Finding the Nearest Orthonormal Matrix

In some appoaches to photogrammetric problems (perhaps inspired by projective
geometry), an estimate M of an orthonormal matrix R representing rotation is
recovered. It is then desired to find the “nearest” orthonormal matrix. While
this two step approach — first finding a “best fit”” matrix without enforcing or-
thonormality, and then finding the nearest orthonormal matrix — is not to be
recommended, it may be of interest to find a solution to this problem nevertheless.

So, given a matrix M, find the matrix R that minimizes | M — R||%;, subject
to RT R = I, where the norm chosen is the Frobenius norm, i.e. the sum of
squares of elements of the matrix, or

I X% = Trace(X T X)
We can deal with the orthogonality contraint by introducing a symmetric La-
grangian multiplier matrix A and looking for stationary values of
e(R,A) = Trace((M — R)T (M — R)) + Trace(A(R" R — 1))
Now define the derivative of a scalar w.r.t. to a matrix to be the matrix of deriva-

tives of the scalar w.r.t. to each of the component of the matrix. Then it is easy
to derive the following useful identities [Horn 1986]

d d T
d—XTrace(X) =1 and d—XTrace(X X)=2X

d T d T
d—ATrace(AB) = B" and d—BTrace(AB) =4

%Trace(AXB) =ATBT and %Trace(AXTX) = XA+ A7)
Differentiating e(R, A) w.r.t. R and setting the result equal to zero yields
—2(M —R)+ RA+AT)=0

or, since AT = A,

—(M—-R)+RA=0
solving for M we get

M = R(I+A)
which is a useful decomposition of M into the product of an orthonormal and a
symmetric matrix [Horn et a/ 1988]. Now
MTM = +MNRTRUI +A) = +A)?

Hence

(I+A)=M" M)
and so, finally,

R=MUT+AN"'=MmMwMTMmM)~1/2

Note that MT M is symmetric, non-negative definitive and so will have non-
negative real eigenvalues. The inverse of the square root of M7 M can thus be



computed using eigenvalue-eigenvector decomposition. The inverse of the square
root of MT M has the same eigenvectors as M7 M, and eigenvalues that are the
inverse of the square roots of the eigenvalues of M T M, so we can write
(MTM)_I/2 = \/%TelelT + \/%_zezezT + \/%Qe{

where A; for i = 1, 2, and 3, are the eigenvalues and e; fori = 1, 2, and 3, are
the eigenvectors of M7 M. This construction of the inverse of the square root
of MT M fails if one of the three eigenvalues is zero. It is possible however to
pretend that that eigenvalue is equal to one and proceed anyway [Horn et al 1988].

Itis easy to verify that R constructed as above is orthonormal,i.e. RTR = 1.
However, there is no guarantee that det(R) = +1. To represent a proper rotation,
the orthonormal matrix R has to satisfy this condition as well. Otherwise it
represents a reflection, not a rotation. There is no easy way to enforce this
condition, and with poor measurements, the estimated “rotation matrix” M may
very well lead to a least squares solution R such that det(R) = —1.

The “two stage method” of first fitting a matrix without enforcing orthonor-
mality, followed by finding an orthonormal matrix that is “nearest” to the fitted
matrix, produces a result that is less accurate than that obtained by solving the
least-squares problem directly. Further, in general least squares fitting problems
are solved more easily, and without the possibility of obtaining an improper ro-
tation, using a better notation for rotation, such as unit quaternions [Horn 1987].
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