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ABSTRACT

The problem of producing a colored image from a colored original is analyzed.
Conditions are determined for the production of an image, in which the colors
cannot be distinguished from those in the original by a human observer. If
the final image is produced by superposition of controlled amounts of colored
lights, only a simple linear transform need be applied to the outputs of the
image sensors to produce the control inputs required for the image generators.
In systems which depend instead on control of the concentration or fractional
area covered by colored dyes, a more difficult computation is called for. This
calculation may for practical purposes be expressed in table look-up form.

The conditions for exact reproduction of colored images should prove useful in
the design and analysis of image processing systems whose final output is in-
tended for human viewing. Judging by the design of many existing systems,
these rules are not generally known or adhered to. Modern computational
techniques make it practical to tackle this problem now. Adherence to design
constraints developed here is of particular importance where colors are to be
judged when the original is not directly accessible to the observer as, for
example, when it is on another planet.

A.I. Laboratory Working Papers are produced for internal circulation, and may
contain information that is, for example, too preliminary or too detailed for
formal publication. It is not intended that they should be considered papers
to which reference can be made in the literature.
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INTRODUCTION

Systems for the reproduction of colored images have evolved

considerably since they were first invented and several hold the

potential for accurate reproduction of a major portion of the gamut

of possible colors [ ]. Such systems may be conveniently

thought of as consisting of the following parts: a set of image

sensors exposed to the original image, a set of image generators

producing the final image and a computational subsystem mapping

the image sensor outputs into suitable inputs for the image gen-

erators (see Fig. 1). The image sensors may be photoelectric de-

vices or compounds which undergo chemical changes when exposed to

light. The image generators may be controlled light-sources or

phosphors, or light-absorbing substances whose concentration or

fractional area coverage is controlled. The computational sub-

system may be nothing more than a direct coupling between photo-

sensitive substances and other chemicals which can be developed in-

to light-absorbing dyes. It will be shown however that in all but

the simplest cases the computations to be performed are more com-

plex than those which such a simple system is able to support.

The availability of modern electronic and digital techniques pro-

vides us with the tools required to overcome the obstacle present-

ed by the limitations of the straightforward analog or "chemical"

computation.

Since such computational techniques did not exist when pres-
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ently used methods of reproduction were developed, we have come to

accept the limited fidelity possible with simpler schemes. It is

also often the case that color reproductions are judged more on

their appeal to the viewer than on their faithfulness, 'particular-

ly since the original is not usually available to permit detailed

comparisons. Most systems for the reproduction of colored images

do obey two fundamental rules nevertheless: the system must have

three types of image sensors (with linearly independent spectral

response curves) and three types of image generators (again with

linearly independent spectral curves). These rules reflect the

trichromacy of human color vision, which is illustrated by our a-

bility to match an arbitrary colored light with one made by addi-

tion of varying proportions of three test lights [ ].

This observation leads to the assumption that humans possess

three types of light-sensitive receptors, presumably the cones in

the retina, with linearly independent spectral response curves.

These curves are quite similar for a large fraction of the popula-

tion, with a few exceptions, where one of the three sets appears

to be non-functional and a few even rarer cases where one of the

sets of receptors has altered spectral response curves [ ].

Experiments further show that these response curves are remarkably

stable and that their general shape is unperturbed by adaptation

or overexposure. That is, colors may appear different when viewed

with the eye adapted differently, but color matching is not disturbed.
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PREVIEW

The problem of the reproduction of colored images is analyzed.

Conditions are determined for the production of an image in which

the colors cannot be distinguished from those in the original by

a human observer. By taking point-by-point equality of stimula-

tion of receptors as the criterion of indistinguishability, compli-

cated questions of human color perception are avoided, and it is

shown that the spectral response curves of the image sensors must

be linear transforms of the spectral response curves of the human

visual system.

Having established this design constraint on the image sensors,

the computation of control inputs for the image generators is stud-

ied next. This computation depends strongly on the method chosen

for producing the final image. If, for example, a set of controlled

light-sources is superimposed, as in color television, it turns out

that a linear transform of the image sensor signals is all that is

required. This transform is exhibited as a function of the proper-

ties of the human visual system, the system's sensors and the light-

sources.

In practice, the range of control of the image generators is

limited. In the present case, for example, there is clearly a

constraint imposed by the impossibility of negative light intensi-

ties. When manipulating absorbing dyes, one is similarly limited

to non-negative absorption values. In both cases such constraints
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lead to limitations on the gamut of colors which can be accurately

reproduced. This gamut can be extended by using more than three

image generators. The calculations needed to deal with this case

are also developed. It is shown that techniques for the solution

of linear programming problems are appropriate.

Color reproduction techniques depending on light-absorbers

rather than light-sources are andlyzed next. These include or-

dinary photographic processes, where the concentration of dyes in

superimposed layers is controlled, and lithographic methods, where

the fractional areas covered by dyes are manipulated to achieve the

desired effect. It is shown that in general the computations are

quite complex, unless unrealistic assumptions are made about the

spectral curves of dye absorption. In particular, photographic

techniques do not permit the required cross-coupling between layers.

That is, each sensitive layer controls only one dye layer in the

reproduction. Similarly, color separation and masking techniques

for lithographic reproduction cannot cope with the non-linearities

due to superposition of non-ideal inks. Curiously, it is usually

claimed that masking is required to deal with ink imperfections.

The exact calculations proposed here need only be carried through

once and the results can then be saved as a three-dimensional look-

up table. This table produces the correct control inputs for the

image generators so that they give rise to the desired stimulation

in the human observer.
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When the observer views the reproduction under conditions of

adaptation different from those under which he might view the or-

iginal, it becomes necessary to adjust the system so he will still

be able to correctly judge colors. The proper point for this ad-

justment is identified in the system, based on a simple model of

the effect of chromatic adaptation. In traditional systems, ad-

justments for these effects are introduced at somewhat arbitrary

points.

Many of the images we view, such as color television pictures,

reproductions in magazines and motion picture film, have been

through many reproduction steps. It is therefore important to

understand this duplication process. Naturally, systems that

accurately reproduce arbitary images will also correctly reproduce

reproductions. It is shown, however, that this task is simpler.

In particular, it turns out that the sensor spectral response

curves for such systems need not be linear transforms of the human

spectral response curves.

Many different methods have been used for the reproduction of

colored images (see fig. 2). These can be categorized in a number

of ways. One can distinguish between those which use controlled

intensities of superimposed light-sources with different spectral

distribution (as in color television) and those which depend on

controlled amounts of absorption by pigments or dyes. The latter

can be further divided into a group which requires light to be
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transmitted through the absorbing layers (as for photographic trans-

parencies) and a group which depends on light reflected from a sub-

strate (as in lithographic reproduction). Along another dimension,

one can distinguish methods which depend on addition of lights and

others which depend on multiplication of absorption values when dye

layers are superimposed or pigments are mixed (also called "sub-

tractive" mixtures). In the latter case, one can further separate

methods according to whether control is achieved by means of changes

in the concentration or amounts of dye or whether different colors

are obtained instead by varying the fraction of the total area

covered by a dye of fixed composition. Only three cases are analyzed

in any detail in this paper. In order to make it possible to easily

generalize to the other techniques, however, one method was

chosen from each column and each row in figure 2.
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IMAGES, TRANSPARENCIES AND PRINTS

An image can be thought of as a two-dimensional distribution

of light intensity. Similarly, a transparency corresponds to a

two-dimensional distribution of light transmission, while a print

can be modelled as a two-dimensional distribution of light re-

flectance. These three variables -- intensity, transmission and

reflectance -- obviously are also functions of wavelength. The

three reproduction systems analyzed in detail in this paper have

been carefully chosen so that each of the above cases is repre-

sented. However, even though the end product of a reproduction

process may be a material entity such as a transparency or print,

it is the image on the observer's retina which produces the stimu-

lation of the receptors in his visual system. Consequently the

light used to illuminate the transparency or print must be taken

into account. It is simpler then to use as the common denominator

in all these discussions this final image and to discuss the re-

production of colored images, rather than the other types of end

products. In fact it is impossible to make reproductions which

will be indistinguishable from the original under all possible il-

luminating conditions without actually duplicating the exact spec-

tral curves in the original. It is thus important to specify the

lighting of the reproduction for which the reproduction is meant

to be exact.
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A MODEL FOR A COLOR REPRODUCTION SYSTEM

The image reproduction system consists of a set of image

sensors viewing the original, a set of image generators producing

the final image and a computational sub-system mapping images sensor

outputs into image generator inputs (see fig. 1). There are three

types of image sensors with different spectral response curves and

three image generators with different spectral output curves.

Since we are aiming at point-by-point equality of stimulation,

we can concentrate on a particular point in the original and the

corresponding point in the reproduction. Let the spectral distri-

bution of light intensity in the original be s(A); that is, the

power emitted from an area SA in a spectral band of width SA cen-

tered at wavelength x is s(x) SA Sx. Let the spectral distribution

of light intensity at the corresponding point in the reproduction

be o(A).

It is important to note that it is not necessary for o(A) to

equal s(x) for every wavelength X. All that is needed is that

these two spectral distributions be metameric, that is, indistin-

guishable to the human observer. In other words, they should pro-

duce the same stimulation levels in the three types of light sensi-

tive receptors of the human visual system. Now suppose that the

spectral response curves of the observer's visual system are

el(A), e2(A) and e3(A). Then the stimulation levels in the three

types of sensors will be equal to E1, E2 and E3, defined as follows:
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Ei = f s(x) e.(X) dx for i = 1, 2, 3

Here xo and xl are the limits of the visible part of the electro-

magnetic spectrum. If we call the corresponding stimulation levels

when viewing the reproduction E!, then we must design the system

so that E! = Ei (for i = 1, 2, 3) for all possible input spectral

distributions s(x).
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VECTORS -- A USEFUL NOTATION

In what follows it will be convenient to think of various

spectral distributions as vectors in an infinite dimensional vec-

tor space V. To introduce this idea, imagine that we have measured

s(x) say, in each wavelength interval of width 10 nm (namometer),

between 380 nm and 760 nm. The resulting 38 numbers can be thought

of as components of a vector. Different spectral distributions

correspond to different vectors. If we increase the resolution of

of our measurements, we approach the situation where the vector can

be imagined to have infinitely many components [pg. 175, 5; pg 81, 6].

(We may think of the "components" of such a vector as the values

of the spectral distribution at particular wavelengths).

We will restrict our attention here to continuous sensor spec-

tral response curves, not only becuase these are the distributions

found in practice, but because they simplify the mathematics. In

particular, we do not then have to deal with sensor spectral re-

ponse curves that have zero integral over the visible range of wave-

lengths, yet are non-zero for some wavelengths in this range. As

a result, we can avoid repeated use of phrases of the form "equal

almost everywhere", when referring to functions which differ only

by a "trivial function" [pg. 83, 6]. A number of useful theorems

which normally apply only to finite dimensional vector spaces also

apply in this case.
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INNER PRODUCTS

If we know ei(x) say, for the same wavelength intervals as

those used above to introduce the idea of an infinite dimensional

vector space, the integral for the stimulation levels of the three

types of receptors in the human visual system can be approximated

by a sum of products,

37
Ei  s(385 + k x 10) ei(385 + k x 10)

k = 0

This sum has the familiar form of an inner- or dot-product of the

corresponding vectors. Once again we may increase the resolution.

As we do this, the sum approaches the integral given in the previ-

ous section, and we can therefore conveniently think of this inte-

gral as the dot-product of two infinite dimensional vectors

[pg. 152, 4; pg. 175, 5],

Ei = foS(x) ei(X) dc = s • gi

Similarly, if the spectral response curves of the image sensors are

rl(A), r2( ) and r3 (x), we can express their outputs R1 , R2 and R3 as

X1
Ri = f 2s(A) ri( ) dx = S r.

This shorthand notation will simplify the determination of the

conditions required for exact reproduction of arbitrary images.

For the moment we will ignore the fact that spectral distributions

will be non-negative for all wavelength and that consequently not
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all points in the vector space V correspond to realizable spectral

distributions or possible sensor response curves.

Most of the mathematical tools we need are available in dis-

cussions of "Inner Product Spaces" [4,7], "Euclidian Vector Spaces"

[5], "Function Spaces" [6] and "Hilbert Spaces" [8]. Since the

basic results needed are not available in the form required here

however, they are derived in the appendix.
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ORTHOGONAL COMPLEMENTS

Consider all spectral response curves that can be made from

linear combinations of the spectral response curves of the image

sensors. Clearly this set, when the spectral response curves are

viewed as vectors in V, forms a subspace of V. This subspace will

be called Sr, and it is spanned by the set of basic vectors {ri}.

3
S = {rlr =  z a.ri;Ea i R}

1 1

where R is the set of real numbers. The subspace sr is clearly

three-dimensional, since there are three degrees of freedom in

choosing the coefficients al, a2 and a3. Proceeding in a similar

fashion, we can define a three-dimensional subspace S , spanned by

the set of basic vectors {el}. We will later show that these two

subspaces: must be identical.

A very useful notion in this regard is that of perpendicularity.

Two vectors are considered orthogonal if their dot-product is zero.

Now consider a vector v which is orthogonal to all vectors in Sr.

We may say that the vector v is orthogonal to the subspace Sr'

This motivates the definition of the orthogonal complement, Vr,

say, composed of all the vectors orthogonal to Sr. One writes

V = S 1 . The orthogonal complement is also a subspace of V, itr r

is however infinite dimensionally, quite unlike Sr. It is shown

in the appendix (lemma 1) that,
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Vr = {vjv-ri = 0, for each of i = 1, 2, 3)

This then is the subspace of all spectral distributions which pro-

duce zero outputs from each of the image sensors. Note that it

is only because we have allowed negative components in spectral

distributions that this subspace is non-trivial (that is, contains

any but the zero vector). Proceeding in a similar fashion, we

can define Ve , the subspace orthogonal to Se, containing all the

spectral distributions which produce no stimulation in the ob-

server's visual system.
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CONSTRAINTS ON THE IMAGE SENSORS

Before we consider the image generators and the computational

sub-system, we must decide whether or not the image sensors may

have arbitrary spectral response curves. It is quite clear that

if the image sensors have the same spectral response curves as

those in the observer's visual system, then colors which are meta-

meric will produce equal outputs in the image sensors. Similarly,

colors which produce the same outputs from the image sensors cannot

be distinguished by the observer. This however is more restrictive

than needed, since the same result holds if the image sensor's

response curves are linear transforms of the spectral response

curves of the observer. That is, if

3
r. () = a.. e () for j = 1, 2, 3

Or,

(ri)T = A (ei)T

Where A is the matrix (a..), and the notation (xi)T is used to de-

scribe a column vector with three components. This then is a suf-

ficient condition that enough information has been captured to be

able to produce the final image. But is it necessary?
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THEOREM 1:

Proof:

The spectral response curves of the image sensors

must be linear transforms of the spectral response

curves of the human visual system.

If the system is to accurately reproduce arbitrary

colored images, then spectral distributions which a

human can distinguish must produce different outputs

from the image sensors. Conversely, spectral distri-

butions which cannot be distinguished from the outputs

of the image sensors, must be metameric, that is, in-

distinguishable as far as the observer is concerned.

If we call the two spectral distributions sl and s2'

we have,

sl*r i = s2'ri  (all i) implies s le i = s2 *ei  (all i)

Now let s = s - s 2 then,

s*ri =0 (all i) implies s-ei = 0 (all i)

That is, a vector perpendicular to r , r2 and r3, must

also be perpendicular to el, e2 and e3. Stated another

way, any vector v Vr must also be in V e. or V C Ve-r e r e
Now, according to lemma 2 in the appendix, this implies

that Ve C V . Further, if sensor spectral response

curves are continuous, lemma 6 in the appendix shows

that V = S and V = Se. Therefore SC S .r r e e r
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At this point we note that the two subspaces Se and Sr

are of equal dimension, and by lemma 7 in the appendix

this implies that actually Se = S r . We have two bases

for this vector-space, {e } and {r } . There must

then exist a linear transform between these two sets

of vectors [pg. 119, 7]. We may represent this linear

transformation by means of a matrix, A. Then,

(ri)T = A(ei)T

Note: It should be apparent that the decision to permit spectral

distributions with negative components simplified the derivation,

because it permitted the representation of differences of spectral

distributions.

COROLLARY 1: Metameric spectral distributions produce identical

Proof:

outputs in the camera.

SinceS = Sr, we have Sr C S , and therefore Ve C Vr.

That is,

s.e i = 0 (all i) implies s.r i = 0 (all i)- -i . i

Note: The spectral response curves of the human visual system are

not themselves known with great accuracy, although a large variety

of experiments hint at their general shape [ ]. Extensive

c6lor matching experiments have however led to agreement on what

are called standard observer curves [ ]. These
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are constructed in such a way that spectral distributions which

match in terms of the standard observer curves will be metameric.

Since the C.I.E. standard observer curves represent the average

of many experiments with many different subjects, while the human

cone response curves are not yet known with the same precision,

the following result will be useful:

COROLLARY 2: The C.I.E. standard observer curves are linear trans-

forms of the spectral response curves of the human

visual system.

Proof: Immediate, if one replaces the image sensor spectral

response curves in the previous theorem with the

standard observer curves.

As a result we may restate the constraint: The spectral response

curves of the image sensors must be linear transforms of the

standard observer curves.
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WHAT TO DO IF THE SENSOR RESPONSE CURVES ARE NOT QUITE RIGHT

In practice, it is not possible to design devices with arbi-

trary spectral response curves. In order to select sensors with

known spectral response curves, one would like to know what the

"nearest" linear transform of the response curves of the human

visual system is and how "near" to it the given response curve is.

If one gives a least-squares interpretation to the term "near",

the answer is quite simple. The spectral response curve which is

a linear transform of the spectral response curves of the human

visual system and which is closed to the given response curve,

v say, is the perpendicular projection, s say, of v onto S e The

error is measured conveniently by the perpendicular distance be-

tween v and S . As the problem is stated it amounts to minimiza--- e
tion of (v - s)-(y - s), when s e S . That is, s can be written

as a linear combination of the basis vectors of Se,

3
s = a. e

i=l

Using the methods of lemma 3 in the appendix, one finds that s is

the perpendicular projection of v on Se and that,

(ai)T = Q-I (v-ei )T

where the matrix Q has elements qi = e ~ Next, by lemma 4, the

vector (v - s) is perpendicular to Se and so (v - s).(y - s) =

y'(y - s) = '-y - y.s. When comparing different sensors one should
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normalize this "error" by the total sensitivity of the sensor.

This produces a "quality factor",

v.s/v.v

which will be one for a perfect sensor.
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A SYSTEM WHICH USES SUPERIMPOSED CONTROLLED LIGHT-SOURCES

Now we turn our attention to the image generators and the

computation required between the outputs of the image sensors and

the inputs to the image generators. Here, we first consider the

simplest system, one which superimposes three colored light-sources

whose intensity can be individually controlled. Color television

represents the most widely known instance. The light-sources in

this case are the phosphor dots on the screen whose intensity is

controlled by the current in the incident electron beam. The light-

sources, while not actually in the same place, appear essentially

superimposed at normal viewing distance.

Let pl(x), p2 (A) and p3(P) be the spectral distributions of

the light emitted by each of the three light-sources. Further,

let P1' P2' P3 represent their absolute levels (these are the con-

trol inputs to the image generation system). Then, the total spec-

tral distribution of light coming from a particular point can be

found by simple addition,

o(X) = lPl1(x) + P2P2(x) + P3P3(P )

Or,

3
o = P. P.
- = i J J

From this we can calculate the stimulation of the receptors in the

observer's visual system when viewing the reproduction as follows:
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3
E= o.e = P. (e.ip.)

S -- J = ij

This suggests that one defines a matrix C = (cij) say, where cij

e e·j .Then,

(E) T = C(Pi)T

Note: Since the spectral distributions pj(x) and the spectral

sensitivities ei(x) are non-negative, all terms in the matrix, c

are non-negative. This has implications for the inverse of the

matrix C. Some elements of the inverse matrix must be negative,

for example.

THEOREM 2: The mapping of image sensor outputs to image generator

inputs can be achieved by means of a linear transform

if A and C are non-singular. This linear transform

can be represented by a 3 x 3 matrix B = (AC)-1 = C'1A -1

If the final image is to be indistinguishable from the

original, El = E1, E2 = E2 and E3 = E3. Now if C is

non-singular,

(Pi)T = C-I (Ei)T

Finally, one has to find the stimulation levels (E )T

from the image sensor outputs (Ri)T. If A is non-singular,

(Ei)T = A-1 (Ri)T

Proof:
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So,

C- A )T)T

Pi T C 1 A 1 (Ri )T = (AC)-
1 (Ri)T

-Thus the calculation can be performed by a simple linear

transform, which can be represented by a 3 x 3 matrix

(see fig. 3).

COROLLARY 3: The set of vectors {r.} must be linearly independent,

as must the set {pi }.

Proof: It follows from the trichromacy of human color vision

that the set of vectors {ei} must be linearly indepen-

dent. Now (r.)T = A(e )T, so if the set {r.} were

linearly dependent, the rows of the matrix A would be.

The condition that A is non-singular thus implies that

the set of image sensor spectral response curves {ri }

be linearly independent.

Next, note that one can write the matrix C as the

product of a column vector (ei)T and a row vector (pi).

If the set {pi} were linearly dependent, so would the

columns of C. The condition that C is non-singular

thus implies that the set of image generator spectral

curves {pi } be linearly independent.

Note: The linear independence of each of these sets of spectral

curves is necessary, but not sufficient. The requirement that the

matrices A and C be non-singular is more stringent.
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COROLLARY 4:

Proof:

COROLLARY 5:

Proof:

The light-source spectral distributions, pi(A), need

not be linear transforms of the spectral response

curves of the human visual system.

This is clear from the proof of the previous theorem,

since the matrix B can be found for arbitrary non-

singular matrices A and C.

In determining the transform B, we can use matrices

A' and C' based on the standard observer curves, in-

stead of the matrices A and C, based on the actual

spectral response curves of the human visual system.

We have already shown that the C.I.E. standard ob-

server curves represent a linear transform of the

spectral response curves of the human visual system.

Let us represent this transformation by the non-singu-

lar matrix M = (m..) say. Then if we let ei(x) be

the standard observer curves,

(ei)T = M(ei)T

Consequently,

(ri)T = A(Ci )T = A Ml(9ei)T. So A' = A M1 .

T
Next, note that C = (e )T(pi) and that similarly

C' = (e.)T p). Since (e )T = M(ei)T, C' = MC. As

a result,
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(A'C')-1 = (A M-1 M C)-1 = (AC)-1 = B

This is very convenient, since the standard observer curves have

been determined with fair accuracy, while there is continuing de-

bate about the exact form of the spectral response curves of the

human visual system. That is, the linear transform between the

two has not been pinned down as accurately as one would wish.

COROLLARY 6: The image sensor outputs may be connected directly

to the image generator inputs if and only if AC = I,

the 3 x 3 identity matrix.

Proof: The direct connection implies that B = I. The result

follows since B = (AC)-1 .

Notice that this condition is very restrictive, and the exact condi-

tion is unlikely to be met in practice if one keeps in mind the

limitations imposed on possible image sensor and image generator

spectral curves. Nevertheless, some present-day system for the re-

production of colored images (as, for example, photography) use

such direction connection and do not permit correction for possible

cross-coupling terms! In lithography cross-terms can be taken care

of by "masking" in the color separation step. It will be shown

later however that other inaccuracies occur in this case.
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CHROMATIC ADAPTATION

The human visual system adjusts to varying lighting conditions.

While there is as yet no general agreement on the exact nature of

the processes involved, or where in the visual system it takes place,

adaptation is often modelled as a change in gain of the channels

[ ]. So, for example, it is likely that an observer viewing

objects illuminated by incandescent light is compensating for the

strong illumination in the long wavelength end of the spectrum by

means of a reduced gain in the receptor channel most sensitive to

long wavelengths and by an increased gain in the receptor channel

most sensitive to the short wavelengths.

Systems for the reproduction of colored images may take this

effect into account by introducing corresponding gain changes in

order to deal with the fact that the viewer is likely to be adapted

differently, when viewing the reproduction, than (s)he would be

when viewing the original. To some extent this is already done in

existing systems in order to deal with the limited range of values

available in the image generators. So, for example, in color

photography, one would use a film that is "balanced" for the incan-

descent illumination -- that is, a film that has reduced sensitivity

in the long wavelength sensitive layer and increased sensitivity in

the short wavelength sensitive layer. The sensitivities in such a

film are adjusted so that a white surface illuminated by a tungsten

lamp of the specified color temperature will be reproduced as a
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white or neutral color in the final image. In this way the range

of intensities in the original scene can be fitted into the limited

dynamic range of the film. Each of the three dye layers in the

film (to be described in more detail later) is called upon to pro-

duce a similar range of absorbing densities.

Most systems for the reproduction of colored images introduce

this gain change into the channels directly connecting image sensors

to image generators. This however does not usually produce the

correct transformation.

THEOREM 3: The gain changes required to compensate for the observer

adaptation level should be introduced between the linear

transform A-l and the linear transform C-l.

Proof: If adaptation can be modelled as gain changing in the

receptor channels, it can be compensated for by applying

the inverse gain changes in thl reproduction system. To

do this, we must first calculate the receptor stimulation

levels from the image sensor outputs.

(Ei)T = A-1 (Ri)T

At this point wemultiply by the gain-factors gl, g2 and

g3. Finally we calculate the image generator control

inputs as before,

(Pi)T= C-1 G (Ei)T
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where G is the diagonal matrix with elements g1, g2 and

g3. The two linear transform and the gain-factors are

shown graphically in figure 4.

COROLLARY 7: Applying the gain factors to image sensor outputs or

image generator imputs will not in general result in

correct compensation for adaptation.

Proof: According to the previous theorem, the overall trans-

fer function of the system from image sensor outputs

to image generator inputs should be C- G A-1 . If we

try to achieve the same effect by modifying the image

sensor outputs first, we, obtain instead C-1 A-1 G',

where G' is a new diagonal matrix. If the transfer

functions are supposed to be equal, we find that

G A-1 = A-1 G' or AG = G'A.

One can see the impossibility of this in the general

case, since the matrix on the left is obtained from

A by scaling its columns, while the matrix on the

right is obtained by scaling its rows. Put another

way, G' = A G A-1 , which is not diagonal unless A is

diagonal.

The same sort of argument shows that applying gain

factors to the image generator inputs will not do, since

one then obtains G" C-1 A-1 and so require that C-1G =

G" C 1 . Therefore one finds G" = C G C-1 and so has
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the same difficulties unless C is diagonal (which is

not the case because of the overlap of the spectral

response curves of the human visual system).

Note: So far we have been able to use the C.I.E. standard observer

curves in our derivations. Here however we actually have to get

at the underlying receptor response curves, since the gain factors

are to be interposed between A-1 and C-1. This is quite reasonable,

since in fact chromatic adaptation experiments represent one tech-

nique for estimating the actual receptor response curves.
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CONSTRAINTS ON IMAGE GENERATOR CONTROL INPUTS

For certain image sensor outputs, the calculation presented

so far may result in negative control inputs to the image generators.

This is an indication that the correct stimulation levels of the

human visual system cannot be achieved by adding non-negative

amounts of the three light-sources. Since negative intensities

cannot be realized, we conclude that the image generators can pro-

duce only a limited gamut of observer stimulation levels and that

consequently some spectral distributions cannot be reproduced

correctly.

THEOREM 4: The set of observer stimulation levels (Ei)T that can

Proof:

Obviously,

be produced using non-negative light-source levels

forms a convex subset of the space of all possible

stimulation levels.

By adding light-source intensities, arbitrary positive

linear combinations of stimulation levels can be pro-

duced. That is, if

(Ei)T = C (P )T and (Ei)2 = C (Pi) 2

Then

a (E )T + (I - a)(Ei) = C [a(P )T + ( - a)(Pi)2

The possible stimulation levels thus form a convex set.

it would be to our advantage to make this sub-set as large



- 32 -

as possible.

result.

CORROLARY 8:

Proof:

We are limited in our attempt to do this by the next

The subset of stimulation levels possible with arbi-

trary non-negative spectral distribution is itself

convex, and bounded by the stimulation levels pro-

duced by monochromatic light-sources.

This follows from the fact that arbitrary non-nega-

tive spectral distributions can be thought of as

sums of scaled monochromatic spectral distributions.

That is,

s(X) = f 1 S(X') 6(X' - X) 6V'

The set of stimulation levels that can be produced using three

fixed light-sources is clearly a subset of this set. To make it

as large a subset as possible, one ought to use monochromatic

light-sources if possible, since these produce stimuli lying on

the boundary of the convex set. There is however no set of mono-

chromatic light-sources which will make the subset of stimulation

values covered by the image generation system equal to the set of

all possible stimulation levels (this is a result of the overlap

of human spectral response curves).

A very large portion can be covered however by choosing a source

from the short end of the spectrum (between 400 nm and 460 nm), one

near the middle (between 500 nm and 540 nm) and one near the long
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wave-length end (betwen 620 nm and 700 nm). Unfortunately, there is

a further constraint: at the extremes of the visible region of the

spectrum, the eye is relatively insensitive, and large light-source

intensities are needed to produce given stimulation levels. For

this reason, the phosphors used in- color television represent a com-

promise between a desire to cover as large a gamut of stimulation

levels as possible and the need to produce adequate screen bright-

ness [ ].
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USING MORE THAN THREE LIGHT-SOURCES

In order to span a larger range of possible stimulation levels,

one may chose to use more than three light-sources in the projector.

Clearly non-negative intensity levels still create a convex subset

of stimulation levels, but this subset can be made larger than it

would be with only three light-sources. If we have n light-sources,

the vector (Pi)T of outputs to the projector will have n components

and we can write, much as before

(EQ) T = C (Pi)T

where C however is no longer square. That is, we have n > 3 unknowns

and only three equations. The solution (P i) is clearly non-unique

and many light-source amplitude combinations will produce the same

stimulation levels.

Any solution can be expressed in terms of a generalized

inverse X of the matrix C [pg. 2, B-I]. That is, if C X C = C, then

C(P )T = (Ei)T has a solution only if C X (E!)T = (Ei)T , in which

case the general solution is,

(Pi)T = X (E.)T + (I - X C)(Y 1 )T

where (Yi)T is an arbitrary vector.

To pick a particular one of this set of possible solutions, one

may look for the one with the minimum norm, where the norm may be

defined as the sum of squares of the image generator inputs or
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(Pi)(Pi)T. This solution can be found using the pseudo-inverse

[pg.113, ] of the matrix C (see lemma 8 in the appendix).

(Pi)T = (CTC)-1 CT(E!)T

Or,

(Pi)T = (CTC)
-1 CT A-I (Ri)T

While this solution fits in nicely with our system so far if we

simply let B = (CT C)1 CT A- , it does not guarantee non-negative

outputs to the projector for all points in the convex subset availa-

ble to us.

Introducing the non-negativity constraints on the image genera-

tor control inputs leads naturally to a linear programming problem

which will be discussed next.

THEOREM 5: The problem of the determination of suitable image gen-

erator control inputs when there are more than three

light-sources can be posed as a problem in linear

programming. For given stimulation levels of the re-

ceptors of the observer, only three of the light-

sources need be used at a time.

Proof: Three linear constraints must be satisfied in order

for the stimulation of the receptors in the ob-

server's visual system to be correct,
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(E )T = C(Pi)T

Further, there are n inequalities of the form Pi z 0.

In order to pick one of the many possible solutions,

one may introduce a cost function,

n
c k.P.

i=1

A convenient example would be a cost function equal to

the total energy used by the light-sources (i.e., ki = 1

for all i). The solution which minimizes the cost func-

tion can be found by standard linear programming tech-

niques [ ].

A feasible solution is any solution which satisfies the linear

constraints and the non-negativity constraints. A basic solution is

a solution which contains only m non-zero variables, where m is the

number of structural constraints (three in this case). An optimal

solution is a feasible solution which minimizes the cost-function

[pg. 94, 1. The fundamental theorem of linear pro-

gramming states that if there is an optimal solution, then there

is a basic optimal solution. This implies that an optimal solution

can be found in which only m variables are non-zero. In the situa-

tion here this simply means that a given set of stimulation levels

of the observer's visual system can be achieved using no more than

three of the light-sources at a time.
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FINDING AN INITIAL BASIC FEASIBLE SOLUTION

Before one can apply the well-known SIMPLEX method for solving

this linear programming problem, one must find some basic feasible

solution. Usually, for problems with the constraints given in the

form of inequalities, this is straightforward since the "slack

variables" can be used. In this situation, however, since the three

constraints are equalities, it is necessary to introduce so-called

"artificial variables", Al, A2 and A3 [ pg 132, ].

To obtain the initial basic feasible solution then, one first solves

a new linear programming problem of the form,

C11 P1 + l2 P2 + .... ClnPn + Al = E1

c21 1 + c22 P2 + .... C2nPn + A2 = E2

c31 P1 + c32 P2 + .... C3nPn + A3 = E3

with cost-function

3
E A.

i=l i

This problem obviously has basic feasible solution Al = El, A2 = E2
and A3 = E3 . If the original problem has a feasible solution, mini-

mization of the cost-function will lead to a solution with Al = A2
A3 = 0 and consequently result in a basic feasible solution of the

original problem. One may elect to simply stop at that point, since

a set of light-source intensities has been found which will produce

the desired stimulation of the receptors in the observer's visual
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system. Alternatively, one can continue to minimize the new cost

function. The overall computation is not very lengthy, since the

simplex method takes between m and (3m/2) pivoting steps typically

[ ], and here m = 3.

Note further, that in practice image generator inputs also

have upper limits, that is, there is some maximum intensity that

each light-source can produce. These constraints too can be in-

corporated in the linear programming formulation quite easily, with

come increased computation. It is clear however that the computa-

tion of image generator inputs from image sensor outputs is begin-

ning to be a bit more complicated now and can no longer be carried

out by direct connections, simply gain factors or even linear gen-

erators.
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REPRODUCING REPRODUCTIONS

The system described so far will clearly correctly reproduce

reproductions, that is, images produced by a similar system. It

is possible to do this with a simpler system however, since the

input sensors do not now have to deal with arbitrary spectral dis-

tributions. In fact, the space of possible input spectral distri-

butions is finite dimensional. It will be shown that a system for

duplication need not have spectral response curves which are linear

transforms of the spectral response curves of the human visual system.

This is of great practical significance, since many duplication

steps typically lie between original and the image finally presented

to the viewer. The final result would be poor indeed, if at each

stage the image was further degraded by our inability to build image

sensors which have response curves that are exactly equal to some

linear transform of those of the human visual system. At the same

time, this is the root of considerable confusion, since such systems

can be designed around any convenient sensor response curves and

image generator spectral curves, while the system viewing the original

image must be quite special as has been shown.

THEOREM 6: For the reproduction of reproducttons, the spectral

response curves of the image sensors need not be linear

transforms of the spectral response curves of the human

visual system.

Proof: Consider an image made by superimposing various amounts
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of light from three light-sources. Let the spectral outputs

of the light-sources be f (1), f2( ) and f3(X), and their

intensity Fl, F2 and F3.

Then the spectral distribution of light intensity of the

input to our system will be,

3
s(X) = z Fifi(X)

i =1

Consequently, the image sensor outputs will be,

3
R. = s*r. = z F.f.ir. or (R.)T = H(F.)T

where the matrix H has elements h.. = ri.f.. Similarly
3 :1 T3 T

3
E. = s-e. = j Fi.f..e or (E.)T= G(F.)T

i=l

where the matrix G has elements gij = ei.f . Clearly then

(Ri)T = H G-1 (Ei)T or (Ei)T = G H 1 (Ri)T

That is, we can determine (Ei )T from (Ri)T even when the

ri are not linear transforms of the e . So the previous

analysis applies if one lets A = H G-

COROLLARY 9: If the image presented as input to the reproduction

system was originally made on the system used now to

reproduce it, then the linear transform takes on a

particularly simple form. That is, B = H-l

Proof: In this simple case, fi = pi', and so G = C. As a result
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(Ei) T = C B A (E)T = C B H CC1 (Ei)T

So that, if C is non-singular

C- l C (E=)T  B H (Ei)T

Since C-1 C = I, B H = I for exact reproduction.

That is, B = H-1

Note: Curiously in this case the system can be designed without any

reference to the spectral response curves of the observer! That is,

B can be found from H, which does not depend on the observer's visual

system in any way. The reason this is possible is that this system

can actually duplicate the exact spectral distributions of intensity

at each image point, since the light-sources it uses are just the

same as those used to make the input image

If H happens to be diagonal, that is, if each sensor is care-

fully designed to pick up only one of the image generator inputs,

then B can be diagonal. This usually can be achieved only with

rather narrow sensitive band-widths and if there are regions of

the spectrum where only one light-source contributes.

All these conditions are quite restrictive and unlikely to be

met in practice, yet this corresponds to a technique used quite

commonly for reproduction of photographic transparencies, where the

film carrying the new image is exposed successively through three

narrow-band filters with the old image.
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A SYSTEM WHICH USES CONTROL OF DYE CONCENTRATIONS FOR REPRODUCTION

We next turn to a somewhat more complicated (and non-linear)

case where three layers are superimposed, each with a different

absorbing dye whose concentration can be controlled on a point-by-

point basis (see fig. 5). Photographic transparencies certainly

fit this description. If we let pi(x) be the transmission of unit

concentrations of one of the three dyes, and Ci the actual concen-

tration of this dye at a point, then the overall transmission

T(x) of the sandwich is

3 C.
T(x) = [p.(x)]

Sometimes it is more convenient to calculate the density instead,

where the density is the logarithm of the inverse of the transmission.

3
D(W) = z Cj log10 [1/pj(x)]

j=l

Thus the overall density is a linear combination of the densities

of the individual dyes at unit concentration. This however helps

little when one is calculating the stimulation levels in the ob-

server's visual system when (s)he views the transparency using a light-

source with spectral distribution 1(x)

XA 3 C.
E = /xo p j(x)] 1(x) ei(x) dx

The stimulation levels are clearly related to the dye concentrations

in a quite non-linear fashion, and the inner-product notation in-
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troduced earlier is of little help in analyzing this situation.

While we can still produce a three-dimensional range of stimulation

levels, it is difficult to determine without some computation what

concentration levels (Ci)T are required to achieve a particular

observer stimulation, (Ei)T
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AN IDEALIZED MODEL FOR PHOTOGRAPHIC TRANSPARENCIES

In order to get some ideas of how to pick the dyes and how to

control them, one can select conditions which will linearize the

model to the point where previous methods for producing input

controls to the image generation system apply. To do this, the

following constraints must be applied:

1. To avoid multiplicative interactions between the

three layers, at most one dye should absorb at a

given wavelength. That is, if pi(x) < 1, then

pj(X) = 1 for i f j.

2. In order to be able to produce "black" or very

low transmission at all wavelengths, at least one

dye should absorb at a given wavelength. That is,

for every X, at least one of the pi(A) is less

than 1.

These two conditions together imply that exactly one dye will absorb

at a given wavelength. We can consequently divide the visible region

of the spectrum into three sets, Al, A2 and A3, such that pl(X) < 1,

for XeA1, while p2(X) < 1 for XeA 2 and p3(x) < 1 for XEA3 '

3. To ensure that each dye affects each of the three

Simage sensors in constant proportion independent

of concentration, the transmission should be a con-
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stand less than one, for those wavelengths

where it is not equal to one. Let this

value be pio for unit concentration of the

ith dye (see fig. 6).

4. Finally the inputs to the image generator

system must be transformed logarithmically

to achieve linear control. That is, let

Ci = log (Pi)/log(pio).

We can now calculate the transmission of the sandwich. If

XeAi, then

T(x) = [pio lo g(Pi )/l og(pio) = Pi

It is

12( ))

Then

now convenient to split l(x) into three functions 1(),

and 13(), where li(x) = l(x) if XhAi and li(x) = 0 otherwise.

l(x) = c

The stimulation levels can be calculated as follows:

E! = fXo T(x) 1(x) e (x) dx

x, 3
Ei = E P.jlj() e.(X) dx

3
I = . l. -ei P
E l
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That is,

(EI)T = C (Pi)T

where, the matrix C = (cij) and cij = ei-. Note that 1. here

corresponds to Pi in the model that was analyzed earlier. Finally,

the model has been idealized to the point where our previous methods

apply directly. This has been achieved mostly by hypothesizing rather

special dye-transmission curves which de-couple and linearize the

system.

It should be noted that in practice dyes definitely do not bbey

the above mentioned restrictions and that as a result one ought

to use the more precise model if accurate color reproduction is the

goal. What is more, photographic film has further deficiencies which

invalidate even the idealized model analysis. First of all, each

sensitive layer is directly coupled to a dye layer, and no provision

is made for cross-coupling as required in implementing the linear

transform matrix B. Secondly, the spectral sensitivity curves of

the photo-sensitive chemicals are not linear transforms of the

human spectral response curves. Thirdly, the dye densities are not

linearly related to image intensities -- in fact the reproduction

invariably has higher contrast than the original. It is perhaps

a little astonishing that one nevertheless finds color transparencies

very pleasing!
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DUPLICATING PHOTOGRAPHIC TRANSPARENCIES

After the slightly pessimistic results of the previous section

it is perhaps worthwhile to point out that once again duplication

can be performed with fair fidelity despite all the difficulties

in reproducing arbitrary colored images. That is, despite the

peculiar changes in the transmission of the layered film with changes

in the concentrations of individual dyes, it is quite straight-

forward to determine the concentration of individual dyes. This

follows from the linearity of the equation for density. Assume

that one may use mono-chromatic light-sources of wavelength xl'

X2 and x3 to sample the film, then one obtains a number of measure-

ments of film density,

3
Dj = E Ci loglO[l/Pi(xj)

i=l 1

If we define a matrix T = (t i), where tij = logl 0[l/pi(xj)], then

(Di)T = T(Ci)T

If this matrix T is non-singular we can obtain the concentrations

quite easily from the measured densities at the three test wave-

lengths, using T-l1. Note that we effectively use image sensors

with very narrow band sensitivities, quite unlike the general case,

where we are forced to look for image sensors whose spectral response

curves are linear transforms of the human spectral response curves.

By choosing the dyes carefully, it may further be possible to
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arrange for the matrix T to be diagonal by proper selection of the

test wavelengths. That is, concentrations of one dye can be deter-

mined directly using density measurements at those wavelengths at

which the other two dyes are transparent.

Further, it may be possible to arrange for the sensitive chemi-

cals in the film which is to carry the reproduction to be separately

sensitive to the three test wavelength. In this case accurate

duplication can be achieved (within the limits of non-linearity and

non-repeatability of photographic materials) simply by exposing the

film with an image of the original successively through three

narrow-band filters.
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A SYSTEM WHICH USES CONTROL OF THE FRACTIONAL AREA COVERED BY INKS

Instead of controlling the concentration of the dyes on a

point-by-point basis as in photographic methods, we may use dyes

or inks of fixed concentration and instead vary the fraction of the

surface covered with each ink. This may be attained by varying

the dot size of ink-dots spaced in a regular pattern. This of

course is the method used in lithographic reproduction of colored

material. First consider a single ink. Assume that the transmission

of the ink is pi(x) and that a fraction Ai of the area is covered

with the ink. If this dot-pattern has been applied to a substrate

of reflectance R o(), the average reflectance will be

R(x) = Ro () [(1 - Ai ) + Ai pi.()]

This is so since a fraction Ai of the surface is covered with ink,

while a fraction (1 - Ai) is bare. The dots are usually spaced

such that they are near the limits of resolution at normal viewing

distance, and the dots corresponding to different inks lie on rasters

which are rotated relative to one another to avoid the appearance

of repeating patterns. The result is that dots of different inks

overlap in different ways in various regions of print. Consequently,

one may calculate the average reflectance of the completed print by

multiplying the substrate reflectance and the transmission of each

of the ink layers.



- 50 -

3
R(X) = R (]) [(1 - Aj) + Ap (X)]

S ~j = 3 A33

An alternate way of arriving at the same result is based on

a calculation of the fractional areas covered by none of the inks,

each of the inks in turn,.two inks and finally all three inks

(see fig. 7). We can now proceed to calculate the stimulation

levels, given that the print is illuminated by a light-source

with spectral distribution 1(x),

Al 3
EI =  oj i[(1 - A ) + Ap (.)] R (X)l(x) e.(x) dx

Once again it is clear that the stimulation levels are related to

the fractional area coverage factors in a non-linear fashion.

We can certainly produce a three-dimensional range of stimulation

levels, but it is non-trivial to determine what fractional area

coverage values, (Ai)T, will produce a particular set of stimulation

levels, (Ei)T
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AN IDEALIZED MODEL FOR LITHOGRAPHIC REPRODUCTION

Here again we may approximate the non-.linear model to get

some ideas on appropriate choices for the inks and methods of

control. To do this, the following constraints must be applied:

1. To avoid interactions between the effects of

the three printers, at most one ink should absorb

at a given wavelength.

2. In order to be able to produce "black" or very

low reflectance at all wavelengths, at least

one ink should have zero transmission at a given

wavelength.

These two conditions imply that exactly one ink will absorb

at a given wavelength, and that it will absorb completely. Once

again we can divide the visible spectrum into three regions A1,

A2 and A3, such that one dye absorbs in each region (see fig. 8).

3. Finally, the inputs to the image generator are

complemented, that is, let Ai = 1 - Pi.

Then, if XcA i,

R(X) = R (.A)P i

It is convenient again to define a set of functions li(A), in this

case equal to Ro () 1(x) if XeA i, and equal to zero otherwise. Then,
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3
Ro(A) 1(X) = Z I (A)

The calculation of the stimulation levels proceeds as follows,

11
E = fXo R(X) 1(x) ei(X) d x

xz 3
E = o P. - (x) ei(x) d X

3
E 1 .e.P.

Sj 31 j

That is,

(EP)T = C(Pi)T

where C = (c..ij) and cij = ie.*•j

Note that again the spectral distribution Ii corresponds to

the light-source spectral output Pi in the first model that was

analyzed.

Finally then, the model has been idealized to the point where

our previous analysis applies. In order to do this, rather drast-

ic assumptions had to be made regarding dye transmission functions.

For exact reproduction the more precise model shown earlier must

be used instead.
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COLOR SEPARATION PHOTOGRAPHY AND MASKING

Modern lithographic reproductions of colored originals are of

remarkably high quality. An important factor in achieving this high

quality has been the realization that color separations photographed

through three different filtersshould not be used directly to pro-

duce the offset plates. Instead each plate is made from a combina-

tion of the separations by a technique called "masking" [ ].

The most commonly used method depends on the superposition

or "masking" of the film with a negative made by exposure through

one filter, while the film is being exposed through another filter.

Ignoring the nonlinearities of the photographic process, this

corresponds to subtracting a fraction of the image made through

one filter from another. By controlling exposure times and thus

film densities, various amounts of "subtraction" can be achieved.

Each final plate is as a result (approximately) a linear combination

of the original images obtained through the three filters. That is,

the dot-sizes at corresponding points in the three plates repre-

sent (approximately) a linear transform of the image intensities

of the three filtered images.

This linear transform corresponds to the matrix B = (AC)-1,

which is needed between the image sensor outputs and the image

generator inputs in the idealized linear model. Masking thus ac-

counts for the off-diagonal terms in the matrix B, which in turn are

a function of the filter curves, the spectral response curves of
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the human observer and the (idealized) ink transmission curves. It

is often (falsely) stated that masking is required to deal with

imperfections in the ink transmission curves -- whereas it has

just been shown that masking is required with "ideal" inks.

Imperfections in the ink, in terms of departures from the ideal

model presented in the previous section, are not taken care of by

masking. As a result of the non-linearity of the general case,

reproduction can only be exact for a small number of ink combinations,

and will be approximate for others. In fact, the masking variables

(the exposure time required for each "mask") are usually determined

empirically by using a standard original with several color patches.

The exposures are adjusted until these are reproduced correctly.

The color patches usually include the three printing inks, three

patches in which two inks are superimposed and three or so "neutral"

colors (white, gray and black).

Note, that as a result, the system is actually tuned for dupli-

cation. As was shown earlier, this is satisfactory for reproduction

of arbitrary originals only if the input sensitivity curves are

linear transforms of the human spectral response curves. In some

cases it may be satisfactory to tune the system instead to reproduc-

tion of a particular kind of input material, for example, a particular

make of photographic film [ ].

This discussion of masking has of necessity been over-simplified

and has ignored such techntques-s highlight pre-masking and unsharp
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masking, techniques which help overcome the non-linearities and

dynamic range limitations of the process.
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COMPUTATIONAL METHODS

For each of the models of image reproduction systems pre-

sented, an expression was exhibited for the stimulation of the

observer's visual system as a function of the control inputs to

the image generators. The three expressions were:

3 X1
E. =  • P. f Pj(.X) e(X) dx

=i 3 C
El f fi [pj(x)] 1(X) e.i() d x

X, 3
E = Jo [(1 - A.) + Ajpj ()] R (X) 1(X) el(x) d x
i 0 j=i

The control inputs are (P i)T -- the light-source intensities,

(Ci)T -- the dye concentrations, and (Ai)T -- the fractional areas

covered by ink. Only in the first case is it possible to solve

directly for the control inputs given the desired observer stimula-

tion levels (Ei)T. In the other cases, one has to resort to trial-

and-error or hill-climbing search techniques, unless one chooses

to accept inaccuracies in order to linearize the model. It would

be very inefficient to do this computation afresh every time a

new point in the image is analyzed.

Accordingly, one may imagine performing this calculation ahead

of time and recording the results in some sort of look-up table.

This implies however that only a finite number of possible stimulation

levels can be explored and then replicated. That is, the three-di-

mensions have to be quantized suitably. This may be a problem in
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a high quality system, since one might have to divide the intervals

quite finely and the look-up table may become unwieldy. If for ex-

ample it is found that the quality of the process is such that a

hundred divisions are needed along each of the three dimensions,

then the total look-up table would contain a million entries.

Each entry is a set of three numbers to be used as settings for the

control inputs to the image generators. The table is entered at

a location that corresponds to the desired observer stimulation

levels (see fig. 9). This table is quite large, and even with

modern day storage methods may be too costly.

At the expense of slightly increased computation, the table

can be substantially shrunk by using a much coarser quantization

and simple interpolation between entries. If, for example, this

allows one to divide each dimension into only ten intervals, then

the whole table contains only three times a thousand numbers and

can easily be accomodated in a small read-only-memory (ROM) module

for example. Electronics must however then be added to perform the

interpolation, and eight table entries are accessed for every look-

up operation.

If the table is organized with the observer stimulation as its

axes, it will be quite general and work with any image sensing

system, as long as the linear transform A-1 is first applied to the

outputs of the image sensors. Alternatively, the table can be organ-

ized directly with the image sensor outputs as axes. Since not all
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combinations of observer stimulation levels are possible, regions

of the table will be blank. Similarly, not all combinations of

image sensor stimulations will be possible. One may be able to

achieve some storage economy by compacting the table accordingly,

or else using these areas of the memory to store other information.

The entries in the table may be filled in as indicated above

by calculations based on the models. In practice, there are

likely to be discrepancies between the model and reality and it

may be helpful to determine some of the points empirically. In

particular, it is possible that the exact dye absorption curves are

not known, or that interactions among inks take place that are not

modelled. It is however impractical to fill in the whole table

in this way. Techniques may be used for interpolating between em-

pirically determined table entries using the structure supplied by

the equations derived from the model.
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SUMMARY AND CONCLUSIONS

For accurate reproduction of arbitrary colored images, the

image sensor's spectral response curves must be linear transforms

of the spectral response curves of the human visual system. Aside

from this general constraint, a system for the reproduction of

colored images must be. designed in such a way that the image gener-

ators produce the appropriate excitations in the receptors of the

observer's visual system. Three specific systems were analyzed

and the necessary computation of image generator inputs from image

sensor outputs was detailed.

In only one case, color television, could this computation be

accomplished analytically, and in this case it turned out to be a

simple linear transformation. In the other cases studied, photo-

graphic transparencies and lithographic printing, the computations

were straightforward only when simplifications were introduced in

the form of unrealizable dye absorption curves. It was suggested

that point-by-point computation of image generator inputs is now

feasible and this is in fact the only way to achieve accurate re-

production with practical dyes or inks. The well known color separa-

tion and masking operation is seen to be only the linear transform

which applies when inks with idealized absorption curves are used,

and does not deal with "ink-imperfections".

Other topics dealt with, include the proper point for adjustments

to compensate for observer adaptation, the use of more than three
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image generators, and the duplication of colored images. Such in-

exact notions as "primary color", "secondary color" and "comple-

mentary color" were studiously avoided.

These techniques will be of immediate importance where images

are already scanned and transmitted, since the simple table look-

up computation developed here can be easily incorporated in such

a system. These methods will also be of importance when colors

are to be judged in images which are transmitted from locations

inaccessible to (wo)man, such as other planets.
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APPENDIX. Review of some relevant properties of infinite dimensional
vector spaces.

Definition: Let V be a vector-space over a field F. Then the orthogonal

complement AL of a subspace A of V is the set of vectors per-

pendicular to all vectors in A. That is,

AL = {x I x - a = 0 for all aEA}

Lemma 1: If A is a finite-dimensional subspace of dimension n with

basis {ai} in V, then the orthogonal complement A± is the set

of vectors perpendicular to all basis vectors. That is,

A~ = {x x . a = 0 for i = 1 to n}

Proof: If A is finite dimensional, every vector asA can be expressed

as a sum of scaled basis vectors as follows,

n
a = z aia- i = ICli

where the ai are in the field F. A vector x perpendicular to

each of the ai will clearly be perpendicular to any acA. Con-

versely, a vector x perpendicular to each aeA, will certainly

also be perpendicular to each of the basis vectors ai.

Lemma 2: If A and B are subspaces of the vector-space V and A D B, then

A-c B".

Proof: Consider a vector xeAj , then x • a = 0 for all aeA. Since

A D B, this implies that x - b = 0 for all beB as well. There-

fore xeB . Consequently, A c B .
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Definition:

Lemma 3:

The perpendicular projection of a vector veV on a finite

dimensional subspace A is the vector aeA, which is closest to

v, that is, the vector which minimizes (v - a) - (v - a).

The perpendicular projection of a vector veV on a finite di-

mensional subspace A is the vector a given by

n
a= E a.a.

- i=l 1~
T -1 )T

where (a.) = M1 (v a.)1 - -1

Here {ai } is a basis for A and M = {mij. is the symmetric Gram

or normal matrix, with mij = ai a•

We wish t6 minimize (v - a) (v - a) = v • v - 2a • v + a - a.

That is,

n n
v - v - 2 z ai(v * a i ) + Z

i = 1 ~ =1

n
E aij (ai .aj)

j=l 1

That is, (v • ai)T = M(i.)T. The result follows, since the basis

vectors are linearly independent and M is therefore nonsingular

and consequently has an inverse M-l

If a is the perpendicular projection of the vector veV on the

finite dimensional subspace A, then x = v - a is in AP.

From the previous lemma we have

n
v a E a (a. ai k) = a ak k

So, - a) a= 0 for k = 1 to n. So x = (v - a)eA .

If A is a finite dimensional subspace of dimension n of the

vector-space V, then any vector vcV can be written as the sum

of a vector aeA and a vector xEAe (that is, V = A 9 AL, the

Proof:

Lemma 4:

Proof:

Lemma 5:
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direct sum of A and As).

Proof: This follows directly from the previous two lemmas if we let

v = a + x, where a is as defined in lemma 3 and 4 as in lemma

4. (It is also clear that the decomposition into a vector in

A and a vector in A± is unique).

Lemma 6: If B = A' is the orthogonal complement of a finite dimensional

subspace A and x - x = 0 implies x = 0 if xEB, then the orthogonal

complement of B is A. That is, (A')' A.

Proof: Consider veBR . By the previous lemma we can decompose v into

a sum a + x, where aeA and xeAk . Then,

v x (a+x) x=a x + x x

Now v • x = 0, since xeB and veB+. Also a * x = 0, since aEA

and xeA . Therefore x - x = 0. By assumption this implies

that x = 0. Therefore v = a, and so veA. Therefore B' = A

or (AW)' = A.

Lemma 7: If A and B are finite-dimensional subspaces of a vector-space

V, of equal dimension n, say, and AC B, then A = B.

Proof: If A is finite dimensional, there must exist a set of n linearly

independent vectors {ai}, which span A. If AC B, then these

same n vectors are also in B. Since any n linearly independent

vectors in B will form a basis for the vector space B, these

vectors will. That is, B is spanned by the vectors {ai}.

Therefore A = B.

Lemma 8. Let A be an n x m matrix with n < m, then the underdetermined set

of equations A xT -= T has a solution of minimum norm of the
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form,

x = (AT A)-1 AT yT

if ATA is non-singular. The norm being minimized is x xT

Introduce the Lagrangian multiplier x say and minimize,

x xT + x(A xT -

= x xT + X(x AT

= x xT + (x AT

T)T (A xT - T)

- y)(A xT - yT)

A xT - y A xT - x AT yT + yT)

Differentiating with respect to x,

xT + T + X[(AT A xT) + (x AT A)T _ (A)T (ATyT) + 0]

Dividing by two and setting the result equal to zero,

T + x(ATAxT - A T) = 0

If this is to hold as x becomes very large, then,

AT A xT - AT yT = 0

If ATA, a n x n matrix, is non-singular, we have,

xT = (ATA)-l AT T

The m x n matrix (AT A)-1 AT is called the pseudo-inverse of A.

Proof:
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