
Quick Review of Eigenvalues and Eigenvectors

The relationship between errors in measurement and corresponding er-
rors in parameters estimated using those measurements often depends
on properties of a matrix — in particular the eigenvalues and eigenvectors
of that matrix. Here is a quick review of some of the relevant facts.

Consider an n×n symmetric real matrixM . The vector e is an eigen-
vector with eigenvalue λ if

Me = λe

Note that if e is an eigenvector then so is ke for any non-zero k. Hence
the magnitude of these vectors is of no significance, and we may as well
use unit vectors when it is useful to do so.

To solve the above equation for the eigenvectors and eigenvalues of
the matrix M , we can rewrite it in the form

(M − λI)e = 0

where I is the n×n identity matrix and 0 is a vector of zeroes.
This set of linear equations is homogeneous since the constant term

in each equation is zero. If we can invert (M − λI), then we can multiply
this inverse by 0 to obtain the “trivial” solution 0 for e. The only way
non-zero solutions are possible is if the matrix is singular, that is, when

det(M − λI) = 0

The determinant can be written as a sum of terms, each of which is a prod-
uct of matrix elements, one from each row. Since λ occurs in the elements
on the diagonal, terms of up to order n in λ may occur in these products.
So the determinant is a polynomial of order n in λ. This polynomial will
have n roots. We will assume that these roots are distinct.

As a simple illustrations, consider the 2× 2 real symmetric matrix(
a b
b c

)

Its eigenvalues can be found by finding the roots of

det

(
a− λ b
b c − λ

)
= 0

that is,
λ2 − (a+ c)λ+ (ac − b2) = 0

The two roots are,

λ+,− = (a+ c)± √(a− c)2 + 4b2

2
or, if we let d = √(a− c)2 + 4b2, then

λ+,− = (a+ c)± d
2
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If λ+ and λ− are the values with the + and − sign respectively in front of
the square-root, then λ+ > λ−.

Corresponding to each eigenvalue λi will be an eigenvector ei ob-
tained by solving the set of n homogeneous linear equations

(M − λiI)ei = 0

One way to find an eigenvector is to note that it must be orthogonal to
each of the rows of the matrix (M − λiI).

Again, as a simple illustration, consider the 2× 2 real symmetric ma-
trix above. We have to solve(

a− λ b
b c − λ

)(
x
y

)
=
(

0
0

)

A vector orthogonal to the first row is given by(
−b
a− λ

)

The two eigenvectors can now be determined by substituting the values
λ+ and λ− determined above. Similarly, a vector orthogonal to the second
row is (

c − λ
−b

)

The two apparently different directions for the eigenvector are actually
the same if λ is an eigenvalue, since then b/(a− λ) = (c − λ)/b.

The eigenvectors can thus be written in either of the forms(
2b

(c − a)± d

)
or

(
(a− c)± d

2b

)

The magnitude squared of the first form is 2d(d ± (c − a)), while the
magnitude squared of the second is 2d(d±(a−c)). The unit eigenvectors
can thus be written in either of the forms:

1√
2d
√
d± (c − a)

(
±2b

d± (c − a)

)

or
1√

2d
√
d± (a− c)

(
d± (a− c)

±2b

)

In each occurence of± the plus sign is chosen when the plus sign is chosen
in the expression for the eigenvalue, while the minus sign is chosen when
the minus sign is chosen in the expression for the eigenvalue. Any non-
zero multiple of these vectors is, of course, also an eigenvector (Note that
the two forms happen to give opposite directions when b < 0).
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Next, consider

(Me1) · e2 = (eT1MTe2)T = (eT2Me1) = (eT2MTe1) = (Me2) · e1

Now
(Me1) · e2 = λ1e1 · e2

while
(Me2) · e1 = λ2e2 · e1

Consequently,
λ1e1 · e2 = λ2e1 · e2

or
(λ1 − λ2)e1 · e2 = 0

which implies that e1 · e2 = 0, if λ1 �= λ2. That is, eigenvectors corre-
sponding to distinct eigenvalues are orthogonal.

The above argument does not guarantee orthogonality of eigenvec-
tors if a root of the polynomial has multiplicity two. In this case, any
vector in a plane is an eigenvector, and we can arbitrarily pick two or-
thogonal vectors in that plane as eigenvectors. The same method can be
used with roots of higher multiplicity to obtain a set of mutually orthog-
onal eigenvectors.

Since the n eigenvectors of an n × n real symmetric matrix are or-
thogonal to one another, they form a basis, and can be used to express an
arbitrary vector v in the form

v =
n∑
i=1

αiei

for some set of αis. Now

v · ei =
n∑
j=1

αj(ej · ei) = αi

since ei · ej = 0 unless i = j. We conclude that αi = v · ei. Next we see
that

Mv =
n∑
i=1

αiMei =
n∑
i=1

αiλiei

We see that the eigenvalue λi specifies how much a component of the
vector v in the direction of the corresponding eigenvector ei is “amplified”
when multiplied by the matrix M .
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Next, note that

v =
n∑
i=1

(v · ei)ei =
n∑
i=1

ei(ei · v) =
⎛
⎝ n∑
i=1

eie
T
i

⎞
⎠v

We conclude that we can write the identity matrix in terms of a sum of
dyadic products of eigenvectors:

I =
n∑
i=1

eie
T
i

We can write the matrix M also in terms of a sum of dyadic products:

M =
n∑
i=1

λieieTi

This can be verified by multiplying M by each of the eigenvectors ej :

Mej =
n∑
i=1

λieieTi ej = Mej =
n∑
i=1

λiei(ei · ej) = λjej

since (ei · ej) = 0 unless i = j.
Finally, we can write the inverse of the matrix M also in terms of a

sum of dyadic products:

M−1 =
n∑
i=1

1
λi

eie
T
i

This expression can be verified by premultiplying it by M .

MM−1 =
n∑
i=1

λieieTi
n∑
j=1

1
λj

eje
T
j =

n∑
i=1

n∑
j=1

λi
λj

eie
T
i eje

T
j =

n∑
i=1

eie
T
i

which is the expression for the identity matrix I given above. The same
result is obtained when postmultiplying by M .

If computation of estimates of unknown parameters depends on solv-
ing linear equations, then clearly small eigenvalues of the corresponding
coefficient matrix present a problem since they lead to large amplification
of measurement error.

Importantly, error amplification may differ in different directions of
parameter space, with results along some directions sometimes being
quite stable even when results along other directions are not.

In the case of optical flow, for example, the component of motion in
the direction of the brightness gradient is locally well defined, while the
component of motion along the isophotes is not. This can be shown by
analysis of the eigenvectors and eigenvalues of the 2× 2 matrix( ∫ ∫

E2
x dx dy

∫ ∫
ExEy dx dy∫ ∫

EyEx dx dy
∫ ∫
E2
y dx dy

)

when Ey : Ex is constant in the region of integration.


