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INTRODUCTION

Kinematics deals with the basic geometry of the linkages. If we consider

an articulated manipulator as a device for generating position and orientation,

we need to know the relationships between these quantities and the Joint-

variables, since It is the latter that we can easily measure and control.

Position here refers to the position in space of the tip of the device,

while orientation refers to the direction of approach of the last link.

While position is fairly easy to understand in spaces of higher dimensionality,

rotation or orientation becomes rapidly more complex. This is the main

impetus for our study of two-dimensional devices. In two dimensions, two

degrees of freedom are required to generate arbitrary positions in a given

work-space and one more If we also want to control the orientation of the

last link.

The first device studied in detail has only two joints and so can be used

as a position generator. Later, a three-link device is discussed which is

a general-purpose two-dimensional device that can generate orientation as

well.

It will become apparent that the calculation of position and orientation of

the last link given the joint-variables Is straight-forward, while the

inverse calculation is hard and may be Intractable for devices with many

links that have not been designed properly. This is Important since the

calculation of joint-angles given desired position and orientation is vital

if the device is to be used to reach for objects, move them around or follow

a given trajectory.

If a manipulator has Just enough degrees of freedom to cover its work-space,

there will in general be a finite number of ways of reaching a given

position and orientation. This is because the inverse problem essentially

corresponds to solving a number of equations in an equal number of unknowns.

If the equations were linear we would expect exactly one solution.
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Since they are trigonometric polynomials in the joint-variables - and hence

non-linear - we expect a finite number of solutions. Similarly, If we have

too few joints, there will in general be no solution, while with too many

joints we expect an infinite number of ways of reaching a given position

and orientation.

Usually there are some arm configurations that present special problems

because the equations become singular. These often occur on the

boundary of the work-space, where some of the links become parallel.

Statics deals with the balance of forces and torques required when the

device does not move. If we consider an articulated manipulator as a

device for applying forces and torques to objects being manipulated,

we need to know the relationship between these quantities and the

joint-torques, since It is the latter that we either directly control

or at least can measure. In two dimensions, two degrees of freedom will

be required to apply an arbitrary force at the tip of the device and one

more if we want to control torque applied to the object as well.

Clearly then the two-link device to be discussed can be thought of as

a force generator, while the three-link device can apply controlled

torques as well. The gravity loading of the links has to be compensated

for as well and fortunately it can be considered separately from the

the torques required to produce tip forces and torques.

Dynamics, finally, deals with the manipulator in motion. It will be seen

that the joint-torques control the angular accelerations. The relationships

are not direct however. First of all, the sensitivity of a given joint to

torque varies with the arm-configuration, secondly, forces appear that

are functions 6f the products of the angular veloctles and thirdly there

is considerable coupling between the motions of the links. The velocity

product terms can be thought of as generalized centrifugal forces.
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The equations relating joint-accelerations to joint-torques are non-linear

of course, but given the arm-state - that is both joint-variables and

their rate of change with time - it is straight-forward to calculate

what joint-torques are required to achieve given angular acce4erations.

We can in other words, calculate the time-history of motor-torques for

each joint required to cause the arm to follow a given trajectory.

Notice that this is an open-loop dead-reckoning approach which in practice

has to be modified to take into account friction and small errors in

estimating the numerical constant in the sensitivity matrix. The modification

can take the form of a small amount of compensating feed-back.

This however should not be confused with the more traditional, analog servo

methods which position-controls each joint Independently and cannot deal

properly with the dynamics at all.

To summarize: we will deal with unconstrained motion of the manipulator as

it follows some trajectory as well as its interaction with parts that

mechanically constrain Its motion. Both aspects of manipulator operation

are of importance if it Is to be used to assemble or disassemble artifacts.

i I •



TWO-LINK MANIPULATOR

In order to get some feeling for the kinematics, statics and dynamics of

articulated manipulators it is helpful to start by studying some stiipped-

down versions. In particular If we confine operations to two dimensions,

sketches and geomtric insight are more readily produced. In two dimensions

one clearly needs two degrees of freedom to reach an arbitrary point within

a given work-space. Let us first study a simple two-link manipulator with

rotational joints, Devices with extensional joints are even simpler, but do

not illuminate many of the Important issues. Note also that the geometry of the

two-link device occurs as a sub-problem in many of the more complicated

manipulators.

KINEMATICS

Y

Given the two joint-angles, let us calculate the position of the tip of the

device. Define vectors corresponding to the two links:

L1 = 11 ( cos(61) , sin(e1) )

r = 12 (.cos(e1 +) sin(e1+e6) )

Then the position of the tip r can be found simply by vector addition.
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This can be expanded into a slightly more useful form:

sin (8)

+ 12 cos(82 )1 cos(e l) -

+ 12 cos(e 2)) sin(e1) +

12 sin (e2)

12 sin(8 2)

POLAR COORDINATES:

Because of the rotational symmetry of the device about the origin it may be

more natural to think of it as a " r, 6 Generator" than a " x, y Generator".

We expect for example that r will not depend on 81. To calculate r we can

proceed along various avenues:

j2 = Irl+r_212 r= if2 + 2r r.2 + I_21

Or we can use the expressions for x and y:

x2 + y2 = 111 + 12 cos(e 2 )]
2 + [12 sin(e 2 ) 

1 2

x = [

y= ,1

sin ( 1)

cos (e)



We can also use a formulae for the solution of triangles. In each case we get:

2 2 2 2 2
r =x +y =1 +211 12 cos( 2)+1 2

Next we have to find 6.

for x and y or consider

We can proceed from tan(S) = y/x and use the expressions

the following sketch:

Where e = 81 +bL and tan(0) = .12 sin(82)

formula for expanding tangent of the sum of

/[1 + 12 cos(a 2 )). Using the

two angles one gets:

i [ + 12 cos(02) 3 sin(e 1) + 12 sin(e 2) cos(6 1)

tan) = 11+ 12 cos(e 2)] cos(e 1) - 12 sin(92) sin(9 1)

We now have expressions that allow us to calculate coordinates generated by

given joint-angles for both cartesian and polar coordinate systems.



THE INVERSE PROBLEM:

When one uses a manipulator one is more Interested In calculating the joint-

angles that will place the tip of the device in some desired position.

While the forward calculation of tip-position from joint-angles is always

relatively straight-forward, the inversion is intractable for manipulators

with more than a few links unless the device has been specially designed with

this problem in mind.

For our simple device we easily get:

(x2 +y 2 ) (12 + 12)

cos(e 2 1 2
2 11 12

There will be two solutions for 82 of equal magnitude and opposite sign.

Expanding tan(S,) = tan(e -f ) and using tan(e) = y/x we also arrive at:

Where it may be useful to know that 11 + 12 cos(e 2 ) = (x2y 2 ) + (12- 2)]/ (211

The reason this was so easy is that we happened to have already derived all the

most useful formula using geometric and trigonometric reasoning. A method of

more general utility depends on algebraic manipulation of the expressions for

the coordinates of the tip. Notice that these expressions are polynomials

in the sines and cosines of the joint-angles. Such systems of polynomials

can be solved systematically - unfortunately the degree of the Intermediate

terms grows explosively as more and more variables are eliminated. So this method,

while quite general, is in practice limited to solving only simple linkages.



Let us apply it to our two-link device.

x = [11 + 12 cos(82) cos(8 1) - 12 sin(8 2) iin(e 1)

y = [11 + 12 cos(82) sine 1) + 12 stR(82) cos(e 1)

We have already seen that adding the square of the equation for x and the

square of the equation for y eliminates terms in 81.

2 2 2 2
x + y = 11 + 2 11 12 cos(e 2) + 12

Next, note that the form of the equations suggests a rotation by 81 -

applying the inverse rotation one gets:

x cos(e 1) + y sin(8 1) = 11 + 12 cos(8 2)

-x sin( 1) + y cos(C 1) = 12 sin(8 2)

It is easy to solve this pair of linear equations for ýin(e 1) and cos(81).

sln(8 1)= - 12 Ris(92)x + 11 + 12 cos(e2 )l7/ (x2+y2 )

cos( 1) = { 2 sin(8 2)y + 1I +12 cos(e2)1'}/ (x2+y2)

You may now notice that we could have solved the original equations for

sin(e 1) and cos(e 1) in a similar fashion. The result would have been

the same with 1e term (1 + 2 11 12 cos(e 2) + 1 ) appearing in place of x2 +y2

THE WORK-SPACE:

(11 - 1222 2 + 2 1 1 cos( 2) + (11 + 12)2

So: II 1 2 I 1

The set of points reachable by the tip of

the device is an annulus centered on the

origin. Notice that points on the

boundary of this region can be reached

in ont, way, while points Inside can

be reached in two.The width of the annulus

is twice the length of the shorter link and its

M%# ia.v.1 i I l. 1 1. ! f .h I
erage-ra us qua s t e 

e.
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EQUAL LINKS:

When 11 = 12 = 1 say, the work-space becomes simpler, just a circle.

The origin is a Siegurtr point in that it can be reached in

an infinite number of ways - since O1 can be chosen freely. Equal link

length provides some further simplification as well as an improved

work-space geometry.

x = 2 1 cos(. 2/2) cos(8 1+, 82/2)

y = 2 1 cos(8 2/2) sin(e 1+ 62/2)

So x2 + y2 = 2 2 (1 + cos(e2)) = 4 12 cos 2 (e2/2)

e = 81 + 82/2

The inversion is solved as follows:

2 2) 12
cos(O ) = (x"+ y")/(2 1)

-L

cos.,,/z) =Jx + y /iZ 1)

tan(1 +82 /2) = y/x

tan(e 1) =
-sin(8 2/2)x + cos(e2/2)y

cos(e 2/2)x + sin(82/2)y

2e~gL r
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STATICS

So far we have thought of the manipulator as a device for placing the tip

in any desired position within the work-space - that is, a position generator.
I

Equally important is the devices ability to exert forces on objects. Let us

assume that the manipulator does not move appreciably when used in this way

so that we can ignore torques and forces used to accelerate the links.

Initially we will also ignore gravity - we will later calculate the

additional torques required to balance gravity components.

We have direct control over the torques T1 and T2 generated by the motors

driving the joints. What forces are produced by these torques at the tip?

Since we do not want the device to move, imagine its tip pinned in place.

Let the force exerted by the tip on the pin be F = (u,v), To find the

relationships between the forces at the tip and the motor torques, we will

write down one equation for balance of forces and one equation for balance

of torques for each of the links.

V
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Note that the forces applied to each of the pin-joints in the dev

to balance as indicated in the diagram.

ice also have

Writing down the equations for balance of forces in each of the two links

we get:

F = F and F = F
-1 -2 2-2

that is F = F = F
--1 -2

Next, picking an arbitrary axis for each of the links we get the equations

for balance of torques:

T - T = r x F

T =r xF
2 -2 -

Where (a,b) x (c,d) - ad-bc. Adding the two equations one gets:

T = (rI  + r2) x F

Right away we can tell what force components will be generated by each

torque acting on its own. If T2 = 0, then r x F = 0 and so r and F

must be parallel, while T] = 0, gives (r, + r2) x F = 0 and (r + r2) is

parallel to F. These directions for F are counter-intuitive If anything!

Expanding the cross-products we get:

T1 = I11 cos(e 1) + 12 cos(e 1+e2)] v - 11I sin(e1 ) + 12 sin(1 +e2 )3 u

T2 = [1l2 cos(e1+82) v -[1 2 sin(8 1+e2) u

Using these results we can easily calculate what torques the motors should

apply at the joints to produce a desired force at the tip.

F1
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THE INVERSE PROBLEM

Now suppose we want to invert this process - calculate the force at the tip

given measured joint-torques. Fortunately this inversion is straight-forward,

we simply solve the pair of equations for u and v:

u = 12 cos(e 1+e2) T1 - [11 cosc(e1 ) + 1 2 2 1/(11 12 sin(e 2))

v - { 12 sin(8 1+62) T1 - l11 sin(e1) + 12 sin(e 1+82)3T 2 /(11 12 sin(e 2))

Now we can see in quantitative terms

joint-torque acting on its own:

the force components produced by each

1tw + 11. C.," T .

L_ .

/-
-z_____Ta.

EA'z

L T1 0Lo 01 ._

'•1 8O,tO

e, k~r or.

( I6htQ4t .I I$1 -,r
R ) QJ.J;'8 6 a-

I

A TI(

There are slngularltles In the transformation when sin(e 2) = 0, that is

when e2 = 0 or ¶ . Obviously when the links are parallel, the joint-torques

have no control over the force component along the length of the links.

Again we see the special nature of the boundary of the work-space.

I1 . .
ri Sih9.01

//
,/C
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GRAVITY

Let us assume for concreteness that the center of mass of each link is

at its geometric center and let us define a gravity vector 2=- (0,-g)

acting in the negative y direction. We could now repeat the above

calculation with two additional components in the force-balance equations

due to the gravity loading. Inspection of the equations shows that the

resultant torques are linear in the applied forces, so we can use the

principle of superpotftion, and calculate the gravity Induced torques

separately.

Y

When there is no

F_ = F2 + ml

applied force at the tip we find that F 2 m29 and

(ml+m 2) . Considering the torques we find:

T2g = - m2 •r 2 X g Efim2212 cos(1 +e2)

T g = T2g - mi ½1 x '- m2  1 x g

= g E (ml+m 2 ) 11 .cos( 1 ) + Im2 12 cos(8+1 2+ 1

These terms can now be added to the torque terms derived earlier for

balancing the force applied at the tip.

In the next section we will remove the pin holding the tip in place and

see how the device moves when torques are applied to the joints.
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DYNAMICS:

Now let us determine what happens if we apply torques to the joints.

What angular accelerations of the links will be produced? Knowing the

relation between these two quantities will allow us to control the

motions of the device as it follows some desired trajectory. We could

proceed along lines similar to the ones followed when we studied statics,

simply adding Newton's law.

F = ma or T = Ic

Where F is a force, m mass and a linear acceleration, Similarly T is

a torque, I moment of inertia and ok angular acceleration. The

quantities involved would have to be expresses relative to some

cartesian coordinate system. We would be faced with large sets of

non-linear equations, since the mechanical constraints introduced

by the linkage would have to be explicitly included and the coordinates

of each joint expressed. In general this method becomes quite unwieldy

for manipulators with more than a few links. The more general form

of Newton's law gives a hint as to how one might proceed instead.

Fi =-'(mv )

F.i is a component of the force and mvI is a component of the linear

momentum. It is possible to develop a similar equation in a generalized

coordinate system, that does not have to be cartesian. It is natural

to chose the joint-angles as the generalized coordinates. These provide

a compact description of the arm-configuration and the mechanical

constraints are implicitely taken care of. It can be shown that:

Qi =  P ---

Where Qi is a generalized force, pi generalized momentum and qi one of

the generalized coordinates. There is one such equation for each degree

of freedom. Qi will be a force for an extensional joint, and a torque

for a rotational joint - Qgqi always has the dimensions of work.
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LAGRANGES EQUATION

In this relation, L Is the Lagranglan or "kinetic potential", equal to

the difference between kinetic and potential energy, K - P. The

generalized momentum pi can be expressed in terms of L:

)L

Pid 2

This is analogous to m = d (mv 2 ). The dot represents differentiation

with respect to time. Finally:

And once again there is one such equation for each degree of freedom of

the device. The next thing to remember is that the kinetic energy of

a rigid body can be decomposed into a component due to the Instantaneous

linear translation of its center of mass (vmy2 ) and a component due to

the instantaneous angular velocity (1702).

It will be convenient to ignore gravity on the first round- so there

will be no potential ehergy term. Next we will take the simple case of

equal links and let the links be sticks of equal mass m and uniform mass

distribution. The moment of inertia for rotation about the center of mass

of such a stick is (1/12)m12. These assumptions allow a great deal of

simplification of intermediate terms without loosing much of importance.

In fact the final result would be the same, except for some numerical

constants if we had considered the more general case.

In order to calculate kinetic energy we will need the linear and angular

velocities of the links. The angular velocities obviously are just a1 and

(61+ 2 ). The magnitudes of the instantaneous linear velocities of the

center of mass are:

R r , aI Ire, + I r,(+
-- J I- .- j J -L I ~
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The squares of these quantities are:

S12 62 and 12 ( 62 + cos(8e) 1(01+42) + ¼ ( 1+I2)2

The total kinetic energy of link 1 is then:

1.( )m2 -2 + m 12 2 & l2 2

The same result could have been obtained more directly by noting that the

moment of inertia of a stick about one of its ends is (1/3)ml2

The total kinetic energy of link 2 is:

1t( m2)( 1 2+ 2 ml2 ( + cos( 2  +(1 + cos(0 2)) 1 2  2

= +ml2 (4 + cos(02)) 62 + .1cos(2

Finally,adding all components of the kinetic energy and noting that P = 0,

L = iml2 1 ( + cos(82)) 2 + ( +cos( 2)) 812 + 82

Next we will need the partial derivatives of L with respect to O1 , e2'

S1 and 82" For convenience let L = ml2 U.

2 = 0

-_ =_sin(e2) 61(1+4e 2)
e2
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We will also require the time derivatives of these last two expressions:

d iLt" 5 2
-=  2 ( + cos(82)) + 82 cos())- sin(e 2) n 2(2 1 2 )

( -) 2 1 ( + cs(e2)) + 82 2(w) - sin(e2) )1 2

d I L _L
When we plug all this into Lagranges equation .- .i- Ti we get:

d ) 3 Ti w get
• ~-- dA. -- I "

1i II " 2 -

e1 2(-+ cos(8)) 2 + cos(e 2)) = + sin(e 2) i2(2i1+62)
1ml2

Si T 22
1 + cos(e + cos( 2 ) =sin( )  2

2ml

And if you think that was painful, try it the other way! So finally we

have a set of equations that allow us to calculate joint-torques given

desired joint-accelerations. Notice that we need to know the arm-state,

81' e2 281 and 82 in order to do this. In part this is because of the

appearance of velocity-product terms, representing centrifugal forces

and the like, and In part it is because the coefficients of the accelerations

vary with the arm-configuration. It is useful to separate out these

latter terms which constitute the sensitivity matrix.

2 (+ cos(82)) C( + cos(82

2 + cos(2)) 2( )

If we ignore the velocity-product terms, this matrix tells us the

sensitivity of the angular accelerations with respect to the applied

torques. It can be shown that the terms in this matrix will depend

only on the generalized coordinates (and not the velocities .), that

the matrix must be symmetrical and that the diagonal terms must be

positive.
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This, by the way, Implies that if one makes the torques large enough to

over-come the velocity-product terms, the links will move in the expected

direction. The analogpositional approach to arm-control depends

critically on this property. Notice the couplings between links -

that is torque applied to one joint will cause angular accelerations

of both links in general. These off-diagonal terms may in fact become

negative. In our case, the two joints are decoupled for cos(8 2) = -2/3.

That is - at least for a moment - torques applied to one joint will only

cause angular acceleration of that joint.

y

In the above diagram, if a torque is applied to joint 1, the push exerted

on the end of link 2 Is just enough to cause it to have an angular
II

acceleration equal to that of link 1 and so 82 = 0. Similarly if a torque

Is applied to joint 2 it will only cause angular accelerations in e2 '

Next notice that the

It is not surprising

and least sensitive

diagonal terms vary In size with the arm configuration.

that link 1 is most sensitive to torque 1 when 8 2~1',

for E2 w 0.
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THE INVERSE MATRIX

If we wish to know exactly what accelerations will be produced by given

torques we have to solve for 01 and 82 in the above equations.

I II

8 - 2(-) T
2 3

8 2 T L- + cos(e 2)) T11

Where T'
T

;m 2

3ml

2-(+ cos(e2 T / (16/9 - cos 2 (2 ))

+ 2( + cos(2)) T / (16/9 - cos2 (e2)

sin(82) e2 (2e 1+e2 ) & T2
2T ½m12 stn( 2) e1

GRAVITY

We can define the potential energy P as the sum of the products of the

link masses and the elevation of their center of mass relative to some

arbitrary plane.

P = 9m 1 l11 sin(e 1) m2[l11 sin(e 1) + 112 sin(e 1+82 )

We could now repeat the above calculation, subtracting this term from

the kinetic energy. Because of the linearity of the equations, we can again

make use of superposition and calculate the torques required to balance

gravity separately. Now the partial derivatives of P with respect to the

angular velocities are 0 so we only need the following:

Tg = g (m +m2) 11 cos(8 1) + 'm212 cos(1+2)

T 2g . -22g. ()2
9g Jim212 cos(1 +e2 ) S LA lore
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THREE-LINK MANIPULATOR:

A manipulator not only has to be able to reach points within a given

work-space it also has to be able to approach the object to be manipulated

with various orientations of the terminal device. That is,we need a

position and orientation generator. Similarly it can be argued that it

should not only be able to apply forces to the object, but torques as

well. Additional degrees of freedom are required to accomplish this.

If we are confined to operation in a two-dimensional space only one

extra degree of freedom will be needed, since rotation can take place

only about one axis, the axis normal to the plane of operation. It turns

out that the same can be said about torque, since applying a torque can be

thought of as an attempt to cause a rotation. So In two dimensions, a three

link manipulator is sufficient for our purposes. We will now repeat our

analysis of kinematics, statics and dynamics for this device - with fewer

details than before.

I

KINEMATICS /

Y

x = 11 cos(8 1) + 12 cos(e81+ 2) + 13 cos(e 1+e2+63)

y = 11 sln(0 1) + 12 sin(e 1 + 2) + 13 sin(e 1 + 2+e3 )

0= 61+2+83
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As before we could now proceed to solve the inverse problem of finding

joint-angles from tip-poiition and orientation by geometric, trigonometric

or algebraic methods. This Is not much harder than it was for two links

since one can use the equation for 0 to eliminate one of the three

joint-angles from the other two equations and so has, again, only two

trigonometric polynomials to solve. This is left as an execcise!

It is simpler to make use of the results for the two-link manipulator,

since one can easily calculate the position of joint 2, knowing 0:

x2 = x - 13 cos(0) and Y2  
y - 13 sin(0)

Now one can simply solve the remaining two-link device precisely as before:

(x2 +y2 )(1 +12
cos(82) 

2

2 11 12

12 sin(8 2) 2 11 12 sin(62)
tan(6) = Y2/X2 tan(oa,) = -" 2 - 2

11 + 12 cos(82) (x2 + 2 ) + (12 1 2)

81.= 8 - d and finally 83 = 0 - 02 - e1

To determine how much of the work-space that can be reached by the manipulator

is usable with arbitrary orientation of the last link, we could, as before,

proeeed with an algebraic approach. For example we might start from

I cos(9 2 ) 141 and the realization that the worst case situations occur

when the last link is parallel to the direction from the origin to the

tip (that is cos()' =-+x/ x2+Y' and sin(0) =±y/~x2 +y2). The situation

is easy enough to visualize, so we will use geometric reasoning sVihoteA.
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USABLE WORK-SPACE

Not all points in the annular work-space previously determined can be

reached with arbitrary orientation of the last link, A method for

constructing the usable work-space is simply to construct a circle of

radius 13 about each point. A point is in the usable work-space if the

circle so constructed lies inside the annulus-previously determined.

13 < 111-121 11 = 12

If 13 is less than )11-12), this new region is again an annulus, with inner

radius 13+11 -12) and outer radius 11+12-13. The width of the annulus is

twice the length of the shorter link minus 13, Its average radius is still

equal to the length of the longer of link 1 and link 2. It is obviously a

good idea to keep the third link short In order to achieve a reasonably

large usable work-space.

If 13 is greater than I11-121, there is an additional circular region

centered on the origin of radius 1 -111-12. The circular and annular

regions merge when 11 = 12 = 1 say, and form one circular region of

radius 2 1 -1 . The advantages of having the first two links of equal

length again become apparent.

I·

13 > 111-12
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STAT ICS:

Y

We have control over the three torques T1 , T2 and T3 and would like

to use these to apply force F=(u,v) and torque T to the object held

by the tip of the device. We do not want to consider motion of the

manipulator now, so imagine its tip solidly fixed in place. We proceed

by writing down one equation for force balance for each link and one

equation for torque balance for each link.

F1

F,' T

.F

T

F3

F F F • F and F = F so F - F F - F-1 -2 -3 -3 -1 -2 -3

T = T + rL3 x F, T = T + r2 x F
-3 2 3 -3

and T1 = T2 + r x F21 2 -1 -2

. , 0



T T + (r+r2+r3) x F
-1-2-3 -

T2 T 2 3)x F

T3 = T + (r 3 ) x F

Lets abbreviate the trigonometric terms, for example s•, = sin(8 2+63), then

rL = ,11 (cc,s) , r 2 = 12 (clL,si ,) and r = 3 (cClt,sISl)

and so: (r 3 ) x F= (1 3 c,%3 ) v - (1 3sL) u

(2+r3) x F= (12 c= +1 3c,) V - (125s~+13sl-  ) u

(r+r +r2 3) x F = (1 1c,+12 c+1 3 c_ .) v - (11s+12sl +13sl) u

- (1sI +1 2s +1 3 s ) (11 c+ 1 2ci +1 3 c+I ) 1

-(212s.+1 3s5t) (l 2c 1t + l 3cz) 1

-(10 3Si ) (13Cz12 ) 1

u

v

T

So we can easily calculate what motor-torques are needed to apply a given

force and torque to the object. Notice that we could have arrived at this

result by first considering the tip pinned in place only, that is T = 0,

and then separately reason out that to apply torque T, each joint-torque

would have to be increased by T.

The determinant of the above matrix is 11 12 sln(E2). So if' 2 ý 0 or 8r,

we can invert the matrix and solve for u, v and T given the three joint-torques.

u

v

T

*

12ct -(11c 1+12c 2) 11c1

121 s ( 1113s23+1 213s3) 1112s +11s3

T,

T
2

/1 1 2s

SI W

T
I

T2

T3 Iw
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GRAV I TY:

Gravity is again very simple to take into account. If we assume that

the center of mass of each link is in its geometric center we find that:

Y

F3 = m
--3 3-9- -E2 = (m2+m3 )g and F1 = (ml+m 2 +m3 )g and so:

= -m 3 .r3 xg = g Sm3 13 c 1 2 3 1

- T3 " bm2 ½r2 x - m r2 x

= g 1(½m2+m3)12c12 + Im 313 c123

= T2 g - m1 r1 x 9- (m2+m3 ) r1 x j

= g 1(ml+m2+m )11c 1 + (Im2+M3 )1 2 c12 + 313cl23"
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DYNAMICS:

For definiteness we will again consider a simple case where 1 = 12  13 =1

say. The more general case involves a lot more arithmetic and the form of

the final result is the same, only numerical constant will be changed.

Further, we will ignore gravity for now, and assume the links to be uniform

sticks of mass m and inertia (1/12)ml2 about their center of mass.

Once again we start by finding the rotational and translational velocities

of each of the links, Evidently the angular velocities of the three links

are eii (61+e2) and (1 +2 3 ).

The square of the magnitude of the instantaneous linear velocity of the

center of mass of link 1 is simply:

1el1 2= 12 2(2)

For the square of the magnitude of the velocity of the center of link 2:

.lI .r1_2 ( ,+ z)l 12. l2[ + cos(eZ)2 1  , (+~ 2) + k(•6+2) 2

]= 2 f2(S + cos(e 2)) + a1 2 (I + cos(e 2 )) + 62 (¼)1
1421 22 2
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For the square of the magnitude of the velocity of the center of link 3:

223I-1 + -r2(61+62)  -½_3( 1+ )2+ 3)12 = 1 +2cos (2)•1()1+ 12)+(61 +2 )2 + cos(e 3) (6 +2( 21+2 )1+2+ 3 + ¼ (1+ 2+ 3)

+ cos(e2 3 2+3 1 ( 1 22+3) 3
= i28: (2 + 2 cos(0 2) + cos(8 ) + cos(0 2+ 3

4 • 11+01 2( " + 2 cos(6 2) + 2 cos(e 3 ) + cos(8 2+ 3))

+ .2 (+ cos(03))

+02 3(½ + cos(03))

+62

+ 6 31 ( + cos(6 3) + cos( 2+ 03)) 3 (ugh!)

We are now ready to add up the kinetic energy due to rotation and that

due to linear translation of the center of mass for all three links.

So this is the lagrangian for this system and from it we will be able

to calculate the relation between joint-torques and Joint-accelerations.

Let us use the short-hand notation for trigonometric terms introduced

in the discussion of the statics of this device.

L iml2 021'(4 + 3 cos(e2) + cos(e 2+e3) + cos(e3))

+182(, A + 3 cos( 2) +?:cos(e 2+03) + 2 cos( 3())

+ 02 ( + cos(e ))

+02 (6 + cos (e))

+2 s( 3) + cos())

+63 (2-+ cos(e2+e3 ) + cos(e3))
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We will next derive

the partial derivates of the)~grangian with respect to 81  2 , 63, 1'
2 3 2

2 and " . Let L = iml L' as before.
2 3L'

=0

b3' = 6( -3 sz * s..) + 6 62( 3 si 4 s.) + 6 31( s )
2

--- L~ = 1( s *+s + 1 2 ( s~342-$,)
68 3 1214 +3 12(1

+ 62( ) + 2 3 (-.s ) + 3 ( s23 +s

SL'= 281 (4+3c2+c2 3+c3 ) + 82(1+3c2+c23+2c3) + a3( T+c 2 3+ 3 )

= i-- +3c+c+2c ) + 22( +c) + ( +c3 )
23 3 3

6 (23 +c23+c3 ) + 82( +c3) + 263(1-)233 33

Next we will need the time rate -of-change of the last three quantities above:

_-(-•_ ) =1

a

1(+3

281 (4+3c 2+c23+c3) + 19+ e2(-- +3c2+c23+2c) + +c2 3+c)+3c2+c23+2c
3) + 83(3 +c23+ c3

- 21 (3s 2 2 -s 2 3 ( 2+ 3)0 s 3 ) -3 2(3s202+s23( 2+ 3 )-2s 33 )

- 3 (s23 (82+ 3)-s3 0 3)

d "·I ,  I I
-- ( 1 - +3c2+c23+2c)

2
+ 212 ( +c3) + 3( - + C3)

- 6,(3s2 2-s23( 2 +3)-s3 3) - 282(53 3) -3 3(s 33)

1 = (2 +c23+c 3) + 2 (3 +c3) + 283 (

- 1 (s 23( 2+ 3)-s 33) -)2(s393)

d ~' L' )
dt" )3
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Finally, inserting these terms into Lagranges equation:

d L' _ b L' =;3c 11 11
S281 (4+3c2+c23+c ) + + 3c2+c23+2c ) + +c23+ 3)

- 1 2(6s2+2s23  2(3s2+s23) - 2 3 (2s23) - 3(s23+s3) - 0 (2s23+s3

T2 d 1-+3c +c +2 )-+2 (0 c).+ (G+ c )
Sdt e82 3 2 23 3 233 "3- 3 3

2 82

+ i2(3s 2 +s2 3  - 3 (2s3) - 3(s3) - 3 01(2s3)

d ( LL b L' 1 2 " 2 2T= d" 3 61 +3+2+c3) + 02 (+c3) + 83( )T -= de(3 L) 23 3 T 0
l (

)e

+ e2(s 23+s3) + 182 (2 s53) + 22(s3)

Ti 2(4+3c2++c23+) (19 +3c2 +c23+2c3) (. 23+c ) T3 2233 23+c3) IV

T2 = m2 (19 +3c2+c23+2c ) 2( +c) ( ++c 2v
2233 % 3 2v

S+c2+c) ( +c3) 2(-1) 3 T

Where T1v, T2v and T3v are velocity product terms, *ml2 times the second lines

in each of the expansions above for T;, T2 and T;,

Notice once again the symmetry of the sensitivity matrix and the fact that

its diagonal elements are always positive. Also remember that the terms in

this matrix can depend only on the joint-angles, all velocity-product terms

being segregated out on the right.

Clearly then, given the arm-state (81, 82 ' 839, 1' e2 and 63),we can calculate

what torques need to be applied to each of the joints in order to achieve

a given angular acceleration for each of the joints.
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EXTENSIONS TO THREE DIMENSIONS:

Once the basic principles are understood, we can proceed to introduce

the extensions necessary to deal with manipulators in three dimensions.

There is little difficulty as regards position and force since in an

n-dimensional space these quantities can be conveniently represented

by n-dimensional vectors. A general position or force generator will

need n degrees of freedom. Unfortunately we are not so lucky with

orientation and torque. These can not be usefully thought of as vectors.

For example, in three dimensions we know that rotations don't commute,

while vector addition does. It Is a misleading coincidence that it takes

three variables to specify a rotation in three dimensions.

ROTATION:

It takes n(n-1)/2 = (n) variables to specify a rotatioh in n dimensional

space. Why? A general rotation can be made up of components each of which

carries one axis part way towards a second axis. There are n axes and so

n(n-1)/2 distinct pairs of axes and therefore that number of "elementary"

rotations. It is not correct to think of rotations "about an axis"; in our

two dimensional example such rotations would carry one out of the plane

of the paper, and in four dimensions, not all possible rotations would be

generated by considering only combinations of the four rotations about the

coordinate axes.

Another way of approaching this problem is to look at matrices that represent

coordinate transformations that correspond to rotations. Such matrices are

ortho-normal and of size n x n. How many of the n2 entries can be freely

chosen? The condition of normality generates n constraints, and the

condition of orthogonality another n(n-1)/2. So we have n2 - n -n(n-l)Y

n(n-1)/2 degrees of freedom left.

To specify position and orientation or force and torque in n dimensions

requires n(n-1)/2'+ n = n(n+1)/2 variables. A general-purpose n dimensional

manipulator needs to have n(n+l)/2 degrees of freedom. For n =3, this is 6.

i'
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The coincidence that it takes 3 variables to specify a rotation in three

dimensions allows some simplifications - a torque for example can be

calculated by.taking cross-products. In higher dimensions, one needs to

look at exterior tensor products. A useful way of specifying rotations

in three dimensions Is by means of Euler angles - roll, pitch and yaw

for example. It is straightforward to convert between this representation

and the ortho-normal matrix notation.

KINEMATICS:

It is no longer sufficient to represent each link as a vector, since the

joints at its two ends may have axes that are not parallel, The way to deal

with this problem is simply to erect a coordinate system fixed to each link.

Corresponding to each joint then there will be a coordinate transformation

from one system to the next. This transformation can be represented by a

3 x 3 rotation matrix plus a 3 x 1 offset vector. It is convenient to

combine these into one 4 x 4 transformation matrix that has (0 0 0 1) as

its last row. This allows one easily to invert the transformation, so

as to allow convertion of coordinates in the other direction as well.

The entries in this matrix will be trigonometric polynomials in the

joint-angles. In order to determine the relation between links separated

by more than one joint, one can simply multiply the transformation

matrices corresponding to the Intervening joints. Doing this for the

complete manipulator, one obtains a single matrix that allows one to

relate coordinates relative to the tip or terminal device to coordinates

relative to the base of the device. In fact the 3 x 3 rotation submatrix

gives us the rotation of the last link relative to the base and hence its

orientation, while the offset 3 x 1 submatrii is the position of the tip

of the last link with respect to the base.

Given the joint-variablesit is then a relatively straight-forward matter

to arrive at the position and orientation of the terminal device or tip.

These values are of course unique for a particular set of joint-variables.
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THE INVERSE PROBLEM:

Unfortunately the inversion is much harder. One way to approach this

problem would be to consider the 3 x 3 rotation sub-matrix made up

entirely of polynomials in sines and cosines of joint-angles and the

3 x I offset sub-matrix which contains link-length as well and try to

solve for the sines and cosines of the six joint-angles. There are

twelve equations in twelve unknowns, so we expect there to be a finite

number of solutions. When solving polynomial equations by eliminating

variables the degree of the resulting polynomials grows as the product

of the polynomials combined. We could easily end up with one polynomial

in one unknown with a degree of several thousand. So in general this

problem is intractable.

There are a number of conditions on the link geometry that make this

problem solvable by non-iterative techniques. Several such configurations

are known, but one of the easiest to explain involves decoupling the

orientation from the position. One then has to solve two problems that

are much smaller, each having only three degrees of freedom. Suppose for

example that the last three rotational joints Intersect in one point,

call it the wrist. Then these last three can take care of the orientation,

while the remaining three position the wrist, Given the orientation of the

last link it is easy to calculate where the wrist should be relative to

the tip position. Given the position of the wrist one can solve the

inversion problem for the first three links.This can usually be done by

careful inspection rather than blind solution of trigonometric polynomials.

Often also the first three links are simply a combination of the two-link

geometry we have already solved and an offset polar-coordinate problem.

Now that we know the first three joint-angles we can calculate the

orientation of the third to which the wrist attaches. Comparing this

with the desired orientation of the last link, it is simple to

calculate the three wrist-angles by matrix multiplication and solving

for the Euler angles appropriate to the design of the wrist.
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STATICS:

By controlling the six joint-torques we can produce a given force and tocque

at the terminal device. The same coordinate transformation matrices used

for solving the kinematics prove useful here. Cross-products give us the

required torques, with joint-motors supporting the components around the

joint-axes, while the pin-joints transmit the other components. The

calculations are straight-forward.

Gravity compensation calculations also follow the familiar pattern. In

many cases manipulators intended for positional control have been used

to generate forces and torques in a different manner. The Idea is to

use the inherent compliance of the device as a kind of spring and to

drive the joints to angles slightly away from the equilibrium position.

Since the stress-strain matrix of such a device Is very complex and It

has different sprlrnconstants in different directions, as well as coupling

between forces and torques, this technique on its own is not very useful.

One solution relies on a force and torque sensor in the wrist. From the

output of such a device one can calculate the forces and torques at the tip

and servo the Joint-angles accordingly. The advantage of this technique is

that friction in the first three Joints does not corrupt the result and that

the measurement Is made beyond the point where the heaviest and stickiest

components of the manipulator are.

DYNAMICS:

The main additional difficulty of manipulators in higher dimensions is that

inertia too now has several components Instead of just one. The dynamic

behaviour of a rigid body as regards rotation can be conveniently expressed

as a symmetrical,square inertia matrJx. This relates the applied torque

components to the resulting angular accelerations. The same general idea

carries through, with the distinction that the calculations get very messy

and have to be approached in a systematic fashion. A practical difficulty

is the measurement of the components of the inertia matrices for each of

the links of the manipulator.
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FURTHER READING:

For a detailed analysis of the kinematics of a real three dimensional

manipulator:

"KINEMATICS OF THE MIT-AI-VICARM MANIPULATOR", B.K.P.Horn and

H.Inoue, MIT-AI-WP-69, May '74

This paper also discusses such things as Euler angles in more detail,

gives the transformation matrices from link to link, and has lots of

useful references. For a concise account of some of the best work with

trajectory control of manipulators see:

"TRAJECTORY CONTROL OF A COMPUTER ARM", R. Paul,31JCAI, pp38 5-390

More details are available in:

"MODELLING, TRAJECTORY CALCULATION AND SERVOING OF A COMPUTER

CONTROLLED ARM", R. Paul, Stanford-AIM-177, '72

The following form a sequence that lead up to proper understanding:

"ON THE DYNAMIC ANALYSIS OF SPATIAL LINKAGES USING 4 x 4 MATRICES"

J.J. Uicker, Ph.D. Dissertation, Northwestern University, Evanstan,

Illinois, Aug '65

"DYNAMIC FORCE ANALYSIS OF SPATIAL LINKAGES", J.J. Uicker,

Transactions ASME, '67

"THE KINEMATICS OF MANIPULATORS UNDER COMPUTER CONTROL" D.L. Pleper,

Stanford-AIM-72 '68

"THE NEAR-MINIMUM-TIME CONTROL OF OPEN-LOOP ARTICULATED KINEMATIC

CHAINS", M.E. Kahn, Stanford-AIM-106, '69-


