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Abstract

This paper presents a solution to the problem of determining the
distribution of an absorbing substance inside a non-opaque non-scat-

tering body from images or ray samplings. It simultaneously solves

the problem of determining the distribution of emitting substance in

a transparent non-scattering medium. The relation to more common

vision problems is discussed.

This is largely a cleaned up version of a solution found sometime ago -
when two other related problems were of interest. The one is the spe-

cial situation when the density can have only two values, which has been
solved for special cases by J. Kloustad. The other is the problem of
shape determination from silhouettds,that is when the density is in-
finite in a simple region.

Work reported herein was conducted at the Artificial Intelligence Labo-
ratory, a Massachusetts Institute of Technology research program supported
in part by the Advanced Research Projects Agency of the department of
Defense and monitored by the Office of Naval Research under Contract
Number N00014-70-A-0362-0003.
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OUR NORMAL VISION WORLD:

On the usual scale the visual world consists largely of opaque, non-

emissive, cohesive objects. At times they may even be smooth or con-
vex. The opaqueness causes surfaces to have special significance and

many descriptors we have for objects relate to their surfaces only.
Such properties as color, matt reflectivity and tactile texture require

a surface layer of finite thickness. The details of this layer are be-

yond our resolution however and we summarize its behavior using colour,
texture ard translucency. descriptors.

Given that the visual world consists of separate objects or that objects
are non-convex and have protrusions we turn our attention to edges.

Most will be occlusion edges. Some, particularly on man-made objects

will correspond to discontinuities of the surface derivatives. Edges of
course, need not be straight. Where edges meet we have vertices. Most
of these will be T-joints with a few X-joints where a shadow edge crosses

some other edge. Interior edges on some objects will produce Y-joints.
This establishes the importance of edges and vertices in understanding 'i.

the visual world.

We can even say some things about the most common lighting situations
and surface properties. In many cases we have a point source and an
additional more uniform illumination. The ratio of these two intensi-
ties may vary widely. Surfaces usually have both a specular reflecti-
vity and some matte.ref3ectikiity. Again either may be the predominant
feature in a given situation.

All of this knowledge and particularly the opaqueness of most objects

makes it reasonable for an organism to attempt to build an internal

model of the world using mere two-dimensional images. A dozen or so
depth-cues belong in its arsenal of image processing heuristics to
help it recover the three-dimensional information. The study of these
heuristics is the subject matter of much of the research on vision.
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SOME NOT QUITE SO NATURAL VISUAL WORLDS:

As was mentioned, what we consider surface layer depends on the reso-
lution of the image. The visual quality of objects then will change
with magnification. At high magnifications for example, we will be
seeing what would normally be called the surface layer. Since most
non-metallic objects become almost transparent at high magnification
we are now faced by a quite different image analysis problem and find
it hard to interpret what we see.

Another example can be found in planetary astronomy. When looking at
the moon or one of the planets the surface detail which is too fine to
be resolved may be of the order of large rocks or even mountains. This
then constitutes the surface layer giving rise to such properties as
reflectivity. We cannot then expect the reflectivity function to be
similar to that applying to pebbles. And indeed the moon, for example,
has a most unusual 'property which causes it to reflect uniformly over
the whole face when illuminated straight on and so appear flat to or-
ganisms more accustomed to pebbles.

Finally, there isaan example of a non-optical device which produces
images that we find easy to interpret. This is the scanning electron
microscope which samples a very thin surface layer with a beam of elec-
trons. Typical objects are much more opaque to electrons than photons
so that we can go to much higher magnification before the disturbing
effects of translucency and transparency set in. This device produces
images which have no shadows, corresponding to pictures taken with the
light source at the image sensing device. The Shading is dramatic and
provides , the needaed'depth m-ue. It is for this reason that this device
has become more popular than the transmission electron microscope even
though the latter provides higher magnification.
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IMAGES IN A NON-OPAQUE DOMAIN:

Some things of course are not opaque. Such objects present new prob-
lems. We can deal with special cases as mere variants of opaque ob-
jects. This goes for transparent objects and those with translucent
surface layers, people for example. In other cases we consider almost
opaque objects embedded in an almost transparent medium. Looking at the
blOod corpuscles in the capillaries of a small fish falls into this
category. Our normal visual world is not very different (since we are
embedded in a near-transparent medium). Such heuristics not only solve
the perceptual problem but also that of internal representation.

Harder problems arise if we are interested in the distribution of some
absorbing substance in a non-opaque object. Since we are no longer
interested in mere two-dimensional surfaces but three-dimensional dis-

tributions we can no longer hope to extract all the information re-
quired using only one or two two-dimensional images. In addition, we
now lack adequate representation techniques. Perhaps the simplest
approach to this problem is to slice the object and take an image of
each section. The series of images constitutes the lacking extra di-
mension. This is a technique often used with the transmission electron
microscope and optical microscopes at high magnification. Of course,
this technique may not always be acceptable for the object may be a
galactic nebula, or your liver.
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HOW SUCH IMAGES ARISE:

The problem of determining the distribution of some substance inside

a non-opaque object arises in many imaging devices used in research.

We have already mentioned high magnification optical microscopes and

transmission electron microscopes. Other examples are found in

X-ray images and X-ray diffraction patterns. Say for example you

wanted to determine the electron density in some giant molecule to

prove that it has a helical structure.

It has to be said that in many practical cases the full reconstruction
of absorbing substance density distribution is not undertaken because

of the paucity of processing techniques and the need for many images

if such techniques are to be employed. If one can assume that the

density has only a few discrete values adequate guesses can be made

from one or two images. Bone and tissue for example, have vastly dif-

ferent X-ray absorbing properties and a single X-ray can give some

useful information.

So far we have been assuming a varying density of absorbing substance

inside an object being sampled by rays of some kind, not necessarily

electro-magnetic. A different problem turns out to have the same solu-

tion. This is the case of a variable density of emitting substance,

such as a radio-active isotope. In the one-case.we can determine the

total amount of absorbing substance that a single ray passes through

when traversing the object. In the other case, a point on the image

tells us the total amount of emitting substance along a'particular

line through the object. An example of the latter is found in isotope

scans made to determine which tissues absorb a given substance. More

familiar examples are a flame, emission nebulae and the solar corona in
Mgx light.
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THE GENERAL RECONSTRUCTION PROBLEM:

The problem we are interested in here is a special case of the prob-
lem of reconstructing the internal details of an object from infor-

mation obtained from some process that allows us to sample its interior.
The sampling energy may be electrical , electro-magnetic, acoustic or
seismic for example. The information obtained is usually some complex
function of the physical processes involved and the internal details.
In the simplest cases it may be a convolution of the quantity we are
interested in. In our normal visual world we are fortunate that the
rays of light reflected from the surfaces of objects are relatively
unmolested on their way to our eyes and a given point in the image

corresponds to a definite point on some object. In this more general

problem each measurement reflects the effect of many internal details.

If we are lucky only those along a well defined ray are involved. If

scattering is present the image analysis problem is very hard and even

for the simple case of thin layers has only approximate solutions.

In our special case we assume that no scattering takes place and can
in fact show that the information at one image point corresponds to in-
ternal details along a ray only. A simple transformation takes this raw
data into a form which is a convolution of the density we are looking
for anda-ppreading -function. This spreading function has nothing to do
with limited resolution, but instead is determined by the geometry and
physics of absorption. The appearance of the word convolution immediate-
ly tells us that problems of this form are amenable to solution using
the bag of tricks in linear systems theory provided we extend it to
more than one dimension. We will need to know about fourier transforms
and deconvolutions to do this.

We will not here touch on the problem of representing the information
extracted in other than numericalý terms.
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A SINGLE RAY PASSING THROUGH THE OBJECT:

Our problem is to determine the distribution of absorbing substance

in an object. We have available collimated rays of suitable radia-

tion and a device for measuring their intensity. First consider a

single ray traversing the object. Let the distance along the ray be

s and let f(s) be the density of absorbing substance. The rate of

decrease in intensity along the beam at any point is proportional to

the intensity and the density of absorbing substance. You can see

this by considering an infinitesimal segment along the ray.

I(s) I(s+ds)

o0 J.-

I'(s) = - I(s) f(s)

VI(s) = - f(s)

I(s)

Suppose the ray enters the object at s=s o with intensity Io and leaves

it at s=sl with intensity I. Then we can integrate the above equation.

log Io - log I1 J is f(s) ds

So by taking logs of the ratio of intensities entering and leaving, we

determine the total amount of absorbing substance traversed by the ray.

Note that we are in trouble if f(s) is infinite anywhere, that is if part

of the object is truly opaque.

A similar argument can be made for the case of emitting substance ex-

cept that we do, not take logs, but obtain the total amount of emitting

substance along a ray directly.
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THIN SLICES, THE TWO-DIMENSIONAL PROBLEM:

We'll next consider thin slices through the object to get an idea of

the reconstruction operations involved. We do not however look down
on the slice and obtain the density distribution directly, as we would
if we were using the usual transmission electron microscope technique.
Instead we look along the slice. This may seem counter-productive

but it is done for a good reason. Firstly the slice may be only a
conceptual device for thinking about a part of an object. In other
words if we can understand a slice by looking along it, we can under-

stand complete objects by thinking of them as made up of such slices.

Secondly solving the two-dimensional case first gives us insight into

the intuitively less obvious three-dimensional case.

We now consider all possible ways of sampling the slice without leaving
the plane in which it lies. We have two degrees of freedom-iiichoosing

the samplin!g rays. You may think of this as taking an image for each
possible angular orientation of the slice. Each such image is a line
of intensities. We define in this way a function h(x,e) which is the
total absorbing density along a ray at angle e and distance x from the
origin of some rectangalar coordinate system.

sensor or

image plane

source

/r"
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COLLECTING ALL THE DATA RELATING TO ONE POINT:

Our raw data certainly has the right number of dimensions, but what
does it tell us about the density at a particular point? We may be
tempted at this stage to look at all rays passing through this point.
And indeed if we sum all rays passing through one point we get an
interesting result. First we will augment our rectangular coordinate
system with a polar one centered on the point of interest (xoYo).

h(x,o) = f f(r,e) dr (x = -(Xosin o + yocos e) )

Integrating over all angles from 0 to w:

g(xoyo) = h(x,0) de

= J f(r,e) dr de

= •f(re) r r dr de

We now change back to a rectangular coordinate system:

g(xo'Yo) =" f p f(x-xoy-yo) 1 dx dy

So the function g(x,y) we constructed is the convolution of the density
function we are looking for and the function (1/r). It is thus a good
first approximation to f(x,y), being spread, smeared or smoothed out.
We will call (1/r) the spreading function in this case. If the
singularity at the origin worries you consider the effect of finite
resolution in the imaging device. Also note that the apparently
infinite integrals only really extend to the edge of the object which
we assume is of finite extend.
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RECONSTRUCTING THE DENSITY IN A THIN SLICE:

We are now ready to apply linear function theory. Clearly one thing
to do will be to take the fourier transform, which will change the con-
volution into a product. We can then divide out the term due to the
spreading function and transform back to obtain f(x,y).

g = fe -l/r) G = F * FT(l/r)

Here F arid G are the two-dimensional fourier transform of f and g re-

spectively. The function (1/r) is rotationally symmetric and fairly

well behaved and its two-dimensional fourier transform turns out to be
(1/p) (see Appendix). Here P/ is the radius in the polar coordinate
systems of the transform space.

G = F / p and so F = Gp

In other words to find f(x,y) we transform g(x,y), multiply this by p
and transform back.

At this stage we have to make some practical comments. Since G will be
rather anemic in high frequency components and strong in the lows we
have the usual worries about noise when we perform this operation.
This will limit the resolution attainable. If we know the statistical
properties of the signal and the noise as well as the transfer charac-

teristic of the imaging device, we can apply Wiener-style least-square
filtering. Typically we will end up multiplying G not by p , but
some function which behaves like p for low frequencies and then tends
to zero for high frequencies.

MEASURE CALCULATE TRANSFORM MULTIPLY TRANSFORM

h( x,6) g(x, y) G(u, v) BY .f(x, y) A
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USING DE-CONVOLUTION INSTEAD:

Can we perform this recovery of the density function without using

fourier transforms? Yes, by using another convolution. Suppose we

have a function d(r) which when convolved with our spreading function

(l/r) is zero everywhere except at the origin where we obtain a unit

pulse. Then because of the associativity of convolutions we get:

g = [f O (1/r)] so g e d(r) = f O [(l/r) * d(r)] = f !

Note that while we so avoid the use of fourier transforms this method

may be vastly more inefficient computationally. It does on the other
hand provide valuable insights since the function d(r) will have more

intuitive appeal to us than strange operations in the transform
domain.

What form does d(r) take? Unfortunately we have to go into the trans-

form domain to find this.

(/r) 0 d(r) = 6(r) (I/p)*D = 1 B = p

Here 6(r) is the unit pulse at the origin which transforms into 1, and

D is the two-dimensional fourier transform of d(r). All that remains

to be done is to transform D back again. Now while p is rotationally

symmetric it certainly is not well behaved and we have to use conver-

gence factors to inverse transform it (see Appendix). Anyway we get

a central pulse surrounded by a region in which d(r) is proportional

to (-l/r 3). Note that all along we assumed d(r) would be rotationally

symmetrical, which we have now demonstrated since it is the transform

of a totationally symmetric function.

If we have to use Wiener-style filteringd(r) won't look quite so

pathological since the central pulse will be spread into a positive

blob.
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SOME MATTERS OF IMPLEMENTATION:

We have already mentioned the problem of noise and how to deal with it.
We then have to deal with the quantisation of the data. Clearly we will
not be able to sample for all possible positions of the ray, or if we
are using an imaging technique we will have limited resolution. In any

case if the processing is to be done in a digital computer rather than
some coherent optical set-up we will find the data quantised in both

its dimensions. This matches nicely our capability to perform efficiently

discrete fourier transforms in a digital computer using the fast-fourier-

transform algorithm.

Next we address the question of practical ways of determining g(x,y).
We have so far made little distinction between imaging techniques and
probing with a single ray. If the medium is at all likely to scatter
the latter method is preferable even :though more tedious. Then we may
ask if we can obtain g(x,y) directly instead of calculating it from
h(x,e). A simple method consists of a rotating mount for the slice, the
center of rotation being adjustable to fall anywhere inside the slice.
A ray passes through this center of rotation. The average over one
revolution of the log of recorded intensity is then proportional to
g(x,y). It is amusing to compare this to the heuristics used by people
for examining the interior of partially absorbing objects.

ROTATION

SOURCE SENSOR

Other schemes might involve many source/sensor pairs at different angles
all pointing at one point in the object. Summing the log of the outputs
of the sensors would again produce a result proportional to g(x,y). The
object can then be moved to explore all values of x and y.
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FINALLY: THREE-DIMENSIONAL OBJECTS.

As mentioned before the simplest way to deal with three-dimensional

objects is to consider them made up of slices, since we know how to

deal with those. Since for each slice the data is two-dimensional the

totality of data will now be three dimensional and can be gathered by

taking images of the object, each image differing from the one before
it by a slight rotation of the object about an axis fixed in the object.

Preferably this axis should be through the longest line through the
object so as to help ensure that the sampling rays traverse as short a

distance in the object as possible.

Intuitively we might feel that we are not samti-ng. the object optimally

if we only consider for each point the rays passing thPuLg. it contained

in one plane. We could better average out contributions of other parts

of the body and obtain better accuracy if we used all possible rays

through each point. This of course also adds another dimension to the

raw data and forces us to learn about three-dimensional convolutions

and fourier transforms.

Let us as before define a function g(x,y,z) which is the sum: of logs of

intensities for all rays through a point. This is now a double integral.
It can be shown that this again is the convolution of f(x,y,z,), the

density distribution,and a spreading function. Only now the spreading

function is (1/r2), not (1/r) (see Appendix).
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RECONSTRUCTING THE DENSITY FROM THREE-DIMENSIONAL DATA:

The form of the spreading function shows that we are averaging contri-
butions over a large area and hence each contribution has a smaller
effect. This may be one reason for using this method rather than the

simpler slicing method. Again we fourier transform:

g = f I (1/r2) so G = F * FT(I/r 2 )

Where F and G are the three-dimensional fourier transforms of f and g

respectively. The function (1/r2) is rotationally symmetric and fairly
well behaved and its three-dimensional fourier transform turns out to

be (1/p) (see Appendix). Here p is the radius in the spherical
coordinate system of the transform space.

G = F/p and so F = Gp

In other words to find f(x,y,z) we transform g(x,y,z), multiply this

by p and transform back. Similar comments apply as regards noise and

quantization as for the two-dimensional case.

MEASURE CALCULATEI TRANSFORM MULTIPLY TRANSFORMi
h(X,,,)-- g(x,y,z) IG(u,v,w) BY sp f1f(xY,z)

We may also ask again about a de-convolution function. We have to find

the inverse transform of p. While p is rotationally symmetric it is
not well behaved and we have to use convergence factors to inverse

transform it (see Appendix). The result is a central pulse surrounded
by a region in which the function is proportional to (-l/r 4). This

again demonstrates the better localization obtained with the three-
dimensional method. That is a local spot will perturb the computation
less.
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MISCELLANEOUS RELATED MATTERS:

In practice it is sometimes possible to assume that the density can

take on only two values, that is that we have an almost opaque object
in an almost transparent medium. If the object has a reasonable shape

with no holes it seems reasonable to assume that we can obtain its
shape from data of lower dimensionality. In fact under certain condi-

tions a rather ad hoc procedure developed by J. Kloustad while at the
R.L.E. will solve for the shape given only two images. It should be
noted that his use of fourier series is not related to the transforms

here discussed, but only to least-squares fitting of points to a

closed curve. It is interesting that he opted for a slice by slice

approach. This procedure has been applied to the problem of determining

the changing shape of the heart using two X-ray motion picture films.

One of the problems he investigated was the effect of perspective which

somewhat complicates the calculation of ray geometries.

A related problem is silhouette-reconstruction.Here the object is
completely opqque and thus precludes any estimation of its depth at a

given point. It should be clear that a series of images is enough to

reconstruct such an object if it is convex. If it is not conpex, but

has no hidden concavities it can be reconstructed using images from all

directions (a hidden concavity is a point at which the complement of

the object is convex). Perhaps one could use this to automatically

produce a bust from many photographs of a person.

The reader should not be astonished by the form of the de-convolution

functions. The de-convolution function corresponding to any smoothing

function will have the form of a positive central pulse surrounded by

a negative region (a smoothing function is one which at least near the

origin is positive, that iS produces a local weighted average of the

function it is convolved with). It is the precise shape of the negative

skirt which varies from one de-convolution function to another. So the

existence of central-on, peripheral-off cells in a retina is little

help in comparing alternate theories of vision. Such a device could be

useful in edge-detection, dynamic-range compression, color vision,

increasing contrast, undoing defocusing and even handling density

distribution reconstruction!



-15-

PURPOSE OF THE APPENDICES:

The main purpose of the appendices is to remove the boring details of
the convolutions and fourier transforms from the text. The main result,

is the transform in k-dimensional space of the function rn. Of particular
interest are the cases (n=-l, k=2) and (n=-2,rk=3) which are easy to
deal with and (n=+l, k=2) and (n=+1, k=3) which do not converge in the
normal sense.

In order to be able to find these transforms the following is covered:

1. The form of the fourier transform in 1, 2, 3 ... k dimensions.

2. Collapse of the multiple integral into Jf(r) h(r,p ,k) dr
for rotationally symmetric functions f(r).

3. The fact that the inverse transform has the same form with r andpexchanged.

4. The transform of rn is ;nk**iFk(n) for -kn•<(l-k)/2

5. The method of extending the validity of the transform to any n> -k
using convergence factors.

6. The details of h(r,5 ,k) - 01-k/2 rk/ 2 Jk/ 2-1(rP)

7. The details of Fk(n) = 2n+k/2 ~((n+k)/2) /P (-n/2)
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ONE DIMENSIONAL FOURIER TRANSFORM:

We define

At times

g(u) = (2r)-1/2  f(x) eiimuddx
f(u) = (2Ur)-1

f(x) = (2-) 1/2 fg(u) eix u du

Now if f(x) is symmetrical (Let r=x,f? =u):

g(P )= Jf(r)

The inverse

(2/ r)1/2 cos(rf ) dr

has the same form with r and / exchanged.

Now suppose we want to find the transform of r n"

(2/7 )1/2 j rn cos(rp ) dr

This diverges for p =0, otherwise if the integral is defined:

Sn- ( ) 2 xn c- n (2/7r )l f coz x dx

So FT(rn) -n-1 * F1 (n) Where

(Where x=rP )

Fl(n) = (2/ )l/2/lxn cos x dx

This integral is defined for some n, for example for n=-1/2 we have:

I os x dx = 7r/2) so F1 (-1/2) = 1 [pg 313, 2]

Which makes sense since r-1 / 2 maps into -1/ 2 . In fact it can be shown that:

F1(n) = - (2/7r )1/2 IP(n+l) sin n.r/2 -1 < n<O

The same form also applies for n>O if we use convergence factors (see later).
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TWO.-DIMENSIONAL FOURIER TRANSFORM:

We define g(u,v) = (2 r)-lfrf(xy) e-((xu+vy) dx dy

At times f(x,y) (21r)-14 g(u,v) ei(xu+vy) du dv

If we introduce polar coordinates we get:

x = r cos 9, y = r sin 9 and u =pcosas, v =f sina'

a)f, a jf(r.8) eir (cos 9 cosa + sin 9 sina)r d) dP

Now if f(x,y) is rotationally symmetric and we note that:

cos G cosa+ sin e sina= cos(9-a )

(I/ e) ieix cos dO = Jo(X)

g(p ) = £ f(r) r o(rt ) dr

The inverse

[pg 57, 3]

has the same form with r andpf exchanged.

Now suppose we want to find the transform of rn"

Srn+l Jo(r( ) dr

This diverges for =0, otherwise if the integral is defined:
This diverges for ,e=0, otherwise if the integral is defined:

p Jo(X)
So FT2(r n-2xn+ F2(x)

So FT2(rn) = -2 * F2(n)

dx (Where x=rp)

Where F2(n) = Jn+1 J(x) dx

then
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This integral is defined for some n, for example for n=-l we have:

so F2 (-1) = 1 [pg 58, 3]SJ0 (x) dx = 1

Which again makes sense since r-1 maps intop 1 . In fact it can be shown:

F2 (n) = 2n+l P (l+n/2) / (-n/2)= 2n+l/-t)( r(l+n/2) )2 sinirn/2

for -2< n(.-1/2

The same form also applies for n>.-1/2 if we use convergence factors(see later).
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THREE DIMENSIONAL FOURIER TRANSFORM:

We define g(u,v,w) = (2i¶-r)-3/2 f(x,y,z) e-i(xu+vy+w) dx dy dz

At times f(x,y,z) = (2r)-3/2 f g(uv,w) ei(xu+vy+wz) v d
-oo -0b -0

If we introduce spheri•ell .caordinates w. get:

x=r cos 9 cos , y=r sin & cos J, z=r sin
u=y cos o( cos/ , v=f sino( cos , wyf sin/i

Let A = rp (cos cos 9 cos/cos--e + cos i sin R cosf sinae + sin d sinp)

= rp cos 4 cos 3 cos(e--) + r7 sin 4 sinA

So g(f ,,) = (2-r)3/2 ff (r,,) e iA r2 cos. dO d dr

Now if f(x,y,z) is rotationally symmetric and we note that:

f 21e1 rp cos cos/Acos(6- 0) dO = 2n Jo(rcos 0 cos/A) (as before)

Then we have to find Jeix sin sinp o(x cos d cos ) cos d

Which also is 2 jcos(x sin / sin 1 ) Jo(x cos • cos/ )cos c d

This hairy thing needs to be approached with caution. Lets try '==Tr/2 first:

(2/x) c s(x1Lin ) x cos $ dý
Let A=x sin , dA=x cos $ do, then:

(2/x) fcos A dA = 2 (sin x)/x
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Next we will try another special case: =0:

f2 J 0(x cos cos d

=2 ] Jo(x sin ) sin I d = 2 (sin x)/x [pg 99, 3]

You can substitute A = x sin 0 or x cos 4 to see this. Anyway the integral
is in fact independent of the parameter /3 . This makes sense since we expect

the transform of a rotationally symmetric function to also be rotationally
symmetric. So we get:

g( ) = J f(r) (2/ ) (r/op ) sin(rp ) dr

The inverse has the same form with r and p exchanged.

Now consider the transform of rn:

S(r n+lr ) sin rf (2/Tr)1/ 2 dr

This diverges for P =0, otherwise if the integral is defined:

-n-3 1/2 [ n+1l .-n3 (2/r)/2 xn sin x dx

So FT3 (rn) = -n-3 * F3 (n) Where F3 (n) =

(Where x=r( )

(2/- ) /2 xn+l sin x dx

This integral is defined for some n, for example for n=-3/2 we have:

(sin x)/--x'dx = (-yr/2) 1/ 2 so F3(-3/2)=l [pg 313, 2]

Which makes sense since r-3/ 2 maps into f-3/2. In fact it can be shown:

F3 (n) = -(2/-I)1/ 2 r (n+2) sin nir/2 -34n< -1

The same form also applies for n)>-l if we allow convergence factors(see later)
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k DIMENSIONAL FOURIER TRANSFORM:

We define g(u) = (2rr)-k/ 2

At times f(x) = (2ir)-k/2

4r f(x)

XV g(u)

e-i x.u dV

ei x.u dV

Where x is a-k dimensional vector in the source domain and u is a
k dimensional vector in the transform domain.

Now if f(x) is rotationally symmetric we get:

g(p) f= f(r) 1-k/2 rk/ 2 Jk/2-1(r ) dr

The inverse has the same form with r andp exchanged.

Now consider the transform of rn: This diverges forf=O, but otherwise:

g(p) =-k-n xn+k/2 Jk/ 2-1(x) dx

So FTk(rn) = -n-k * Fk(n)

(Let x = rp )

Where Fk(n) = xn+k/2 Jk/ 2 -1(x) dx

This integral is defined for some n, for example for n=-k/2 we have:

00 (X) d

10 Jk/ 2-1(x) dx = 1 so Fk(-k /
2) = 1 [pg 96, 3]

Which is as it should be since r - k/2 maps into -k/2 and visa versa.
In fact it can be shown (see later):

Fk(n) = 2n+k/2 i ((n+k)/2) / (-n/2) for -k<n<(l-k)/2

The same formdalso applies for n >, (1-k)/2 if we permit convergence factors.
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THE SO-CALLED CONVERGENCE FACTORS:

In dealing with fourier transforms we often find integrals which fail

to converge because of an oscillating integradd which does not tend to

zero. Since these integrals often occur in consort with functions that

do tend to zero at infinity it seems reasonable to assign a value to
them in any case. A way of dealing with this problem is the use of

convergence factors. These are functions of a parameter a, with the
feature that the functions are constant for a = 0.

c(O) = 1, c(ax) ; 1 for small ax, ~ for large ax

If A = f f(x) dx exists it will be equal to B = lim fI f(x) c(ax) dx
0o a-*O

This will be true for any convergence factor. Now if instead we have

an integrand f(x) that does not tend to zero as x tends to infinity,

but instead oscillates, A will be undefined, by B may have a meaningful

value. Similar techniques are used for dealing with series whose sums

oscillate. Common functions are:

c(ax) = e- ax or c(ax) = e-(ax)2

A closely related technique is that of avoiding poles in calculating

Laplace transforms:

f(s) = f0 e-st F(t) dt F(t) = a+ est f(s) ds
0 a+4•

Where a is chosen so that the path of integration lies to the right of

any poles of f(s). In this way one finds that the transform of tn is:

s-l-n p(n+l) for n>-l

whereas without this technique the transform is only defined for -l<n<O.
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THE INTEGRAL xq cos x dx:

x q cos x dx = - (q+l) sin 97/2.

from r xq-1 cos mx dx

-1l qO0

[pg 223, ]]

For qt.-1 we have convergence problems at the origin. For q) 0 the integrand

does not vanish at infinity, but instead oscillates about zero. So we can

try convergence factors.

e-ax x cos x dx =• (q+l) / rq+l cos(q+l)

Where r =I+a2

-1( q, a)O

sin 8 = 1/r, cos 0 = a/r

from xp- e- ax cos mx dx [pg 235, 1]J600 m d

aim fe-a xq cos x dx = -p(q+l) sin qv/2a-00 .• -1 < q

Which is the same form as above.



THE INTEGRAL

J~q Jo(x) dx = 2q 1 ((l+q)/2) /

r o
from i t

r((l-q)/2)

'VJp (t) dt

-lq( I1/2

[pg 486, 4]

For q4-l we have convergence problems at the origin. For q)1/2 the integrand
does not vanish at infinity, but instead oscillates about zero. So we can try
convergence factors.

f e-(ax)J 2
xq J (x) dx =F((q+l)/2)/(2aq+l) M((q+l)/2, 1, -1/(4a2))

e-a2t2 t~3,(bt) dt [pg 486,for -l(q and a2 )>0 from

Now we have for the asymptotic expansion of thh confluent hypergeometric function:

ez z" (1 + o(zl) - 1)

M(,W ,9 z) =-(V( )/P ( (-z) -o (1 + o(Izj) - )

z)O

z(O

[pg 504, 4]

-q)/2)I (4a2) (q+l ) / 2 (1 + o(Izl) -1 )4 M((q+1)/2, 1, -1/(4a2))= (1)/ (

=(2 a) q+l (( -q)/2) (1 +( 1)=(2") a.): '/f!((1-q)/2) (1 +o((z() -1) z< 0

e-(ax)2e xq J0 (x) dx = ((1+q)/2) /fI((l-q) /2)2 q(l + o(1zj) -l )

alim0 (ax)2 x J (x) dx = 2

Which is the same form as above.
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Jo(x) dx:

z(0

M(~·P ·I) .r(P)lr( a)

TI ((1+q)/2) / "1 ((l-q)/2)
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THE INTEGRAL J x sin x dx:

jo xq sin x dx = 1(q+l) cos qtr/2

= Vr/2

from xq-sin mx dx

-2<q< -1

-1 (q( 0

q=-l

[pg 223, 1]

For q (-2 we have convergence problems at the origin. For q.0O the integrand
does not vanish at infinity, but instead oscillates about zero. So we can
try convergence factors.

e- a x x sin x dx = p(q+l) / r q+l sin(q+1)9 -l(q, a. O

Where r = 1+a' sin e = I/r, cos 6 = a/r

from o e-ax sin mx dx [pg 234, 1]

lim e-ax xq  (q+l) cos qT/2
a4- 0 sin x dx =

-14 q

Which is the same form as above.



-26-

THE INTEGRAL xq Jp(x) dx:

ab
x x J (x) dx = 2q r((p+q+l)/2)/ r((p-q+1l)/2)

for -1-p (q (1/2 from / tJ. (t) dt [pg 486, 4]

For q .-1-p we have convergenceproblems at the origin. For q ) 1/2 the

integrand does not vanish at infinity, but instead oscillates about zero.

So we can try convergence factors.

e-( ax)2 x J (x) dx = ((p+q+1)/2)/(2p+l aP+q+l(p+))

* M((p+q+l)/2, p+l, -1/(4a2))
for -l-p<q, a2> 0

from f-a2t2
from e-a t ' y(bt) dt [pg 486,4]

We now use the asymptotic expansion of the confluent hyper-geometric function M

for large negative values of the third argument:

M(.4 , ,9z) =(j00)/P( -oi) (-z)"d (1 + o(z1)-1) z(0

[pg 504, 4]

M((p+q+1)/2, p+1, -1/(4a2))=(p+1)/p ((p-q+ 1 ))( /2) 1)] 1 (ao(l))

So e(ax)2 Jp (x) dx (((p+q+l)/2)/+((p-q+1)/ 2 (I + o(Izl) -1)

aim e (ax)2 x Jp(x) dx = 2q r((p+q+l)/2)/r((p-q+l)/2) -l-p<q

Which is the same form as above.
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THE FORM h(r,f ,k) = ,l-k/2 rk 2 Jk/ 2 l-(rP ):

This is the kernel of the mti&~plintegral into which the fourier transform

collapses when applied to a rotationally s~ymmetric function.

For k=l we have:

Now

so

1/2 r1/ 2 J-1/ 2 (rp )

J-1 /2(x) = (2/(ox))1/2 cos x

h(r,p ,l) = (2/ir) 1/ 2 cos(r, )

[pg 194, 1]

For k=2 we have:

h(r,f ,2) = r J (rp )

For k=3 we have:

Now

so

po-I/2 r3/22 J 1 2(r )

J1/2(x) = (2/(- x)) / 2 sin x [pg 193, 1]

= (2/1Tr)1/2 (r/p ) sin(rf )h(r, p ,31
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THE FORM Fk(n) = 2n+k/2 ((n+k)/2) / r(4n/2) -kn( n (l-k)/2

The above form can be written in other ways to allow simplification for
particular k, First we note that:

I(z) P(1-z) =ir/ sinirz

Using z VF(z) = rI(z+l)

So Fk(n) = 2n+k/2 (-n/2) r(n/2) P((n+k)/2)

This form is useful

so l/r(-z).= -z r(z)(sin irz)/n

[pg 256, 4]

sin yt n/2 /lW

for k=2 for example. Next we note that:

fl(2z) = (21-)-1/2 22z-1/2rP(z) T(z+1/2)

P (n/2) f((n+1)/2) =F (n) I? 2l-n

[pg 256, 4]

That gives Fk(n) = --2k/2/IA43 ((n+k)/2)/F((n+l)/ F(n+l) sin1 n/2

This is useful, for k=1,3. So we can use the above to get:

For k=l: Fl(n) = -(2/-r) 1 / 2 (n+l) sinlrn/2

( P(n/2+1) )2 sinWn/2For k=2: F2 (n) = -2n+1/tr

For k=3: F3(n) = -(2/¶r )1/2 ((n+2) sin In/2

Fl (-l/2)=l

F2 (-l) = 1

F3(-3/2)=l
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THE SPREADING FUNCTION IN k DIMENSIONS:

Consider a spherical shell of thickness dr, absorbing density D/2 and

radius r. Each ray through the centre of this shell will be attenuated

by D dr and so the integral over all ray directions will be the total

solid angle times D dr and is independent of the radius of the shell.

This integral is also equal to the area of the shell times the spreading

function.

Ak(r) * sk(r) D dr = Ak(l) * D dr

Where Ak(r) =1T(2r) is the surface area of the shell. So we get:

sk(r) = r 1 - k
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TRANSFORM OF THE SPREADING FUNCTION IN k DIMENSIONS:

Since the form of the spreading function is rl-k we have:

g(x) = f(x_) rl - k

This transforms into:

FTk(r ) (l-k)-k * Fk(]-k) = (1/p ) * Fk(l-k)

For the de-convolution function we want the algebraic inverse of this

inverse transformed:

FTk(P ) Sr-l-k * Fk(l)

Fk(l-k) = 2 1-k/2 V(1/2) /P((k-l)/2)

= 21-k/ 2 3/ fl ((k-1)/ 2)

Fi1)' = 2 1+k/2 P ((I+k)/2) /P(-1/2)

= -2k/2 /~ (1+k)/2)

Which is positive

Which is negative

Now
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k DIMENSIONAL TRANSFORM OF LOW PASS FILTER:

Consider f(r) = 1 for r R

Now

and f(r) = 0 for r) R

f(r) 1- k/ 2 r k/2 Jk/2-1(r( ) dr

g(f)= p-k af k/2
Jk/ 2 -1(x) dx (let x = rp )

=p -k (Rp)k/ 2
Jk/2(Rr )

from t y J,,. (t) dt [pg 484, 4]

Jk/ 2(Rr ) / (RP )k/2

)1/2 = R (2/ir) sin(Rf)/(Rp )

J1 (Rr )/(Rr )

(Rr )3/2 =

Since J3/2 (x) = (2/(irx))1/2((sin x)/x - cos x) [pg 95, 3]

for k> 0

g(f )=

R J1/2(R )/(RPFor k=l:

For k=2:

For k=3: R3 3
S3/2(RP)/ R3(2/t)( sin(RP)-(P)cos(Rf))/(Rf)3
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