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In order to get some feeling for the kinematics,
statics, and dynamics of manipulators, it is
useful to separate visualization of linkages in
three-space from basic mechanics. The
general-purpose two-dimensional manipulator is
analyzed in this paper in order to gain a basic
understanding of the mechanics issues without
encumbrance from the complications of
three-dimensional geometry.
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Introduction

Kinematics deals with the basic geometry of the linkages. If we
consider an articulated manipulator as a device for generating
position and orientation, we need to know the relationships
between these quantities and the joint variables, since it is the
latter that we can easily measure and control. Position here
refers to the position in space of the tip of the device, while
orientation refers to the direction of approach of the last link.
While position is fairly easy to understand in spaces of higher
dimensionality, rotation or orientation rapidly becomes more
complex. This is the main impetus for our study of
two-dimensional devices. In two dimensions, two degrees of
freedom are required to generate arbitrary positions in a given
work space and one more is needed to control the orientation of
the last link,

The device studied in detail has only two joints and so
can be used as a position generator. A three-link device is a
general-purpose two-dimensional device that can generate
orientation as well.

It will become apparent that the calculation of position
and orientation of the last link given the joint variables is
straightforward, while the inverse calculation is hard and may be
intractable for devices with many links that have not been
designed properly. The calculation of joint angles given desired
position and orientation is vital if around or follow a given
trajectory,

If a manipulator has just enough degrees of freedom to
cover its work space, there will in general be a finite number of
ways of reaching a given position and orientation. This is
because the inverse problem essentially corresponds to solving a
number of equations in an equal number of unknowns. If the
equations were linear we would expect exactly one solution.
Since they are trigonometric polynomials in the joint variables —
and hence nonlinear — we expect a finite number of solutions.
Similarly, if we have too few joints, there will in general be no
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solution, while with too many joints we expect an infinite
number of ways of reaching a given position and orientation.
Usually there are some arm configurations that present special
problems because the equations become singular. These often
occur on the boundary of the work space, where some of the
links become parallel.

Statics deals with the balance of forces and torques
required when the device does not move. If we consider an
articulated manipulator as a device for applying forces and
torques to objects being manipulated, we need to know the
relationship between these quantities and the joint torques, since
it is the latter that we either directly control or can at least
measure. In two dimensions, two degrees of freedom will be
required to apply an arbitrary force at the tip of the device and
one more if we want to control torque applied to the object as
well.

Clearly then the two-link device to be discussed can be
thought of as a force generator, while the three-link device can
apply controlled torques as well. The gravity loading of the
links has to be compensated for as well and fortunately it can be
considered separately from the torques required to produce tip
forces and torques.

Dynamics deals with the manipulator in motion. It will
be seen that the joint torques control the angular accelerations.
The relationships are not direct however. First of all, the
sensitivity of a given joint to torque varies with the arm
configuration; secondly, forces appear that are functions of the
products of the angular velocities; and thirdly there is
considerable coupling between the motions of the links. The
velocity product terms can be thought of as generalized
centrifugal forces.

The equations relating joint accelerations to joint torques
are nonlinear, but given the arm state — that is both joint
variables and their rate of change with time -- it is
straightforward to calculate what joint torques are required to
achieve given angular accelerations. We can, in other words,
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calculate the time-history of motor torques for each joint
required to cause the arm to follow a given trajectory.

Notice that this is an open-loop dead-reckoning approach
which in practice has to be modified to take into account
friction and small errors in estimating the numerical constant in
the sensitivity matrix. The modification can take the form of a
small amount of compensating feedback.

This, however, should not be confused with the more
traditional, analog servo methods which position-controls each
joint independently. Since the dynamic state of the manipulator
is a global property, one cannot expect general success using
local, joint independent position-control.

To summarize: we will deal with unconstrained motion
of the manipulator as it follows some trajectory as well as its
interaction with parts that mechanically constrain its motion.
Both aspects of manipulator operation are of importance if it is
to be used to assemble or disassemble artifacts.

Two-link Manipulator Kinematics

In two dimensions one clearly needs two degrees of freedom to
reach an arbitrary point within a given work space. Let us first
study a simple two-link manipulator with rotational joints. Note
that the geometry of the two-link device occurs as a subproblem
in many of the more complicated manipulators. Given the two
joint angles, let us calculate the position of the tip of the device.
Define vectors corresponding to the two links:

1:1 = l j [cos(ep,sin(0i)]
r^ = 1̂  lcos(^ + ^),sln(^ + By)'\

The the position of the tip r can be found simply by vector
addition.

x = 1̂  cos(0p + Ig cos(9j + By}
y = 1̂  sln(^) + lg cos(^ + ^)
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This can be expanded into a slightly more useful form:

x = [li + lg cos(9g)] cos(@i) - 1̂  sln(^) sln(^)
y = [ll + 1̂  cost^)] sin(0p - Ig sIntO^) cos(0p

The Inverse Problem

While the forward calculation of tip position from joint angles is
always relatively straightforward, the inversion is intractable for
manipulators with more than a few links unless the device has
been specially designed with this problem in mind. For our
simple device we easily get:

(x2 + y2) - {l^^ + l^2)
cos(9g) =

Z I, lz
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L^sint^ + By)
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y^

There will be two solutions for e^ of equal magnitude and
opposite sign. Expanding tan(ep = tan(o - a) and using
tan(ff) = y/x we also arrive at:

tan(0p =
-l^ sin(^) x + [1^ + 1̂  cos(0g)]y

Ig sin^) y + [li + 1̂  cost^llx

The reason this was so easy is that we happened to have
already derived all the most useful formula using geometric and
trigonometric reasoning. A method of more general utility
depends on algebraic manipulation of the expressions for the
coordinates of the tip. Notice that these expressions are
polynomials in the sines and cosines of the joint angles. Such
systems of polynomials can be solved systematically —
unfortunately the degree of the intermediate terms grows
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explosively as more and more variables are eliminated. So this
method, while quite general, is in practice limited to solving only
simple linkages.

The Work Space

dl - Ig)2 s. li2 + 2 I, lg cos(^) + Ig2 <; di + Ig)2

So:

111 - Izl =S ^ Hi + izl

The set of points reachable by the tip of the device is an annulus
centered on the origin. Notice that points on the boundary of
this region can be reached in one way, while points inside can be
reached in two. The width of the annulus is twice the length of
the shorter link and its average radius equals the length of the
longer one.

When I} = 1̂  = 1 say, the work space becomes simpler,
just a circle. The origin is a singular point in that it can be
reached in an infinite number of ways since e\ can be chosen
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y A

freely.

Statics

So far we have thought of the manipulator as a device for
placing the tip in any desired position within the work space —
that is, a position generator. Equally important is the device's
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ability to exert forces on objects. Let us assume that the
manipulator does not move appreciably when used in this way so
that we can ignore torques and forces used to accelerate the
links. Initially we will also ignore gravity; we will later
calculate the additional torques required to balance gravity
components.

We have direct control over the torques T\ and T^
generated by the motors driving the joints. What forces are
produced by these torques at the tip? Since we do not want the
device to move, imagine its tip pinned in place. Let the force
exerted by the tip on the pin be F = (u.v). To find the
relationships between the forces at the tip and the motor torques,
we will write down one equation for balance of forces and one
equation for balance of torques for each of the links. Writing
down the equations for balance of forces in each of the two links
we get:

Fj = Fg and F^ = F, that Is F = F^ = F^

Next picking an arbitrary axis for each of the links we get the
equations for balance of torques:

TI - TZ -- ri x F
TZ = iz x F

Where [a,b] x [c,d] = ad-be is the vector cross-product-

TI -- ri x F * Tz
= r^ x F + r^ x F

= (Hi + Lz) x F

If T^ = 0, then r^ x F = 0 and so r^ and F must be parallel,
while T\ = 0, gives (ri + r;>) X F = 0 and (r\ * r^) is parallel
to F. These directions for F are counter-intuitive if anything!

Expanding the cross-products we get:
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TI = [li cos(0p + 1̂  cost?) *6^)] v
- [li sln(9i) * Ig sln(ei + e^lu

Tg = [1^ cos(0i + ^)]v
- [1^ sln(0i + ^)]u

Using these results we can easily calculate what torques the
motors should apply at the joints to produce a desired force at
the tip.

The Inverse Statics Problem

Now suppose we want to invert this process to calculate the force
at the tip given measured joint torques. Fortunately this
inversion is straightforward; we simply solve the pair of
equations for u and v:

dg cos(0i + e^) TI
- [lj cos(0i) + lg cos(0i * ̂ )] Tg}

u = —————————————————————————————
[ll lz sin^)]

{l^ sln(0, + 0^) TI
- [li sin(9i) * Ig sin(ei + ^)] Tg}- LI.! sin^i; » ly si.a\pi f i

v = ——————————————————————————————

[ll 1̂  sin(^)]

Now we can see in quantitative terms the force components
produced by each joint torque acting on its own:

There are singularities in the transformation when
sin(^) = 0, that is when e^ = 0 or r. Obviously when the links
are parallel, the joint torques have no control over the force
component along the length of the links. Again we see the
special nature of the boundary of the work space.
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Balancing Gravity

Let us assume for concreteness that the center of mass of each
link is at its geometric center and let us define a gravity vector
S = [0,-g] acting in the negative y direction. We could now
repeat the above calculation with two additional components in
the force-balance equations due to the gravity loading.
Inspection of the equations shows that the resultant torques are
linear in the applied forces, so we can use the principle of
superposition, and calculate the gravity induced torques
separately. Where there is no applied force at the tip we find

yA

that F^ = m^g and

EI = EZ + "is = ("i + ""z^fl

Considering the torques we find:
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T'Zg = -"'zd/Z^z x fl = g[(l /Z)ni2 1̂  cos^i + Og)]
''"Ig = 7^g - "'1 l/z El x S - •"2 r! x fl

= g [ ( l /2 )mj + nig) ^ cos(0p + (l /2)m^lg cos((^ * Og)]

These terms can now be added to the torque terms derived
earlier for balancing the force applied at the tip.

Dynamics

Now let us determine what happens if we remove the pin holding
the manipulator tip in place and then apply torques to the joints.
What angular accelerations of the links will be produced?
Knowing the relation between these two quantities will allow us
to control the motions of the device as it follows some desired
trajectory. We could proceed along lines similar to the ones
followed when we studied statics, simply adding Newton's law.

F = ma or T = la

where F is a force, m mass and a linear acceleration. Similarly
T is a torque, I moment of inertia and a angular acceleration.
The quantities involved would have to be expressed relative to
some Cartesian coordinate system. We would be faced with large
sets of nonlinear equations, since the mechanical constraints
introduced by the linkage would have to be explicitly included
and the coordinates of each joint expressed. In general, this
method becomes quite unwieldly for manipulators with more than
a few links. The more general form of Newton's law indicates a
better approach:

F^ = d/dt (mv^)

where F^ is a component of the force and mvj is a component of
the linear momentum. It is possible to develop a similar
equation in a generalized coordinate system that does not have to
be Cartesian. It is natural to chose the joint angles as the
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generalized coordinates. These provide a compact description of
the arm configuration and the mechanical constraints are
implicitly taken care of. It can be shown that:

Q^ = d/dt p^ - BL/Bq^

where Qi is a generalized force, p^ generalized momentum and q^
one of the generalized coordinates. There is one such equation
for each degree of freedom. Qi will be a force for an
extensional joint, and a torque for a rotational joint. In both
cases, Qiq^ has the dimensions of work.

Dynamics using Lagranges Equation

In this relation, L is the Lagrangian or "kinetic potential," equal
to the difference between kinetic and potential energy, K - P.
The generalized momentum p, can be expressed in terms of L:

p.i = aL /aq j

This is analogous to

nv = d/dv (1/Z mv2).

The dot represents differentiation with respect to time. Finally:

d/dt (BL/aq^) - BL/Bq^ = (̂

Once again there is one such equation for each degree of
freedom of the device.

It will be convenient to ignore gravity on the first round
— so there will be no potential energy term. Next we will take
the simple case of equal links and let the links be sticks of equal
mass m and uniform mass distribution. The moment of inertia
for rotation about the center of mass of such a stick is
(l/12)ml~. These assumptions allow a great deal of simplification
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of intermediate terms without losing much of importance. In
fact the final result would be the same, except for some
numerical constants if we had considered the more general case.

Kinetic energy of a rigid body can be decomposed into a
component due to the instantaneous linear translation of its
center of mass (1/2 mv") and a component due to the
instantaneous angular velocity (1/2 Ia^). The angular velocities
obviously are just e\ and (e\ + e^). The magnitudes of the
instantaneous linear velocities of the center of mass are:

11/2 r, (?il
Iriei + 1/2 r^i + e^)\

The squares of these quantities are:

(1/4)12 @i2 and
l2!:^2 + cos(^)(?i((?i + (^) + l /4(@i + ^)2]

The total kinetic energy of link 1 is then:

1/2(1/12) nl^i2 + ( l / Z ) m ( l / 4 ) l 2 e^ = l /Z((l /3)nl2) e^-

The same result could have been obtained more directly by
noting that the moment of inertia of a stick about one of its
ends is (l/3)ml^.

The total kinetic energy of link 2 is:

l^d/^llll2)^! + ^)2

+ (l^ml2!^^ + cos(^))9i2

+ (1/Z + cos(^))ei9z + (l/O^z2!
= ( l /Z)ml 2 [(4/3 + cos(^)) 8^ + (2/3 + cos^)) 6^^

+ 1/3 e^2]

Finally, adding all components of the kinetic energy and noting
the P = 0, we determine the Lagrangian:
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L = ( l /Z)ml 2 [(5/3 + cos^)) ^z

+ (Z/3 * cos (^)) e^e^ * 1/3 ̂ l

Next we will need the partial derivative of L with respect
to e\, e^, ep e^. For convenience let L' = L/(l/2)ml2.

aL'/a0i = o
ar/a^ = -sin^) ^(ei + ^)
at'/aei = z(5/3 + cos(^))^ + (z/3 * cost^))^
aL'/ae^ = (z/3 + cos(e^)) ^ + z (i/3) ^

We will also require the time derivatives of these last two
expressions:

d/dt (aL'/aep
= (̂  Z (5/3 + cost^)) + 83(2/3 + cos(^))

- sin(e^e^zei + ^)
d/dt (BL'/a^)

= 01 (Z/3 + cos(^)) + PZ Z(l /3)
- sinte^) f f ^ z

When we plug all this into Lagrange's equation

d/dt (ai/a^) - aL/ae^ = T

we get:

$1 Z(5/3 + cos(0g)) + ^ (Z/3 + cost^))
= Ti / ( l /Z)ml 2 + sln(^ ) ^(Z^ * ^2)

01 (Z/3 + cos(^)) + PZ 2(1/3)
= T^/d/Zlml2 - 510(62) ^i2

And if you think that was painful, try it the other way!
So finally we have a set of equations that allow us to calculate
joint torques given desired joint accelerations. Notice that we
need to know the arm state, 6\, 9^, e\, and ̂  in order to do
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this. In par t this is because of the appearance of
velocity-product terms, representing centrifugal forces and the
like, and in part it is because the coefficients of the accelerations
vary with the arm configuration. It is useful to separate out
these latter terms which constitute the sensitivity matrix.

2(5/3 + cost^)) (Z/3 + cos(ffg))
(2/3 + cos(^)) 2(1/3)

If we ignore the velocity-product terms, this matrix tells
us the sensitivity of the angular accelerations with respect to the
applied torques. It can be shown that the terms in this matrix
will depend only on the generalized coordinates (and not the
velocities), that the matrix must be symmetrical and that the
diagonal terms must be positive.

This, by the way, implies that if one makes the torques
large enough to overcome the velocity-product terms, the links
will move in the expected direction. The analog, positional
approach to arm control depends critically on this property.
Notice the couplings between links — that is torque applied to
one joint will cause angular accelerations of both links in
general.

The Inverse Matrix

If we wish to know exactly what accelerations will be produced
by given torques we have to solve for e[ and e^ in the above
equations.

^ = [2(1/3) l-i' - (2/3 + cos(^)) Tyi / (16/9 - cos2^))

[-(2/3 + cos(^)) T j ' + 2(5/3 + cos(^))T^']
e? =

(16/9 - cos2^))

where
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T j ' = iy(l/Z nil2) + sin(^)@2(Z9i + ^)
Tg- = Tg/d/Z ml2) - sin(^) Pi2

Taking Gravity into Acount

y A

We can define the potential energy P as the sum of the products
of the link masses and the elevation of their center of mass
relative to some arbitrary place.

P = (gnii ( l /2 ) l i sin(0i)}
+ {gin^Cl^ sin(ep + (l/Z)!^ sln(0i + 0^'\}

We could now repeat the above calculation, subtracting
this term from the kinetic energy. Because of the linearity of
the equations, we can again make use of superposition and
calculate the torques required to balance gravity separately. Now
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the partial derivative of P with respect to the angular velocities
are 0 so we only need the following:

T^ = ap/a^i == g [ ( i /z mi + in^ii cos(0i)
+ 1/2 rn^lg cos(0i + 9^)]

Tgg = 9P/a^ = g t l /Z rig 1^ cos(&i + 0^)]

Adding a Third Link

A manipulator not only has to be able to reach points within a
given work space, it also has to be able to approach the object to
be manipulated with various orientations of the terminal device.
That is, we need a position and orientation generator. Similarly
it can be argued that it should not only be able to apply forces
to the object, but torques as well. Additional degrees of freedom
are required to accomplish this. If we are confined to operation
in a two-dimensional space only one extra degree of freedom will
be needed, since rotation can take place only about one axis, the
axis normal to the plane of operation. It turns out that the same
can be said about torque, since applying a torque can be thought
of as an attempt to cause a rotation. So in two dimensions, a
three link manipulator is sufficient for our purposes. We will
now repeat our analysis of kinematics, statics, and dynamics for
this device, but with fewer details than before.

Kinematics with Three Links

x = li cos((?i) + 1̂  cos((?i + 6^) + lg cos (^i + 2 + ^3^
y = ll sln(0i) + Ig sin(^ + By) + lg sint^i * ̂  * ^3)
4> = 0 i + 5g * 0,

While we could proceed to solve the inverse problem of finding
joint angles from tip position and orientation by geometric,
trigonometric or algebraic methods, it is simpler to make use of
the results for the two-link manipulator. One can easily calculate
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y^

the position of joint 2, knowing

Xg = x - 1.3 cos(<(>)
YZ = y - 13 sin (<(>)

Now one can simply solve the remaining two-link device
precisely as before:

cost^) = [(x^2 + yg2) - (1,2 * lg2)] / Z ^ Ig
tan((?) = yy/x,
tan(a) = 1^ sint^g) / [1( + 1̂  cos(^)]

= 2 1 ^ 2 sln(^) / [(x^2 + yg2) * di2) * (li2 - l^2)]
0j = 6 - a
0y = <t> - G^ - 0^

To determine how much of the work space that can be reached
by the manipulator is usable with arbitrary orientation of the last
link, we could, as before, proceed with an algebraic approach.
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For example we might start from Icos^)! ^ 1 and the realization
that the worst case situations occur when the last link is parallel
to the direction from the origin to the tip. The situation is easy
enough to visualize, so we will use geometric reasoning instead.

Not all points in the annular work space previously
determined can be reached with arbitrary orientation of the last
link. A method for constructing the usable work space is simply
to construct a circle of radius 13 about each point. A point is
in the usable work space if the circle so constructed lies inside
the annulus previously determined.
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Statics with Three Links

We have control of over the three torques Tp T^, and T3. We
would like to use these to apply force F = (u,v) and torque T to
the object held by the tip of the device. We do not want to
consider motion of the manipulator now, so again imagine its tip
solidly fixed in place. We proceed by writing down one
equation for force balance for each link and one equation for
torque balance for each link.

F! = EZ' EZ = £3 and E3 = E so E = El = EZ = ES
T3 = T + >:3 x F

T'2 •- T'3 + EZ x ^3
1-1 = Tg + FI x Fg
TI = T + ( r i + r^ + 1:3) x F

TZ = T + (£2 + r3) x F

73 == T + (,:3) x F

Let's abbreviate the trigonometric terms by subscripts on the
letters "s" and "c", so for example

s^3 = sin(e^ +03).

Ei = i iCcpSi]
LZ !: ^^iz^izl
^3 = 13I:C1Z3•S1Z3:1

and so

(£3) x F = (13^3^ - (^''^l11

(EZ + ^3) x E = (^iz + 13clZ3>v - (^iz + ^iza^
(ri + Cz + r3) x F

= ( l iCi + I^IZ + 13t:lZ3)v - (^l + ^12 + ^IZS1"

This can be written in matrix form.
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-diSi + l^ig + LjSi^)

-(^iz + 13^3)

-(^iza)

di Ci + l;,ci;, * 130123) 1
dzCiz + 130123) 1

(^iza) 1.

This tells us how to calculate what motor torques are needed to
apply a given force and torque to the object held by the
manipulator. Notice that we could have arrived at this result by
first considering the tip pinned in place only (that is, T=0) and
then separately reason out that to apply torque T, each joint
torque would have to be increased by T.

The determinant of the above matrix is i^ sint^). If ^2
is neither 0 nor ir, we can invert the matrix and solve for u, v,
and T given the three joint torques.

Wz

IgCig - (li<:i + L,CI;,) lie,
i^i1^12 - (lisi + IgSig)

iz^s - (Wza + ^W h^z + h^za

Gravity

Gravity is again very simple to take into account. If we assume
that the center of mass of each link is in its geometric center we
find that:

F:3 = n>3a

Ez = ("z + '"3)2
FI = (mi + mg + 1113)3

From these, we can derive the torques induced by gravity:
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^g = -'"a C^a x a = gt(i/z)'"3i3Ciz3]
^g = ^g - '"3 (^rz x 8 - Vz x fl

= g [ ( l / Z ) m 2 + m3)l2C^ + ( I/Z^^GI^]

T'lg = ''"Zg - "'1 t172)!:! x a - (m^ + 013)1:1 x fl
= g [ ( ( l /Z )n i + in^ + ni3)liCi

+ (d/Z^ + 1113)1^12 + (l/Z)B3l3Cig3]

Dynamics with Three Equal Links

For defmiteness we will again consider a simple case where li,
l^, and 13 are all equal to a length 1. The more general case
involves a lot more arithmetic and the form of the final result is
the same, only numerical constants will be changed. Further, we
will ignore gravity for now, and assume the links to be uniform
sticks of mass m and inertia (l/12)ml^ about their center of
mass. Once again we start by finding the rotational and
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translational velocities of each of the links. Evidently the
angular velocities of the three links are e\, (e\ + ^), and
((?! + <?2 + 03)-

The square of the magnitude of the instantaneous linear
velocity of the center of mass of link 1 is simply

l ( l / Z ) r i ( ? i l 2 = ^((l^i2)

For the square of the magnitude of the velocity of the center of
link 2 we have

It;^! + (1/2)^(01 + e^)!2

= l^e,2 + cos(02)9i(9i + ^) + 1/4 (@i + ^)2]
s l2!:̂ !^^ + cos(^)) * ^z((l/2) + cos(^)) + ^z (1/4)]
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For the square of the magnitude of the velocity of the center of
link 3 we have

|r^ + r^e^ + ^) + (l/Z)]^! * ̂  + ^)12

= I2!:?!2 + zcos(^)9i(ei + eg)
+ (^i + @z) 2

+ cos(@3)(^ + ez) (@i + ^ * ^3)
+ 1/4((^ + (?z + (?3)2

+ cos(@^ + 6^)e\ (e^ + @z + ^3)3
= l2^2 (9/4 + Z cos (9^) + 005(63) + cos(^ •I- 83))

+ 0^(11/2 + Z cos(^)
+ Z cos(03) + cos(^ + ^3))

+ e^^^ + cos(@3))
+ e^e^nz + cos^))
+ e32(l/4)
+ e^e^i/z + cos(03) + cos(^ + ^3))]

Isn't that lovely. We are now ready to add up the kinetic energy
due to rotation and that due to linear translation of the center of
mass for all three links to obtain the Lagrangian.

L = 1/2 ml2 C^^ + 3 ms{e^) + cos(0g * ^3) + cos^))
+ 0i^(19/3 + 3 cos(^) + cos (^ * ^3) + 2 cos^))
+ 6^(5/3 + 005(63))
+ 0^^(2/3 + cost^))
+ l^2 (1/3)
+ e^e^Z/3 + cos(^ + ^3) + cos(@3))]

So this is the Lagrangian for this system and from it we will be
able to calculate the relation between joint torques and joint
accelerations. Let us use the shorthand notation for
trigonometric terms introduced in the discussion of the statics of
this device, e.g., s^3 = sin(e^ + 03).

We will next derive the partial derivates of the
Lagrangian with respect to B\, G^, 03, e\, 6-^, 63. Let
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L = 1/2 ml^L' as before.

-aL'/a^ = o
-QL'/Qd^ = ̂ ^ s; + 5^3) + 010^(3 s^ + 5^3) * ^3^1(5^3)
-BL'/a^ = ^(s^ + 53) + ^i^(S23 + 2 83)

+ 0^^) + 0203(53) <• ̂ (s^ * 53)

The partial derivates of the Lagrangian with respect to angular
velocity are:

9L'/90, = 2ei(4 + 3c, + 0,3 + €3)

+ e i { l 9 / 3 + 3c, + Cg, + 203) + 83(2/3 + Cg3 + €3)

aL'/a^ = e^(i9/3 * 3cg + c^3 + 203)
+ 2(9g(5/3 + 03) + $3(2/3 * €3)

BL'/a^ = ^(2/3 + Cg3 + €3)
* e^Z/3 + €3) + 203(1/3)

Next we will need the time rate-of-change of the last three
quantities above:

d/dt (BL' /aep = 20i(4 + 3c^ + 0^3 + €3)
+ 0^(19/3 + 3c^ + c,3 + 203) + 0(2/3 * 0^3 * €3)
- Ze^3s^-s^{^ + ^3) - 53(93)

- ^O^Z + SZ3(192 + ̂ l-2'̂
- e^s^{e^ + 03) - S3 193)

d/dttat ' /ae^) = 0^19/3 + 3^ + ^3 + 203)
+ 2^(5/3 + 03) + e^Z/3 * 03)

- ^lO^Z - S23(e2 + e3)-s3e3) • Z6z(s3^3) - 6(S3^3)
d/dt (aL'/a^) = 0^2/3 + c^ + 03) + ^(2/3 * €3) + Z^d/S)

- ^(^^Z + e3) - S303) - (9z(s3^3)

Finally, inserting these terms into Lagrange's equation gives:
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i^' = d/dt(L' /aep - ar/ae,
= Z^i (4 + 3c^ + c^ + €3)

+ 0g(19/3 + 3Cg + c^3 + 203)
+ 03(2/3 + c^3+ 03)
- 0^(6sg + 25^3) - PZ^S^ * 5^3)

- W2^)

- ^(^a + ̂  - ̂ it2^ + S3)

Tg' = d/dt(aL'/8^) - aL' /affg
= ^(19/3 + 3c^ + Cg3 + 203) + 29^(5/3 * €3) * §3(2/3 + €3)

+ e^(3^ + 823) - (?z<?3(2s3) - ̂ ^l - 0301(253)
T3' = d /dt tBL' /a^) - aL'/a^

= e ^ z / 3 + c^ + 03) + e^z/3 + 03) -i- 83(2/3)
+ elz(s23 + 53) + e^e^z 53) + e^(^)

As in the two-link case, the equations above can be expressed in
matrix terms. The torque vector is equal to a sensitivity matrix
times the angular acceleration vector, plus a vector of torques
due to velocity products. The sensitivity matrix is symmetric,
and its diagonal elements are always positive. The terms in this
matrix depend only on the joint angles because all the
velocity-product terms are segregated out.

Given the arm state (joint angles and joint angular
velocities), we can calculate what torques need to be applied to
each of the joints in order to achieve a given angular
acceleration for each of the joints. We only need to invert the
sensitivity matrix.

Extensions to Three Dimensions

Once the basic principles are understood, we can proceed to
introduce the extensions necessary to deal with manipulators in
three dimensions. There is little difficulty as regards position
and force since in an n-dimensional space these quantities can be
conveniently represented by n-dimensional vectors. A general
position or force generator will need n degrees of freedom.
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Unfortunately we are not so lucky with orientation and torque.
These can not be usefully thought of as vectors. For example, in
three dimensions we know that rotations don't commute, while
vector addition does. It is a misleading coincidence that it takes
three variables to specify a rotation in three dimensions.

It takes n(n- l ) /2 variables to specify a rotation in
n-dimensional space. Why? A general rotation can be made up
of components each of which carries one axis part way towards a
second axis. There are n axes, and so "n choose 2" distinct pairs
of axes. There are therefore that number of "elementary"
rotations. It is not correct to think of rotations "about an axis";
in our two-dimensional example such rotations would carry one
out of the plane of the paper, and in four dimensions, not all
possible rotations would be generated by considering only
combinations of the four rotations about the coordinate axes.

Another way of approaching this problem is to look at
matrices that represent coordinate transformations that
correspond to rotations. Such matrices are ortho-normal and of
size n*n. How many of the n- entries can be freely chosen?
The condition of normality generates n constraints, and the
condition of orthogonality another n(n-l)/2. So we have

n2 - n - n(n-l)/2 = n(n-l)/2

degrees of freedom left.
To specify position and orientation, or force and torque

in n dimensions requires n(n-l)/2+n variables. A general
purpose n-dimensional manipulator thus needs to have n(n+l)/2
degrees of freedom. For n=3, this is 6. The coincidence that it
takes 3 variables to specify a rotation in three dimensions allows
some simplifications. A torque, for example, can be calculated
by taking cross-products. In higher dimensions, one needs to
look at exterior tensor products. A useful way of specifying
rotations in three dimensions is by means of Euler angles: roll,
pitch, and yaw, for example. It is straightforward to convert
between this representation and the ortho-normal matrix notation.
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Kinematics

It is no longer sufficient to represent each link as a vector, since
the joints at its two ends may have axes that are not parallel.
The way to deal with this problem is simply to erect a
coordinate system fixed to each link. Corresponding to each
joint there will be a coordinate transformation from one system
to the next. This transformation can be represented by a 3x3
rotation matrix plus an offset vector. It is convenient to
combine these into one 4x4 transformation matrix that has
( 0 0 0 1) as its last row. This allows one easily to invert the
transformation, so as to allow conversion of coordinates in the
other direction as well.

The entries in this matrix will be trigonometric
polynomials in the joint angles. In order to determine the
relation between links separated by more than one joint, one can
simply multiply the transformation matrices corresponding to the
intervening joints. Doing this for the complete manipulator, one
obtains a single matrix that allows one to relate coordinates
relative to the tip or terminal device to coordinates relative to
the base of the device. In fact the 3x3 rotation submatrix gives
us the rotation of the last link relative to the base and and hence
its orientation, while the offset 3x1 submatrix is the position of
the tip of the last link with respect to the base.

Given the joint variables, it is then a relatively
straightforward matter to arrive at the position and orientation of
the terminal device or tip. These values are of course unique for
a particular set of joint variables.

The Inverse Problem in Three Dimensions is Intractable

Unfortunately the inversion is much harder. One way to
approach this problem would be to consider the 3x3 rotation
submatrix made up entirely of polynomials in sines and cosines
of joint angles and the 3x1 offset submatrix which contains
link-lengths as well and try to solve for the sines and cosines of
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the six joint angles. There are twelve equations in twelve
unknowns, so we expect there to be a finite number of solutions.
When solving polynomial equations by eliminating variables the
degree of the resulting polynomials grows as the product of the
polynomials combined. We could easily end up with one
polynomial in one unknown with a degree of several thousand.
So in general this problem is intractable.

There are a number of conditions on the link geometry
that make this problem solvable by noniterative techniques.
Several such configurations are known, but one of the easiest to
explain involves decoupling the orientation from the position.
One then has to solve two problems that are much smaller, each
having only three degrees of freedom. Suppose for example that
the last three rotational joints intersect in one point, call it the
wrist. Then these last three can take care of the orientation,
while the remaining three position the wrist. Given the
orientation of the last link it is easy to calculate where the wrist
should be relative to the tip position. Given the position of the
wrist one can solve the inversion problem for the first three
links. This can usually be done by careful inspection rather than
blind solution of trigonometric polynomials. Often also the first
three links are simply a combination of the two-link geometry we
have already solved and an offset polar-coordinate problem.

Now that we know the first three joint angles we can
calculate the orientation of the third to which the wrist attaches.
Comparing this with the last link, it is simple to calculate the
three wrist angles by matrix multiplication and solving for the
Euler angles appropriate to the design of the wrist.

Statics

By controlling the six joint torques we can produce a given force
and torque at the terminal device. The same coordinate
transformation matrices used for solving the kinematics prove
useful here. Cross-products give us the required torques, with
joint motors supporting the components around the joint axes,
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while the pin joints transmit the other components. The
calculations are straightforward.

Gravity compensation calculations also follow the familiar
pattern. In many cases manipulators intended for positional
control have been used to generate forces and torques in a
different manner. The idea is to use the inherent compliance of
the device as a kind of spring and to drive the joints to angles
slightly away from the equilibrium position. Since the
stress-strain matrix of such a device is very complex and it has
different spring constants in different directions, as well as
coupling between forces and torques, this technique on its own is
not very useful. One solution relies on a force and torque
sensor in the wrist. From the output of such a device one can
calculate the forces and torques at the tip and servo the joint
angles accordingly. The advantage of this technique is that
friction in the first three joints does not corrupt the result and
that the measurement is made beyond the point where the
heaviest and stickiest components of the manipulator are.

Dynamics

The main additional difficulty of manipulators in higher
dimensions is that inertia too now has several components instead
of just one. The dynamic behavior of a rigid body as regards
rotation can be conveniently expressed as a symmetrical, square
inertia matrix. This relates the applied torque components to the
resulting angular accelerations. The same general idea carries
through, with the distinction that the calculations get very messy
and have to be approached in a systematic fashion. A practical
difficulty is the measurement of the components of the inertia
matrices for each of the links of the manipulator.

Of course the problem is somewhat complicated should
the manipulator actually manipulate something.
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