 *L= 1/8

0 141 o

e1
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A RELATED ANALOG TYPE GLOB-TRACKER

Here g(t) is some test function like cos (wt) for example and f is the

external function.such as intensity. An interesting case is obtained if

we combine two of these circuits, one for x and one for y coordinates in

an image dissector camera. We then have a star-tracker. The two g(t)'s

will need to be "orthogonal" then, cos(wt) and sin(wt) for example.

A similar circuit or equivalent program can be used for light-pen tracking.

Interesting variations address the question of whether the low pass filter

can be eliminated or replaced by some other device and whether g(t) can be

removed or "self-generated". In other words one aims at a system that is

self-contained and samples the image in a way dependend on what is in the

image rather than some fixed predetermined pattern.
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THE SURVEYORS MARK AND FRIENDS:

To track an object using the image dissector camera it is desirable

to have to read the intensity at as few steps as possible at each time

interval. The pattern to look at must also be designed for three conflicting

requirments: ease of acquisition, ease of tracking in fast motion and

accuracy of locating when stationary. The first two cause the object to

be fairly large, the last requires that some point on it be well defined.

The program should have no difficulty in processing the intensities

read and should be fairly independent of distance and orientation of

the pattern. A radially symmetric pattern with black and white areas

seems suitable. In particular one consisting of a number of intersecting

lines with alternate segments filled in black and white seems a winner.

The one used by surveyors uses two lines, our robotics calibration

programs use three-line patterns.

The image processing is simple. One reads the intensity at a number of

points on the circumference of a circle, finds the maximum and minimum

and sets up hysteresis thresholds. The lines are detected at the points
where the intensity crosses both thresholds in sequence. The six points
define three lines, The centre is then estimated to be near the point of
minimum sum of squares of perpendicular distances to the three lines.
Image motion between succesive scans can be almost the radius of the
pattern, while its centre can be located extremely accuratly by shrinking
the sampling circle.
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OBJECT ROTATION MATRIX:

Consider an object rotated first about the x-axis (pitch, p), then

about the y-axis (yaw, y) and finally about the z-axis (roll, r).

We are interested in the corresponding transformation matrix:

cos r cos y

sin r cos y

(cos r sin y sin p - sin r cos p) (cos r sin y cos p + sin r sin p)

(sin r sin y sin p + cos r cos p) (sin r sin y cos p - cos r sin p)

- sin y cos y sin p

STEREO IMAGE PROJECTION:

X I

cos y cos P

A 144%)
7

Left eye: x' = (x+s)f/z

Right eye: x" = (x-s)f/z

y' = (y)f/z

y" = (y)f/z
Projection of point (x,y,z)

f is the distance the resulting images are to be viewed from.

2s is the eye separation.
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I (1+1)3/2
EXPOSURE GUIDE FOR OUR DEC 340 DISPLAY

0 1
1 2.8
2 5

k NP (1+1)3/2 3 8
S= 4 11

5 15
6 18

f - f-number indicated on lens. 7 23
k - empirically found to be about 1/125 (gives rise to density of

about 2 in negative; i-.e. almost overexposed).

r - Half-intensity radius of spot on DEC 340, varies somewhat with I.

use .5 mm :unless you have good reason to suspect other value.

r2  - Half-intensity radius of blur in camera projected back onto

display surface - varies with lens and film used.

use .5 mm unless you have good reason to suspect other value.

r3  Spacing of points in image you are displaying. Use bO if all the

points can be resolved in the image.

Use .25 mm * 2s for vectors, increments and characters of scale s.

s - scale send to DEC 340, 0-3.

A -- ASA rating of film.

For polaroid B/W: 3000

For 35mm TRI- : 300

'For 16aim TRI-X ~ 200

N - Argument to .NDIS ; i.e. number of times points are displdyed.

P - Packing factor,

1 for resolved points.

max(l, r.+r ) for one-dimensional sets of points (vectors,increments,
r3 · characters)

max(l,(.r 1 )2) for two-dimensional sets of points (rasters).
3

- Filter factor. 1 for no filter, 2 for Wratten 15 (afterglow only),

8 for Wratten 47 (flash only).

I Intensity parameter send to.scope. If varying intensities are to

be recorded, use 1=5 - highlights will be slightly overexposed but.

the dark-areas will not be completely under-exposed. 0-7.
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SOME LENS FORMULAE:

4,.
-r

Pg

oe

-4

Let P1 be the front principal plane, be P2 the

Let f be the focal length and the media on the

the same. Let fl be the object-lens distance

dis:tance.

The de-magnification of the image is then:

rear principal plane.

two sides of the lens be

and f2 the lens-image

M =-
f 2

We know that;
1 1 1
- + =

i.e. (fl - f)(f 2 - f) = f2

fl (1 + M)f

f2 = (1 + 1/M)f

Let d be t

Let

;he object to image distance (ignoring thick lens effect):

(1+M) 2

d = f, + fo = f (M + 2 + 1/M) = f---
I L.

d
x = ( ---- 1)

2f
then M2 - 2,x M + 1 = 0

1
- -(M + 1/M)

2

M = (x-1) +•x2

IMAGE

M2M
X + 1

2M

-I RP

Z1
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dd 1 M2 _- 1 df df
- = f(l - -2) = f (-- )  = f  - = - f / M2

dM M M dM dM

df1  M df 2  -1 df1

dd MZ -1 dd M1 - I df 2

These formulae, are useful for calculating focusing accuracy for example.

1
Numerical arperture is defined as hsin(6/2), the f-stop as

2 sin(9/2)

Where 0 is the angle subtended by the lens at the centre of the image.

The intensity at the image is proportional to 1/(f-stop) 2

r, rL (Radius of curvature)

Then we have the lens-makers equation:

1 1 1 1 1
-- + = . = (n2 - n) (. - -)
fl  f2  f rl r2

Optimal pin-hole radius (for diffraction to equal hole spread):

r = f where d is the hole-image distance, )the wavelength

Airy radius: 2 (3.8317/(2vr) ) \) (f-stop) = 1.22 X) (f-stop)

(Since 3.8317 is the first zero of Jl(x)/x )
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FOCAL LENGTH CALIBRATION:

For accurate camera models one needs good measurements of the focal

length and the position of the principal planes.

Now x = fl + a, y = f2 + b and (I/fl) + (1/f2) = (1/f)

We measure several combinations of xi and yi and attempt to find

a, b and most important, f. We can assume that a and b are relatively

small relative to f and that f is known approximately. We clearly

require three such sets of measurements and could use least-squares

methods if we had more. Unfortunatly the equations are non-linear.

We can make them into polynomials in a, b and f however:

1/(xi-a) + 1/(Yi-b) = 1/f

((xi+Y i) - (a+b)) f - (xi-a)(yi-b) = 0

-(ab+bf+fa) + (xi(f+b) + yi(f+a)) -xiY i = 0

We could solve this set of second order polynomials in 3 variables

in a number of ways. Perhaps the easiest is multi-dimensional Newton-

Raphson iteration. We consider this last expression as a function F

of the parameters a, b and f and are aiming for F(a,b,f) = 0. For this

we require the derivatives:

dF/da = yi - b - f, dF/db = xi -,a - f, dF/df = (xi+yi)-(a+b)

We can also use guessing or a least squares method. If we can select

the xi and yi we can also simplify the problem,
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Special Case: If we can choose xi and yi we might try the following:

Yl = C > X1 = f+a a = xl-f

x2 = 00 Y2 = f+b b = y2-f

We need one more measurement:

1/(x3 - x1 +f) + 1/(y 3 - Y2 +f) = 1/f

Let x3 -x I = x', y 3-Y2 = y'

(y'+f + x'+f) f - (x' + f)(y' + f) = 0

(x'+y')f + 2f2 - x'y' -(x'+y')f -f 2= 0

-x'y' + f 2 = 0 f

f = (x3-X) Y3-Y2)

For accuracy we want both differences large, this implies that

we want x3 about the same magnitude as y3.
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DETERMINING THE TRANSFORM FROM ARM TO EYE SPACE:

Being a rotation and translation we expect:

xv

Yv

zv

all al12 a13

a21 a22 a23

a31 a32 a33

Xa

Ya 4

Za

a14

a24

a34

And the matrix ought to be orthogonal (i.e. AT A = I ). The coordinates

with a-subscripts are arm coordinates, those with a v-subscriot are
eye coordinates. By allowing the matrix to be non-orthogonal we can

absorb some of the distortions and non-linearities. In any case

forcing it to be orthogonal introduces a non-linear constraint that

messes up the mathematics ! We then have to use iterative methods
well-known in the art of reducing aerial photographs,

Next we have to consider the projection into the image plane:

u = (Xv /Zv) + uo

v =(yv /z ) + vo

WL and(3 are normally the same more or less and depend on the focal length

and the translation from image coordinates to deflection units. uo and v

are zero if we choose the image origin on the optical axis which may at

times be convenient. It is not hard to show that a,/ , u and vo can be

absorbed into our first transform and we can consider the simpler case:

u = Xv/z v  and v = yv/zv

This does make the matrix non-orthogonal however. Clearly multiplying

all the aij's by any factor causes no change in the image coordinates

and we can therefore choose a fixed value for one of them, say a34 = 1.

We then have the problem of determining the values of the other 11 terms.

DETERMINING THE TRANSFORM FROM ARM TO EYE SPACE:
Being a rotation and translation 

we expect:

I



-59-

We need at least 11 equations then and prefer ably more so as to allow

a least squares solution. One method of determining the transformation

matrix depends on moving the arm into n known positions and recordi;• 4v 6

corresponding Xai' Yi' Zai and image coordinates ui and vi. It is

convenient to track a special object held in the hand as it moves around

rather than to blindly move the hand and try and locate it in the image.

For each such measurement we get 2 equations:

Xv - zv ui

allXaital 2 ay7+a

= 0 and Yv - Zv vi = 0v

l3Zai +a14  -a3 1 uixai -a32uiYai -a33uizai -uia 34=0

a21xai+a 22Yai+a23zai +a24 -a31vixai-a 32viai-a 33vizai -via 34=0

For n such measurments we

two groups and written in

get 2n such equations which

matrix form as follows:

can be separated into

Xal Yal

Xa2 Ya2

Zal

Za2

Xan Yan Zan

0 0 0

0 0 0

10 0 0 0

10 0 0 0

10 0 0 0

0 Xal

0 Xa2

Yal

Ya2

1

1

-ulxal

-u2xa2

-unXan

-v1xal

-V2Xa2

-ulYal

-u2Ya2

-Unyan

-VlYal

-V2Ya2

-Ulzal -ul

-U2Za
2 -u2

-Unzan -un

-V1zal -v1

v 2Za2 -v2

0 0 0 Ox an an Zan 1 -v xan -Vyan Vnzan -Vn
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Setting a34 to 1 and taking the resulting constant terms (ul ... Un , v1 " Vn)

to the right hand side we obtain 2n equations in 11 unknowns. We can make

do with 5 1/2 experimental measurements or attempt a least squares solution

for n 6 points. Not more than 3 points should be in any one plane in the

first instance to avoid degeneracy. It is convenient to use the points at

the tips of an octahedron.

Notes: 1. A slightly different formulation leads to 18 equations in 18

unknowns, the same results are obtained. (This corresponds to

the homogeneous representation).

2. If we had assumed orthogonality we would have introduced 3

more constraints and needed only 8 equations, that is 4

experimental points which could conveniently be the corners

of a tetrahedron.
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RELATION BETWEEN THE SIMPLIFIED AND THE REAL IMAGE COORDINATES:

Given: x all a12 a13 xa a14

Yv = a21 a22 a23  Ya a24

Zv 'I31 a32 a33  z a a34

and u = x /Zv  and v = yv/Z

Where xa' Ya, za are coordinates relative to the arm coordinate system.

xv , yv, zv are coordinates relative to the eye and u and v are image

coordinates in the simnlified system.

Now we introduce the real image coordinates:

u' = u oC + uo  and v' = v / + v

o xv - Cu'-Uo)z v = 0 and Yv - -Vo) = 0

C( a11+u a31)xa+(o(al2+uoa 32)Ya+(~al13+Uoa33)Za+(o< a14+uoa 34)

-u'(a 3 1xa+a 32Ya+a33za+a 34)=O

(Aa21+voa31)xa+(P a22+voa32)Ya+(/ a23+voa 33)za+(/2 a24+voa34)

-v'(a 31xa+a 32Ya+a33za+a. )=O

So finally:

xv (a 1 +u a3 1) (al 2+u a32) (a al3+u a33 )

Y "= (,4a 2 1+voa 3 1) (•a 2 2 +v0 a 32 ) (fSa 2 3+voa3 3)

zv ( a31 )( a32 )( a33 )

xa  (a 1 4 +u oa34)

Ya + (/f a24+voa 34)

za ( a34



A VERTICAL PREDICATE FOR IMAGE LINES:

In a per:.uctive transformation of the world a set of parallel lines

will project into a bundle of lines passing through one point, the

vanishing point x f, yf .

If we simply assume that vertical means parallel to the arm's z-axis:

Then as za. oo , xv " al3Za ' Yv w a23za Zv 4- a33za

And so xf = al3/a 33  and Yf = a23/a33

In practice vertical means pernendicular to the table. Supoose the table

equation is given by:

Plx + P2y + P3Z + P4 = 0

Theh let xa 1:'Pl ' ya = op2 ' a : Z (P 3  and let •c o .

xv  a .(allP1 + a12 P2 + a1 3P3)

Yv • 4 (a21P 1 + a22P2 + a23P3)

zv v o, (a31PI + a3 2 P2 + a33P3)

allPi + a12 02 + a 13 P3

a31 Pl1 + a32r2 + a33n 3

a21P1 , I 222 + a23P3yf =
a31P1 + 632P 2 + a33P3

To test if a line is vertical or near vertical we calculate the angle it

makes with the line connecting it to the vanishing point:

Xl2 = xI - x 2 , Xlf ' xl - xf , Yl2 = Y1 - Y2 ' Ylf Y Yf

(lin 8)2 = (x'IYI2 - x12 1}2 / (x2 2 12 2
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GOING FROM IMAGE COORDINATES TO ARM SPACE COORDINATES:

Clearly we need some extra information to make up for the lack of

one dimension. But first lets look at what we have:

u = Xv/Zv  and v = y v/Zv

x " u zv = 0 and yv - v zv = 0

Call-ua31)xa+'al2-ua32)Ya+(a13-ua33)za (a4-ua34)

(a21-va31)xa+(a 22-va32)Ya+(a23-va33)za=(a 24-va34)

We need a third equation in xa, Ya and za to be able to solve. We could

for example be given any one of these three coordinates. More likely is

the case where we have some relation to the table. Let the equation of

the table be given by:

Plx + P2y + 03Z + p4 = 0

If the point is on the table we can simple use this equation.

If the point is in the same plane parallel to the table as some other

known point xl, yl, z1 then we use the equation:

Plxa+ P2Ya ÷ P3Za = P1x1 + P2Y1 + P3z1

If the point is directly above (along a line normal to the table) some

other known point x2, y2, z2 then we have:

(Xa-x2) P3 - (ZaZ2) Pl = 0

(a, Y2 ) P3 - (za-Z 2 ) P2 0

We only need one of these and will use the first since it comes out more

accurate with the eye-arm geometries we use.
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TYPICAL ARM - EYE TRANSFORM:

Suppose we have the above simple geometry. Then:

x '0 1 0 xa 0

YV sin 8 0 cos ya + sin 9 x

z l-cos 0 -sin ( z cos 9 x +

Now we change to real image coordinates:

(I al l+Uo a3 1 )

(/al 2+voa31)

&31 )

(I a12+uoa 32)

(/la 22+voa32)

( a32 )

(.4a 1 3+u a33)

(/ia 23+voa33)

( a33 )

(9a14 +u a3 4)

Oa 24+voa 34)

C a )
JL~,

So we get:

-UoCOs e §<

S-sin e - vcoS e 0

-cos 0a

-u sin 6 xa (cos 0-x0 +)
fcos 8 - vosin e a + IAin & xo+v (cos 8 xo+0)

-sin za cos 8 xo

x

zI
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Now suppose & = 300, cos B = .86... , sin 8 = .5, u o==512. (Center of

coordinates for the image dissector on a scale of 0 - 1024.)

With a lens of 10" focal length we find that o( =3150 units/radian.

With a lens of 6.5 " focal length oc =2000 units/radian.

(Assuming about 12.5 units per mm on the photocathode)

Next suppose x0 = 30.0", •- 50.0" and use of the 6.5" lens.

-440. 2000. -256. 39800.

-1440. 0. 1464. 69800.

-.86 0. -.5 76.

Next we normalise by setting a34 = 1:

-5.8 26.3 -3.38 525.

-19,0 0. 19.3 918.

-.0113 0. -.0066 1.
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ABSOLUTE ORIENTATION:

+Y Xp

L Z
p

Where R is an orthogonal rotation matrix.o of/ are scale factors,

often equal to one another. xo, yo, Zo is a displacment vector. There is

one of these equations for each point in the object.

Let Xi = X - X. and x. = x.i - x. , then:
j 1 3 ij 1 3

X..

Yij

13

IC xi i

R / yij

V z.

Multiplying this equation by its transpose we get:

Xij 
z(xij

S ij Zij Yi = [xij Yij Rzij] TR y ij
iij ! •' zij

Now noting that RTR = I we get:



Y 2 Z )Yij +1 = 2 2x +

Now suppose we are given four points in each coordinate system:

(X22

(x2
23

(x34

+ Y 22+ Y2

23
+

34

+ z 2)
+ Z 3

+234 )
+ 2

It is now easy to solve for Ot,A,, '

X12
x2 3

X3 4

xi2

x34

. Let xj =txij13 13 and so on:

Y12 Zl2

Y23 z23

y34 z34

Let X be the vector Xl12
X23 X3 4 13 and similarly for Y and Z.

Let x' be the vector 1x12 x~3 x4 IT and similarly for y' and z'.

Combinig three equations like the above:

(X Y Z) = (x' y' z') RT

RT = (x' y' z')" (X Y Z)

Xi2 Yi2 Z~2  X12 1Y2 Z12

SX 23  '23 Z23  X23z Y23 Z23

x34 Y34 z!4 X34 Y34 Z34

Due to measurment inaccuracies R determined this way may not be orthogonal,

one can if one whishes adjust it iteratively using Newton-Raphson:
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2cX..·
13

22
/4 Yij + V2z )

x2
2
x23
2x

x34

2
Y12
2

Y23
2
Y34

z2
2•
23
2
34

rl1

rl2

r13
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R R - .5 ( RT R - I)n+1 n n -

5T -1or Rn+ ,5 ( ( R ) + R )

Fin ally we have to find the displacment vector:

xo  Xp  x
Y p R / yp

We can get four estimates from this which we can average if neccessary.

If 0=1% =#I we can get away with only three points.
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GEOMETRY OF THE AMF-VERSTRAN ARM WITH THE ALLES HAND:

(ROLL) '.to

LO 2.75"

LO.5 1.0"

L1 3.625"

L1.5 1.0"

L2 10.5"

L2.5 .75!'

L3 4.75"

L4 6.375"

L5 .25"

L6 2.0"

L7 2.75"

L8 .56"

(C

L1

L2

L3

L6

L7

p

b

I'"UKIr

'I

1TILT

i
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COMPENSATION FOR GRIP MOTION:

The geometry of the grippers is equivalent to the above. We then find

a motion along the axis of the grippers w.r.t. the most extended:

( 1 1 ( do2

COMPENSATION FOR TILT MOTION:

When the tilt-axis is inclined 8 w.r.t vertical one can adjust the

horizontal extend by sin @ * hand-extend and the vertical motion by

cos 9 * hand-extend.

On the whole the arm geometry is very simple and allows direct

determination of joint angles and extensions given a desired hand

position and orientation, keeping in mind that one only has 5 degrees
of freedom.

I A -A ,,I J1.

A 40
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CONVERSION FROM RECTANGULAR COORDINATES TO PSEUDO-POLAR:

The AMF arm has an offset in its otherwise extremely simple geometry:

IMJD**

Given x, y we need to find R and at,.

R x y -r2 x2 +2 2

tan o, =  x/y tanct = r/R

yR + xr xy + rR xy
tanocrl, · 1/ tan (o4~Ia~ = -2~- -2 ZxR - yr x r R

Here we cannot avoid the use of arctan because we actua

Note that for the AMF arm r = 2.75" .

We used the fact that x2 - r2 = R2 _ y2

And that tan(a-b) = (tan a - tan b) / (1 + tan a tan b)

.R is the "horizontal" extend and do is the "swing".

r2

+ rR

-y

lly need the angle.

VC TO'iL.0tRL
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MAINTAINING A CONSTANT HA

Let the normal unit vector to the plane containing the two fingers be (a,b,c)

Icosel sind \0 cosO 0 sin 0 0

(a b c)=-sinbe cosof 0 0 1 0 0 cos+ sin0

S 0 1 sinP 0 cos -sin0 cos 1

cos9A sin e cos + sin o sin 0
= -slnr sin l cos $ + cosa sin 5

cos P cos

So given one constraint we can solve for l•iV keeping in nind that a2+b2 +2=

Most commonly we would be given the swing,k , then:

sin# =(a sino + b coso( )

tan.t =(a cos (t - b sinel )/c
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MEASURING THE INERTIA OF A LINK IN AN ARM:

For fast arm motions one requires a good dynamic model of the arm,

including the geometry of joints and motor torques. Also required is

the approximate moment of inertia of the links in the arm. It is

usually not feasable to calculate these because of the complex shape

and number of parts a link is made of. A simple empirical method

requires one to measure the total mass and distance of the centre of

gravity from the connection to the preceeding link as well as the

period of oscillation when the link is suspended from this connection.

Let m = mass of link, 1 = distance of c.g. from preceeding connection

g = acceleration due to gravity (9.8 meter/second2)

T = pelriod of oscillation, I = moment of inertia

I B = -mgl sin 8 e = -(mgl/I) 8

8 = A cos(mig/I"f )t = A cos (2rrt/T)

T = 2TrJI/(mgl)

I = mgl (T/2wr) 2

Example: Pendulum made of string and heavy weight: T = 217rJi( )
I = mgl (1/g) = m12


