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Abstract: In this paper, we show that there exist images that could not have arisen from

shading on a smooth surface with uniform reflecting properties and lighting. Much work

has been done on recovering surface shape from images and there has been some attention

paid to the question of uniqueness. It has been shown, for example, that singular points and

occluding boundaries often curtail ambiguity. But little has been said about the existence

of solutions, perhaps because in practice the given image is assumed to have arisen from a

uniform, smoothly curved surface, and so one knows that there must be at least one solution.

What if, however, the reflecting properties of the surface vary from place to place? What if

the actual surface does not reflect light the way one has assumed, or the light source is not

where it was thought to be? Will the solution only be warped by these departures from the

ideal model, or may there in fact be situations where there is no smooth surface that could

have given rise to the given shading pattern? Can the fact that a shaded image of some surface

with spatially varying surface reflectance is impossible in this sense be used to detect surface

albedo variations?



1 Introduction

The problem of shape from shading has a history almost as long as that of computer

vision itself [13]. Aside from the development of algorithms for recovering shape from

shaded images, some attention has been paid to the problem of uniqueness of the solu-

tion. It has been shown that singular points of brightness in the image (corresponding

to isolated global extrema in the reflectance map) play an important role in limiting the

number of possible solution surfaces [4] [5] [3] [2] [19].

So far little has been said, however, about the existence of solutions (but see [19]).

Surfaces with continuously varying surface orientation give rise to shaded images. Are

there brightness patterns that could not have arisen this way? Can such impossible

shaded images be detected directly from their brightness patterns without explicitly

solving the shape from shading equations? We show here that this is indeed the case.1.

In this paper we will assume that the distribution of light sources and the reflecting

properties of the surface are known and that the reflecting properties of the surface

are uniform. We also assume that the surfaces are smooth, by which we will mean that

they have continuous first derivatives.

2 Reflectance Map and Image Irradiance Equation

The brightness at a point in the image, the image irradiance is proportional to the

brightness of the corresponding point on an object, the scene radiance[11]. The latter

depends on: (a) the reflecting properties of the surface material, (b) the distribution

and intensity of the light sources, and (c) the surface orientation.

Surface orientation has two degrees of freedom and can be specified in several

different ways. The slopes p = (∂z/∂x) and q = (∂z/∂y) in two orthogonal direc-

tions are convenient for this purpose, where z(x,y) is the height of the surface above

some reference plane perpendicular to the direction of projection of orthographic im-

age formation2. Surface orientation may also be specified by means of the unit nor-

mal, which can be obtained from the components of the gradient, p and q, as follows:

n̂ =
(
(−p,−q,1)T/

√
1+ p2 + q2

)
.

The reflectance map R(p, q) gives scene radiance as a function of surface orientation

1This work arose from a conjecture by one of us. Following initial confirmation of the conjecture
by the co-authors and others (see acknowledgments), we received note of work by Oliensis [17] that
demonstrates that small fluctuations in intensities could indeed make most surfaces “impossible.”

2The shape-from-shading problem can be formulated in the case where the imaging system performs
a perspective projection [18], [7], and when the light sources are near the objects being viewed, but this
makes the analysis harder, since scene radiance then depends on position as well as surface orientation.
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and encodes information about both the surface reflecting properties and light source

distribution [10]. It can be computed given the bi-directional reflectance distribution

function (BRDF) [14] [11] or determined experimentally using the image of a calibration

object.

The (normalized) image irradiance equation is E(x,y) = R(p(x,y), q(x,y)), where

E(x,y) is the image irradiance at the point (x,y) in the image, while p(x,y) and

q(x,y) are the partial derivatives of z(x,y) at the corresponding point on an object

in the scene [10], [11].

The shape-from-shading problem is that of recovering the surface z(x,y) given the

image E(x,y) and the reflectance map R(p, q). The image irradiance equation can be

viewed as a first-order non-linear partial differential equation, and so can be solved

using the method of characteristic strips [7], [9], [11].

2.1 Phenomenological Models of Reflection

Some of the impossible images we will present depend on particular properties of a class

of reflectance maps, such as rotational symmetry. At other times it is useful to have a

very specific reflectance map in mind, such as that of a Lambertian surface under point

source illumination. Let us consider a simple imaging situation where we are dealing

with an idealized surface material that satisfies two conditions: (a) it appears equally

bright from all viewing directions, and (b) it reflects all incident light. Such a surface

is called an (ideal) Lambertian surface and it can be shown that when illuminated by a

single light source it satisfies Lambert’s cosine law [11]. In this case brightness depends

on the cosine of the incident angle, the angle between the incident rays and the surface

normal, and is independent of the direction towards the viewer. If there is a single light

source in the direction given by the unit vector ŝ =
(
(−ps,−qs,1)T/

√
1+ p2

s + q2
s

)
, then

we use the fact that the cosine of the incident angle is equal to (n̂ · ŝ) and so obtain the

rotationally symmetric (normalized) reflectance map

R(p, q) = max


0,

1+ psp + qsq√
1+ p2 + q2

√
1+ p2

s + q2
s


 .

A particularly simple case arises when the light source lies in the same direction as the

viewer, that is, when (ps, qs) = (0,0), for then R(p, q) = (1/
√

1+ p2 + q2). This special

case can be used when a concrete example of a rotationally symmetric reflectance map

is needed with brightness decreasing monotonically with surface slope s, where s =√
p2 + q2.
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3 Impossible Shaded Images

3.1 A Circularly Symmetric Dark Blotch

Suppose we are given the image

E(x,y) =
{

1/
√

1+ cos2 r , for r < π/2;

1, for r ≥ π/2,;

where r =
√
x2 +y2 (shown in Figure 1), with reflectance map

R(p, q) = 1√
1+ p2 + q2

.

Then there is a “solution”

z(x,y) =
{

sin r ; for r < π/2;

1; for r ≥ π/2.

While this function is smooth almost everywhere it has a conical singularity at the

origin. Does there exist a solution that has continuous first derivatives everywhere?

The answer is “no,” as we show next (generalizing to an even wider class of impossible

images).

3.2 Compact Dark Blotch on Unit Brightness Background

Suppose we are told that the reflectance map has a unique isolated global maximum of

one at the origin. That is,

R(p, q)
{ = 1, for (p, q) = (0,0);
< 1, otherwise.

In this case a surface facing the viewer directly has brightness one, and surface patches

oriented differently are always darker (as would be the case if the surface was a Lamber-

tian reflector with the light source in the direction towards the viewer). Suppose that

image brightness is less than one in some simply connected compact region D, while

brightness equals one outside this region, that is,

E(x,y)
{
< 1, for (x,y) ∈ D;

= 1, otherwise.

Note that outside the region D, the surface gradient (p, q) must be zero, since that is

the only gradient for which R(p, q) = 1. If p = 0 and q = 0 in some connected region,
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Figure 1. (a) Cross-section of rotationally symmetric shaded image, (circular) shown in

(b), that could not have arisen from a (smooth) surface with continuous first derivatives,

if we assume that the reflectance map is R(p, q) = 1/
√

1+ p2 + q2.

then surface height z(x,y) must be constant in that region. Now, either the surface

z(x,y) is constant in the region D, or it has at least one extremum there. But the

surface cannot be constant in D, because that would imply that the brightness there

equaled one; so it must have an extremum. The first partial derivatives must vanish

at that extremum since we are assuming that the surface z(x,y) has continuous first

derivatives. But this implies that the brightness at the extremum must be one, which

contradicts the assumption that brightness is less then one everywhere in the region

D. Thus there is no surface with continuous first derivatives that will give rise to the

given image.

We note that a compact dark blotch on a unity brightness background needs to have

at least one interior point where brightness equals one if it is to be the shaded image

of some surface with continuous first derivatives.

3.3 Source not at Viewer

It is possible to extend the result of the previous section to reflectance maps that have

their unique isolated global extremum somewhere other than the origin in gradient

space. Suppose the extremum in the reflectance map occurs at (p, q) = (ps, qs), as

happens with a Lambertian surface when the light source is away from the viewer.
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Then the surface orientation outside the region D is fixed and the surface there planar,

with surface normal

n̂ = (−ps,−qs,1)
T√

1+ p2
s + q2

s

.

We can then use a similar argument to that in the previous section, by using a new

coordinate system oriented with the z-axis parallel to n̂. The only potential problem

arises from the possibility that the point where the surface exhibits an extremum in

the light-source coordinate system may be obscured by another portion of the surface

when seen from the viewing direction. But this can only occur if there is a fold in the

surface, as seen from the viewing direction, and the derivatives of surface height are

discontinuous at the fold.

3.4 Singular Points are not Required

The above examples might appear to suggest that singular points are crucial to the

construction of impossible shaded image examples, since the exterior of the region D
consists entirely of singular points, where surface orientation can in fact be recovered

locally. But this is not so. Consider, for example, a reflectance map that has brightness

one for zero slope, with brightness falling off with slope in such a way that one can

write

f(s) ≤ R(p, q) ≤ g(s) where s =
√
p2 + q2

for two monotonically decreasing function f(s) and g(s) (see Figure 2).

A special case of this is a rotationally symmetric reflectance map with brightness

dropping monotonically with slope. A particular instance of this special case is a Lam-

bertian surface with the source at the viewer, as mentioned above.

Now suppose that there is a compact, simply connected regionD in which the bright-

ness is low, nested inside another compact simply connected region F , outside of which

brightness is high (see Figure 3).

In the part of F that is not in D, brightness makes a smooth transition. That is




0 < E(x,y) < Ei; for (x,y) ∈ D,

Ei ≤ E(x,y) ≤ Eo; for (x,y) ∈ F −D,

Eo < E(x,y) < 1; otherwise.

There are no singular points, since E(x,y) < 1 everywhere, yet, as we show next, we

can chose Ei and Eo such that there is no smooth surface giving rise to this shading.

We have for the slope of the surface inside the region D: s ≥ si = f−1(Ei) while

the slope outside F satisfies s ≤ so = g−1(Eo). Now inside the region F , the slope is

guaranteed to be non-zero, so the surface z(x,y) has a unique non-zero gradient at
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Figure 2. In this generalization, the reflectance map need not be radially symmetric, but

must be bounded above and below by two radially symmetric, monotonically decreasing

functions.

Figure 3. For the impossible image discussed here, brightness is low inside the region

D, high outside the region F , with a smooth transition in the part of F that is not also

in D. A curve of steepest descent can be constructed that passes through the center of

the largest circle that can be inscribed in D. A contradiction is indicated if the change

in height along this curve in the region D is greater than the change of height along the

perimeter of region F .
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every point. This gradient field can be integrated out to yield lines of steepest ascent on

the surface. Such steepest ascent curves cannot cross or terminate in F , and so can be

followed all the way from one point on the boundary of F to another. Such a steepest

ascent curve passing through a point in D, will similarly cross the boundary of D in two

places.

Suppose that w is the diameter of the largest inscribed circle of the region D. Then

the steepest ascent curve passing through the center of this circle must have length

at least w, and hence a change in z from one end to the other of at least wsi. Now

suppose that p is the perimeter of the region F . Then the shortest distance along the

boundary of F between the two points where this steepest ascent curve touches the

boundary is at most p/2, and so the change in z is at most (p/2)so. Given w and p, we

can now chose Ei and Eo, and hence si and so, such that wsi > (p/2)so, which leads to

a contradiction.

(Note: the only reason that two nested regions are needed in this construction is to

allow brightness to vary smoothly in the transition, as it must, since we have assumed

that the first derivatives and hence brightness is continuous.)

3.5 Nested Iso-Brightness Contours

The above construction can be extended to nested iso-brightness contours of monoton-

ically increasing brightness from the inside to the outside.

Suppose that we have a dark blotch in the image that increases monotonically in

brightness from the inside outward, so that one can construct a set of nested iso-

brightness contours for brightnesses 0 < E0 < E1 < E2 . . . < En < 1, where E0 is the

brightness of the darkest point in the image. Suppose that the minimum distance be-

tween the two iso-brightness contours for E = Ei and E = Ei+1 iswi. Note that the slope

of the surface on points lying between these two iso-brightness contours is constrained

by s > si = f−1(Ei+1). Consider the curve of steepest ascent passing through the point

where E = E0. The change in height along this contour between the points where it

crosses the iso-brightness contour E = En is bounded below by δzn > 2
∑n−1
i=0 siwi while

at the same time bounded above by δzn ≤ (pn/2)s̄n, where pn is the length of the

iso-brightness contour E = En and s̄n = g−1(En). We have an impossible image unless

2
∑n−1
i=0 siwi ≤ (pn/2)s̄n for all n. This provides a way of constructing a variety of im-

possible images. It also provides a limit on how dark a blotch on a bright background

can be before it can no longer be interpreted as shading on an inclined portion of the

surface. These topics are explored further in [15].
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3.6 Folds in Riemann Sheets on Gaussian Sphere

Imagine that we have a rotationally symmetric reflectance map that drops to zero at

infinity in gradient space, such as the Lambertian surface with the source at the viewer.

For what we will do next, it is convenient to think of the reflectance map as a function

of position on the Gaussian sphere, rather than as a function of the components of

the gradient. The reflectance map plotted on the Gaussian sphere here has a peak

of one at the “pole,” corresponding to the viewing direction, and drops off to zero at

the “equator,” corresponding to points on the occluding boundary of the object being

viewed3.

Now suppose that we are given an image that has non-zero brightness in the interior

of some compact simply connected region D, with zero brightness on the boundary

∂D of this region. Then the boundary ∂D is a silhouette, that is, the projection of an

occluding contour on the object being viewed. If we assume that surface orientation

varies continuously, there is a mapping from the object’s surface to the surface of the

Gaussian sphere that covers every point in one hemisphere (at least once). We can

see this by noting that for any orientation in the hemisphere, there must be a point

on the surface with that orientation since a plane with that orientation as its normal

approaching from infinity will touch the surface somewhere [6] (If the object is convex,

thisGaussmap is invertible). Note that the occluding boundary maps onto the “equator”

of the hemisphere.

It should, first of all, be clear that there must be at least one point in the image where

the brightness equals the maximum brightness in the reflectance map, since the pole

of the hemisphere must be covered. How many such extrema can there be in the image

of a single object with continuous first derivatives? We can have more than one if the

object is not convex, since the mapping from the surface onto the sphere then folds

over on itself. But every time we fold it over in order to cover the pole more than once,

we add two new places where the surface is oriented for maximal reflection of light.

This suggests that there must be an odd number of bright spots in the image. There

is one exceptions to this rule: If the fold on the Gaussian sphere happens to cross the

pole it will yield only one maximum instead of two. Of course, in this special case, any

slight change in the orientation of the object with respect to the viewer will change this.

So this does not apply if we assume that the viewer is in “general position.”

The other possibility is that the part of the surface carrying one of the two points

happens to be obscured by another part of the object. But in this case the surface

z(x,y) is not a continuous function of x andy within in the regionD. Furthermore, the

occluding boundary is not a simply closed curve, and parts of the occluding boundary

3The Gaussian sphere approach to the analysis of shading was introduced in [16].
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lie within D. But this is impossible, since the brightness is non-zero inside D.

3.7 Multiple Viewpoints or Multiple Lighting Conditions

So far we have been trying to determine the “impossibility” of surfaces from a single

image. This problem (naturally) becomes a lot easier if we have several images of the

surface corresponding to different lighting conditions or different viewpoints. We can,

for example, make use of certain photometric invariants [16] [20] that relate proper-

ties of the surface geometry to properties of the image brightness, assuming only a

generic form for the reflectance map R(p, q) and constant albedo. One specific result

[20], extending a result of [16], is that the directions of the isophotes (the lines of con-

stant image brightness) must always lie along the directions of principal curvature at

parabolic lines (lines of zero Gaussian curvature), hence these isophote directions will

be invariant as we alter the viewing conditions - this has been exploited by [2]. More-

over for generic surfaces these are the only lines with this property. Thus, given several

images, we can use these results to determine the parabolic lines of the surface. For

regular (that is, not “impossible”) surfaces the parabolic lines will either be closed con-

tours or will terminate at the boundaries of the viewed object. If we find parabolic lines

that terminate inside the object, or have other undesirable behavior, then we have an

“impossible” surface.

3.8 Iterative Solution Applied to Impossible Image

It is of interest to see what the iterative algorithm [12] will do when presented with an

impossible shaded image. It is shown, [15], that it finds the “solution”

z(x,y) =
{

sin r ; for r < π/2;

1; for r ≥ π/2,
.

This function is smooth everywhere except at the origin, where it has a conical singu-

larity.

4 Detecting Spatial Variations of Albedo

If a surface has spatially varying reflecting properties, or if the illumination has spa-

tial variations, then the normal shading rules for the image are altered. An extreme

example of this is a photographic print, where all the brightness variations are due to

spatially varying reflectance, and there is no shading resulting from spatial variations in
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surface orientation. Given the limited information in a single image, it often is not pos-

sible to separate the contributions to the brightness pattern that come from spatially

varying surface orientation and those that come from spatial variations in reflectance

or illumination.

As we have demonstrated in this paper, however, it is sometimes possible to show

that the given image could not have arisen from a uniformly illuminated smooth surface

with uniform reflecting properties (that is, it is an impossible shaded image). The way

this manifests itself when iterative algorithms are used for recovering the surface shape

is that the functional cannot be reduced to zero, and that discontinuities and cone

shaped singularities in surface orientation remain in the estimated solution.

When we look at images taken of the surface of rocky planets like Mars, we can get

a clear impression of the shapes of surface features such as impact craters, yet also be

aware of the fact that surface albedo varies from place to place. Our ability to separate

shading and albedo variations suggest that there is some way of distinguishing the

two. Quite often what distinguishes shading from surface markings is that the latter

have sharp transitions between regions of relatively constant reflectance, while shading

typically varies smoothly. What is needed then is a simultaneous solution of the shading

and the lightness problems [8], [1]4. At least there now is a diagnostic test that tells us

when the assumptions of uniform albedo and uniform illumination are being violated.

Similarly, if the assumed light source is in the wrong position, there will typically

not be a solution to the shape from shading problem. This again manifests itself as a

residual error in the iterative scheme. It has been found possible, for example, to refine

an estimate of the light source position by searching for the position that minimizes

the residual errors [12]

5 Conclusions

We have shown in this paper that there exist shaded images that cannot have originated

from a uniformly illuminated, smooth continuous surface with uniform albedo. The

typical condition where this occurs is when we have a dark area (corresponding to a

region of high gradient) surrounded by a lighter region (with low gradient). For this

to correspond to a real surface, we can establish that there must be a local extremum

or area of lower gradient inside the dark region. This, in turn, will show up as either

a light area in the image or an orientation discontinuity in the surface (thus violating

either our intensity or smoothness constraints). We can also sometimes establish the

impossibility of a shaded image by counting the number of extrema inside a region

4Simultaneous estimation of shape and albedo has been described in a recent paper [21].
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corresponding to an isolated surface patch.

The theoretical arguments we have presented are in agreement with the effects ob-

served with numerical shape from shading algorithms. When presented with an “im-

possible shaded image”, the algorithm will find a solution that is smooth almost ev-

erywhere but has isolated orientation singularities (“peaks” or “cusps”). We thus have

two methods for detecting when the assumptions behind our shape from shading al-

gorithm are being violated. First, we can examine the intensity image to check if any

of the theoretical conditions for impossible shading exist. Second, we can monitor the

output of our numerical shape from shading algorithm to see if isolated or connected

singularities exist in the final solution. Detecting these violations will hopefully lead

us to more robust and more general shape from shading algorithms, which can detect

albedo variation and discontinuities in the reconstructed surface.
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