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Abstract: The description of a serial kinematic chain should be unique,
unambiguous, simple to determine, easy to use and well-behaved when
small changes are made in the arrangement of the elements of the chain.
The notation currently in use, introduced by Denavit and Hartenberg, does
not satisfy all of these criteria. It involves arbitrary choices, so that more
than one description may apply to a given kinematic chain. More impor-
tantly, the parameters relating the links in the chain can be very sensi-
tive to small changes in the physical arrangement of the chain. This is
particularly true of so-called ideal chains, ones that permit closed-form
solution of the inverse kinematic problem, since these often involve ge-
ometries where adjacent axes are parallel, perpendicular or intersect. A
new notation is proposed here that does not suffer the above-mentioned
short-comings. To demonstrate some of the advantages of the new nota-
tion, it is applied to the problem of finger-printing a robot arm and to the
solution of the inverse kinematic problem of near-ideal arms.
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Introduction

Let us start right away by defining the new notation:

Let the home position of a serial kinematic chain be an arbitrary posi-
tion specified in terms of the joint variables. The home position may, for
example, be chosen to be the one where all joint variables are zero. The
base coordinate system is an arbitrary external coordinate system fixed
with respect to the base of the kinematic chain. Erect a coordinate system
in each link of the chain in such a way that the coordinate axes are paral-
lel to those of the base coordinate system when the chain is in the home
position. The kinematic chain is then fully specified when the following
are given for the chain in the home position:

• The set of unit vectors {ô∗i }, parallel to the directions of motion of
the prismatic joints.

• The set of unit vectors {ω̂ω∗
i }, parallel to the axes of the revolute joints.

• The set of offset vectors {d∗i } determined recursively with respect to
the chosen base origin as follows:

The first reference point is the origin of the given base coordinate system.
Drop a perpendicular from this reference point to the first revolute
joint axis. This defines the first offset vector as well as a reference
point on the first revolute joint axis. Now drop a perpendicular from
this new reference point onto the second revolute joint axis. This
defines the second offset vector and a new reference point. Continue
in this fashion to the last revolute joint. Connect the last reference
point so found to a chosen tip reference point in the final link. This
defines the last offset vector.

The reference points so defined are the origins of the link coordinate
systems. A prismatic joint does not yield a new reference point. The origin
of the corresponding coordinate system is taken to be that of the last
reference point encountered working outward from the base coordinate
system.

This completes the description of the new notation for describing a
kinematic chain. Note that there are no arbitrary choices. Thus a given
kinematic chain has only one description with respect to a given base co-
ordinate system and a tool reference point in the last link. Also, note that
small changes in the kinematic chain can introduce only small changes in
the description. If one of the axes is turned through a small angle, for ex-
ample, the corresponding unit vector in the description changes, as does
the reference point on the axis that is turned, as well as those on axes
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further from the base. All of these changes are small, however. Similarly,
if an axis is displaced by a small amount without turning, the correspond-
ing offset, and offsets of axes further from the base, will change, but only
a little.

The parameters are not unconstrained, since the direction vectors,
ô∗i , and the axes vectors, ω̂ω∗

i , have to be unit vectors and since each of
the offsets, d∗i , has to be orthogonal to the following axis vector ω̂ω∗

i .
This means that the parameters are redundant, that is, there are more
parameters than degrees of freedom. These parameters are, however,
more convenient than alternate non-redundant sets of parameters, as we
shall see.

Throughout this paper, as is customary, it is assumed that joint vari-
ables are controlled accurately or can be measured accurately. Modern
methods for measuring joint variables appear to be adequate to assure
that errors introduced by non-linearity will tend to be swamped by other
contributions to inaccuracy in positioning of the last link. The methods
presented here do not, however, depend on the assumption that the mea-
sured joint variable of a revolute joint is zero when there is a particular
alignment of the links or that the measured joint variable of a prismatic
joint is zero when there is a particular alignment of joints.

Notations for Kinematic Chains

There are several things that a kinematic notation has to provide:

• A standard coordinate system within each link of the chain.

• The means for determining the transformations between these coor-
dinate system.

• Methods for using these transformations in the analysis of kinemat-
ics, statics and dynamics.

Denavit & Hartenberg developed such a notation, which was used by Uicker
& Kahn in dealing with the dynamics of robot manipulators and popular-
ized further by Pieper and more recently by Richard Paul in his book Robot
Manipulators.

Review of Denavit & Hartenberg Notation

We find the following description of the notation of Denavit and Harten-
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berg in Chapter 2 of Richard Paul’s classic book Robot Manipulators—
Mathematics, Programming & Control:

We will now consider the specification of the Amatrices. A serial link
manipulator consists of a sequence of links connected together by
actuated joints. For an n degree of freedom manipulator, there will
be n + 1 links and n joints. The base of the manipulator is link 0.
Link 1 is connected to the base link by joint 1. There is no joint at
the end of the final link. The only significance of links is that they
maintain a fixed relationship between the manipulator joints at each
end of the link.

Any link can be characterized by two dimensions: the common nor-
mal distance ai, and the angle αi between the axes in a plane perpen-
dicular to the common normal It is customary to call ai the length
and αi the twist of the link. Generally, two links are connected at
each joint axis.

The axis will have two normals to it, one for each link. The relative
position of two such connected links is given by di, the distance be-
tween the normals along the joint i axis, and θi, the angle between
the normals measured in a plane normal to the axis. The quantities
di and θi are called the distance and the angle between the links,
respectively.

In order to describe the relationship between links, we will assign
coordinate frames to each link. We will first consider revolute joints
in which θi is the joint variable. The origin of the coordinate frame
of link i is set to be at the intersection of the common normal axes of
joints i and i+1 and the axis of joint i+1. In the case of intersecting
joint axes, the origin is at the point of the intersection of the joint
axes. If the axes are parallel the origin is chosen to make the joint
distance zero for the next link whose coordinate origin is defined.
The z-axis for link i will be aligned with the axis of joint i + 1. The
x-axis will be aligned with any common normal which exists and is
directed along the normal from joint i to joint i + 1. In the case of
intersecting joints, the direction of thex-axis is parallel or antiparallel
to the vector cross-product zi−1×zi. Notice that this condition is also
satisfied for the x-axis directed along the normal between joints i and
i+1. The angle θi is zero for the i-th revolute joint when xi−1 and xi
are parallel and have the same direction.

In the case of a prismatic joint, the distance di is the joint variable.
The direction of the joint axis is the direction in which the joint moves.
The direction of the joint axis is defined but, unlike a revolute joint,
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the position in space is not defined. In the case of a prismatic joint
the length ai has no meaning and is set to zero. The origin of the
coordinate frame for a prismatic joint is coincident with the next de-
fined link origin. The z-axis of the prismatic link is aligned with the
axis of joint i + 1. The x-axis is parallel or antiparallel to the vector
cross product of the direction of the prismatic joint and zi. For a
prismatic joint, we will define the zero position when di = 0.

With the manipulator in its zero position, the positive sense of rota-
tion for revolute joints or displacement for prismatic joints can be
decided and the sense of direction of the z-axes determined. The ori-
gin of the base link (zero) will be coincident with the origin of link 1.
If it is desired to define a different reference coordinate system, then
the relationship between the reference and base coordinate systems
can be described by a fixed homogeneous transformation. At the end
of the manipulator, the final displacement d6 or rotation θ6 occurs
with respect to z5. The origin of the coordinate system for link 6 is
chosen to be coincident with that of the link 5 coordinate system. If
a tool (or end effector) is used whose origin and axes do not coincide
with the coordinate system of link 6, the tool can be related by a fixed
homogeneous transformation to link 6.

Having assigned coordinate frames to all links according to the pre-
ceding scheme, we can establish the relationship between successive
frames n− 1, n by the following rotations and translations:

rotate about zi−1, an angle, θi;

translate along zi−1, a distance di;

translate along rotated xi−1 = xi a length ai;

rotate about xi, by the twist angle αi.

This may be expressed as the product of four homogeneous trans-
formations relating the coordinate frame of link n to the coordinate
frame of link n− 1. This relationship is called an A matrix.

Once the link coordinate frames have been assigned to the manipu-
lator, the various constant link parameters can be tabulated: di, ai,
and αi for a link following a revolute joint and θi and αi for a link
following a prismatic joint. Based on these parameters the constant
sine and cosine values of the αi’s may be evaluated. The A matrices
then become a function of the joint variable θi or, in the case of a
prismatic joint, di. Once these values are known, the values for the
six Ai transformation matrices can be determined.
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Problems with Denavit & Hartenberg Notation

We see that there are several arbitrary choices. A few quotes from chap-
ter 3 of John Craig’s book Introduction to Robotics—Mechanics & Control
illustrate this further:

The distance ai is measured along a line that is mutually perpendic-
ular to both axes. This mutual perpendicular always exists and is
unique, except when the axes are parallel, in which case there is an
infinite number of mutual perpendiculars of equal length.
In the case of intersecting axes, the twist αi is measured in the plane
containing both axes, but the sense is lost. In this special case one is
free to assign the sign arbitrarily.
These conventions have been chosen so that in a case where a quantity
could be assigned arbitrarily, a zero value is assigned so that later
caclulations will be as simple as possible.
A final note on uniqueness: The conventions outlined above do not
result in a unique attachment of frames to links. First of all, when we
align the zi axis with the axis of joint i, there are two choices for the
direction of zi. Furthermore, in the case of intersecting joint axes (i.e.
ai = 0), there are two choices for the direction of xi, corresponding
to the choice of direction for the normal of the plane containing zi
and zi+1. Also, when prismatic joints are present there is quite a bit
of freedom in frame assignment.
Note that there are a number of arbitrary choices that have to be made

when special alignments occur. As we note later such special alignments
are not uncommon in practice, since they are needed to assure that the
inverse kinematic problem has a closed-form solution1.

Other suggestions have been made for standard coordinate systems
in the links of kinematic chains. In work on dynamics, for example, the
center of mass is a natural choice for the origin and the principal axes
are natural choices for the directions of the coordinate axes of a link. So
far, these alternate coordinate systems have been accomodated by intro-
ducing transformations to and from the coordinate systems established
in the links using the Denavit & Hartenberg notation.

Kinematic Solution of Ideal Kinematic Chains

The forward kinematic problem is that of determining the position and

1It is interesting to note, by the way, that the link coordinate systems shown
for the Stanford arm on the cover of Paul’s book do not conform strictly to the
notation of Denavit & Hartenberg.
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orientation of the final link of the kinematic chain given the joint variables.
This problem has a unique solution that can be computed directly. The
inverse kinematic problem is that of finding a set of joint variables that
will place the final link in a given position and orientation. There are
typically several solutions for positions and orientations within the work-
space, but these cannot be easily found for an arbitrary kinematic chain.
An ideal kinematic chain is one for which a closed-form inverse kinematic
solution exists. Almost all industrial robot arms are designed so that the
inverse kinematic problem can be solved directly. Only a robot designed
to operate solely in teach-by-showing or play-back mode can be useful
without an efficient method for solving the inverse kinematics problem.

The solution methods for ideal kinematic chains depend on the in-
tersection of certain joint axes, as well as parallel or perpendicular align-
ments of axes. Many arms with six joints, for example, are designed so
that the inverse kinematic problem can be broken down into two sub-
problems, each with only three unknowns, by arranging for the axes of
the last three joints to intersect in a point.

In practice, a kinematic chain departs slightly in the geometry from
that specified in its design. This means that a closed-form kinematic solu-
tion does not exists for the actual arm. Thus methods must be developed
for efficiently finding solutions of the inverse kinematic problem for these
near-ideal kinematic chains.

Forward Kinematics

Let us use the notation
R = Rot(ω̂ω,θ)

for the clockwise rotation by an angle θ about the axis through the origin
with direction specified by the unit vector ω̂ω. It is not important whether
this is represented using an orthonormal matrix, axis-and-angle or a unit
quaternion (see Appendix). Let

x′ = R(x)
be the vector obtained by rotating x, and let

R1 ◦ R2

be the composition of the two rotations R1 and R2.

Working Backwards

Suppose that the kinematic chain has np prismatic joints and nr revolute
joints. Let n = np + nr be the total number of degrees of freedom. The
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joints are numbered from 1 to n, while the links are numbered from 0 to
n, with the fixed base being link number 0 and link n being the final link.

We wish to compute the position of the tip reference point in the base
coordinate system for a given set of joint variables. One way to arrive at
a procedure for doing this is to imagine the kinematic chain in the home
position and then moving one joint at a time, starting with the one furthest
from the base.

In the case of a prismatic joint one uses the recursive relationship
ix = i+1x+ piô∗i ,

where pi is the extend of the linear motion of the joint. In the case of a
revolute joint one uses instead the recursive relationship

ix = iRi+1(ix)+ d∗i ,
where iRi+1 = Rot(ω̂ω∗

i , θi), and θi is the angular motion of the joint. One
starts with the initial offset nx = d∗n and the desired result is, 0x, the
position of the tip reference point in terms of the base coordinates. A
subscript is used to denote a quantity in a particular link, while a super-
prescript denotes a coordinate system in which a quantity is measured.

The forward kinematic computation is very simple, requiring 2nr
trigonometric function evaluations and only about 3np + 18nr multipli-
cations and 3np + 14nr additions, if Rodrigues’s formula is used to deal
with the rotation of vectors (see Appendix).

To compute the orientation of the final link as well, we have to com-
pose the rotations using

iSn = iRi+1 ◦ i+1Sn
with nSn = I, a rotation of zero angle about an arbitrary axis. The com-
posite rotation from the final link to the base coordinate system is then
0Sn. Composing the rotation about doubles the amount of work, but al-
lows us to easily calculate the position in base coordinates of an arbitrary
point in the final link using:

(0x′ − 0x) = 0Sn(nd′ − nd)

Working Forwards

If the rotations are composed, it is also possible to work in the direction
from the base to the final link. In the case of a prismatic joint one uses
the recursive relationship

iy = i−1y+ 0Si(piôi∗).
In the case of a revolute joint one uses instead

0Si = 0Si−1 ◦ i−1Ri
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and
iy = i−1y+ 0Si(d∗i ).

Here 0S0 = I and y0 = 0.

Finger-printing

In order to be able to position the last link of a kinematic chain in any
desired position and orientation within its work-space, it is neccessary
to solve the inverse kinematics problem. This can only be done if the
parameters of the kinematic chain are known. High accuracy cannot be
achieved if these parameters are taken from the design plans without al-
lowance for manufacturing tolerances. To accurately determine the joint
variables that will place the last link in the desired position and orien-
tation, it is neccessary to know the parameters of the actual kinematic
chain. It has not proven practical to obtain these paramaters with suffi-
cient precision by direct measurement on the disassembled chain.

Arm Calibration

Calibration procedures have been proposed where the position of a spec-
ified calibration point in the last link is accurately measured for a large
number of joint variable combinations. The parameters of the arm are
taken to be the ones that would place the calibration point in the mea-
sured positions given the corresponding joint variables.

One has to make the following decisions when one designs such a
calibration procedure:

• What to measure.

• How many test positions to use.

• How to determine the parameters from the measured positions.

One might expect that one would have to measure the position and orien-
tation of the last link for each set of joint variables. It is difficult to make
accurate measurements of the attitude of a small rigid body in space, so
it is fortunate that calibration procedures can be devised that rely only
on positional information. In essence, each component of the measure-
ment provides a constraint on the parameters, and one just has to make
sure that there are at least as many constraints as there are parameters
to be found. If the orientation of the final link is not measured, twice
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as many test positions have to be used as would be needed were these
measurements available.

It should also be apparent that it may be possible to gather the requi-
site information by measuring only one or two of the three components
of the position. This simplifies the mechanics of the calibration proce-
dure, but also makes the solution more sensitive to errors. In a similar
vein, the measurements need not actually be the components of the po-
sition in the base coordinate system. They can be linear combinations
of these components or even distances from fixed points whose coordi-
nates are accurately known. All that matters is that a sufficiently large
number of independent constraints is gathered. This flexibility is impor-
tant, since apparatus for accurately measuring the position of a point in
three-dimensional space is expensive and difficult to calibrate and use.

By position of the final link is usually meant the position of some
reference point in the final link. It is important that this reference point
be chosen carefully, since it must move when any one of the joint variables
changes. It should not, for example, lie on the last joint axis of an arm
whose last axis is revolute. Some thought should be given to the choice
of this point, since the sensitivity of its position to a variation in one of
the joint variables will determine the accuray with which the parameters
of that joint can be found. There are, however, other factors to consider
also. The reference point should be near the points in the final link that
are likely to be of significance in the application, such as the center point
of a tool to be attached to the final link.

The minimum number of test positions that have to be used in the cal-
ibration can be determined simply by considering the number of unknown
parameters and the number of measurements taken in each test. We show
later that the description of a kinematic chain with six revolute joints in-
volves 27 parameters. So, if the only the position of a point in the final link
is measured, then at least 9 test positions must be used to provide enough
constraint to determine the parameters of the kinematic chain (since each
measurement supplies three constraints). Measurement errors will lead
to errors in the parameters. If the test positions are poorely chosen and
do not sample the work-space adequately, the errors in the parameters
can be quite large in relation to the measurement errors. This means that
kinematic solutions for position and orientations that are not near those
sampled will tend to be inaccurate.

These errors can be reduced by using more than the minimum num-
ber of test positions. In this case there will be more constraints than
parameters and the resulting equations will almost certainly be inconsis-
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tent. A least-squares procedure is then called for.

Problems with Denavit & Hartenberg Notation

Such a least-squares procedure may be developed using the Denavit &
Hartenberg notation for kinematic chains. It turns out that such a proce-
dure does not work well, in part because of the fact that the parameters
are not well behaved. That is, small changes in the arrangement of the
links in the kinematic chain can lead to large changes in some of the
parameters. Consider, for example, two neighboring joint axes that are
almost parallel. In determining the kinematic parameters, one has to find
the shortest line connecting the two axes. The place where the two axes
approach the closest, however, moves rapidly when the angle between the
axes is changed. It can easily run off to infinity in one direction, only to
make its appearance again at infinity in the opposite direction.

This kind of problem tends not to arise when a random arrangement
of links and joints is assembled. It is certain to occur, however, with near-
ideal chains, since these represent small departures from arms where axes
are exactly parallel, exactly at right angles or intersect. Unfortunately, it is
these near-ideal chains that we are most interested in. This means that we
should base the least-squares method on other sets of parameters than
those occuring in the Denavit & Hartenberg formulation.

Another problem is that the Denavit & Hartenberg notation uses four
parameters per joint. This is just right for revolute joints as we shall see,
but it is too much for a prismatic joint. The notation in this case is re-
dundant. Additional constraints must be introduced to force uniqueness.
This can be done, but complicates the least-squares procedure.

Number of Degrees of Freedom

A kinematic chain with np prismatic joints and nr revolute joints is de-
scribed by np unit vectors parallel to the motions of the prismatic joints
and nr unit vectors parallel to the joint axes of the revolute joints, as well
as (nr + 1) offset vectors. It thus may seem that it takes (3np + 6nr + 3)
parameters to fully specify such a kinematic chain. Note, however, that
the vectors constituting the description have to satisfy the constraints

ô∗i · ô∗i = 1, ω̂ω∗
i · ω̂ω∗

i = 1 and d∗i · ω̂ω∗
i = 0,

for i = 1,2, . . . n where n is the number of links in the chain. There are
np + 2nr constraints, so the number of degrees of freedom is actually
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only
(3np + 6nr + 3)− (np + 2nr) = 2np + 4nr + 3.

Alternatively, note that a unit vector defines a direction, and this can
be specified by a point on a unit sphere. Thus a unit vector has but two
degrees of freedom. Furthermore, the offsets have to be perpendicular to
the following joint axis and thus also have only two degrees of freedom.
The last offset is not so constrained and thus has a full three degrees of
freedom. The total number of degrees of freedom is thus again seen to
be

2np + 2nr + 2nr + 3 = 2np + 4nr + 3.

A general-purpose kinematic chain in three dimensions must have six
joints (at least three of which have to be revolute). A chain with three pris-
matic joints and three revolute joint is thus described by 21 paramaters,
while an all-revolute arm has 27 parameters. The number of paramaters
is reduced if additional assumptions are made, such as that the first axis
passes through the origin or that the tool reference point lies on the last
axis. Such additional constraints are of little interest in practice, however,
since manufacturing variations will ensure that the first and last offsets
cannot be assumed to be equal to zero without introducing some error in
the kinematic solution.

Least-Squares Approach

Let the forward kinematics be represented by the vector-valued function

x = f(t;p),
where t is the vector of joint variables, p is the vector of kinematic pa-
rameters and x is the vector of measured components of the position and
orientation of the last link in the chain2. The task is to determine the
parameter vector p, givenm corresponding pairs of joint variable vectors
ti and measurement vectors xi. In the absence of measurement error and
other disturbing effects, such as bending of the links, we would expect to
be able to find a parameter vector p such that

xi = f(ti;p),
for i = 1,2, . . .m. In practice, we instead minimize the sum of squares of
the residuals

ei = xi − f(ti;p).
2In what follows the vector x need only contain the components of the position

and orientation of the final link actually measured in the calibration process.
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That is, we minimize

E =
m∑
i=1

eTi ei

by suitable choice of p. This is an unconstrained minimization problem,
subject to the usual numerical methods, as long as we choose a set of
parameters that is not redundant. As mentioned earlier, however, there
are definite advantages to the use of redundant parameters. Using the
parameters introduced in this paper, for example, the minimization is
constrained by the conditions

ô∗i · ô∗i = 1, ω̂ω∗
i · ω̂ω∗

i = 1 and d∗i · ω̂ω∗
i = 0.

Gradient Methods

Many methods for non-linear optimization use the gradient of the func-
tion to be extremized. In the absence of constraints on the parameters we
could simple set the derivative of the sum of squares of the errors equal
to zero, that is,

∂E
∂p

= 0,

where the derivative of E with respect to the vector p is simply the vector
whose components are the derivatives of E with respect to the compo-
nents of p. From this we obtain

m∑
i=1

JTpei = 0,

where

JTp =
∂fT

∂p
,

is a matrix whose rows are the derivatives of the row-vector fT with respect
to the components of p. This leads to

m∑
i=1

JTpxi =
m∑
i=1

JTp f(ti;p).

It is hard to proceed further without additional information about the
structure of the forward kinematic function, f, since this equation is likely
to be highly non-linear. If we suppose, however, that we have a good
approximation of the parameter vector, then we can use Taylor series
expansion to linearize the equation locally3. Ignoring higher order terms,
we have

f(t;p+ δp) = f(t;p)+ Jp δp.
3The equations are already linear in the offset vectors di∗.
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Suppose that p is our current estimate, while p+δp is the correct solution.
Then

m∑
i=1

JTpxi =
m∑
i=1

JTp
(
f(t;p)+ Jp δp

)
,

which yields 
 m∑
i=1

JTp Jp


δp = −

m∑
i=1

JTpei.

These are the familiar normal equations for a linearized least-squares
problem. The solution of the original problem may be found iteratively
by means of this equation, with the Jacobian recomputed using the latest
estimates of the optimal values of the unkown parameters.

Parameter Space and Constraints

Unfortunately, we are not dealing with an unconstrained minimization
problem, so the iterative method suggested in the previous section is not
directly applicable. We could introduce the constraints on ô∗i , ω̂ω∗

i and
d∗i using Lagrange multipliers, or at least add penalty terms that increase
rapidly as one departs from the conditions

ô∗i · ô∗i = 1, ω̂ω∗
i · ω̂ω∗

i = 1 and d∗i · ω̂ω∗
i = 0.

A more viable alternative is to always remain in the allowable subspace
of parameters by only exploring changes in the parameters that are guar-
anteed not to violate the constraints. This is easy to do in the case of
prismatic joints, one merely has to pick two directions orthogonal4 to the
unit vector ô∗i . Things are a little harder in the case of revolute joints. Fo-
cusing attention on one joint at a time, we see that we need four different
ways of modifying the six numbers in the vectors ω̂ω∗

i and d∗i in such a
fashion that the constraints remain satisfied.

Feasible Variations of Parameters

The parameters can be changed as follows without violating the con-
straints:

4Things become even simpler if one wishes to allow for uncertainty in scaling,
as well as the zero offset of the prismatic joint variable, since then the vector
o∗i in the direction of joint extension need not be unit vector and so o∗i can be

varied arbitrarily.
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• The offset di can be rotated about the axes ω̂ωi. It is clear that it will
remain orthogonal to the next axis. Here

d′i = cosα1 di + sinα1 (ω̂ωi × di).
• The axis ω̂ωi can be rotated about the offset di. The orthogonality is

preserved, as is the length of the axis vector. Here

ω̂ω′
i = cosα2 ω̂ωi + sinα2 (d̂i × ω̂ωi).

• The offset di and the axis ω̂ωi can be rotated together about a vector
orthogonal to both. The lengths of the two vectors, as well as the
angle between them is preserved by this operation. Here

d′i = ‖di‖ (cosα3 d̂i + sinα3 ω̂ωi)
while

ω̂ω′
i = (cosα3 ω̂ωi − sinα3 d̂i).

• The offset di can be extended along its length. Since the new offset
points in the same direction as the old one, it will still be orthogonal
to the axis of the next joint. Here

d′i = eα4 di.

Note that we did not have to assume that the variations in ω̂ωi and di are
infinitesimal; the constraints remain satisfied for finite α1, α2, α3, and α4.

There is a problem with the scheme as presented so far in the unusual
situation when di has zero length. This can be handled by generating an
arbitary direction, s say, orthogonal to ω̂ωi. This direction can then be
used instead of di to generate the three variations of ω̂ωi above. Finnally,
di can be extended in a direction orthogonal to both ω̂ωi and s without
violating the constraints, in order to generate the fourth needed variation
of the parameters.

Infinitesimal Analysis of Parameter Changes

While the scheme above ensures that new parameter values generated
satisfy the required constraints for any α1, α2, α3, and α4, in practice the
changes chosen will be small in order to satisfy the assumption underlying
the linearization of the least-squares problem. It is instructive to note how
di and ω̂ωi change when α1, α2, α3, and α4, are infinitesimal. We have for
the four changes in the parameters introduced above:

δdi = δα1 (ω̂ωi × di) and δω̂ωi = 0.

δdi = 0 and δω̂ωi = δα2 (d̂i × ω̂ωi).
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δdi = δα3 ‖di‖ ω̂ωi and δω̂ωi = −δα3 d̂i.

δdi = δα4 di and δω̂ωi = 0.
Note that the three incremental changes in d∗i are orthogonal to one an-
other. Also, the two incremental changes in ω̂ω∗

i are orthogonal to one
another, as well as to ω̂ω∗

i . The four variations indroduced above thus cor-
respond to orthogonal directions in the space of feasible solutions. They
yield a useful non-redundant local coordinate system.

Constrained Optimization

We can use the unconstrained least-squares method discussed above di-
rectly if we consider variations in the paramater vector not to be inde-
pendent variations of ô∗i , d∗i and ω̂ω∗

i , but instead variations in the or-
thogonal directions in parameter space just described. While there are
(3np + 6nr + 3) parameters, there are only (2np + 4nr + 3) directions
to consider. The derivatives occuring in JTp are now not to be taken with
respect to the original parameters of the kinematic chain, but with respect
to the new parameters α1, α2, α3 and α4. In practice these derivatives can
be estimated numerically by recomputing the forward kinematic solution
for small changes in the corresponding directions in parameter space5.

Obtaining a Good Initial Guess

The iterative method presented above requires an initial guess to get
started. Typically a kinematic chain will be constructed according to some
design. The parameters extracted from the design plan provide good ini-
tial guesses for the parameters of the actual arm.

Another alternative is to use a method that finds one axis at a time,
starting in the home position. If the joint extension of a prismatic joint is
varied, a point on the chain further from the base than this joint will trace
out a straight line in space. This line will be parallel to the direction of
extension of the joint. A line can be fitted to the positions of the point on
the kinematic chain and its direction used as an estimate of the prismatic
joint direction ô∗i .

5As usual, when estimating derivatives numerically, the increment has to be
chosen carefully to reach a satisfactory compromise between round-off errors
in the computer arithmetic when the step-size is too small and truncation errors
when the step-size is too large.
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Similarly, if the joint angle of a single revolute joint is varied, an point
on the chain further from the base than this joint will trace a circle in
space. This circle will lie in a plane perpendicular to the joint axis and
the joint axis will pass through the center of the circle. Fitting a circle
to the positions of the point on the kinematic chain as one joint angle is
varied thus allows one to identify a point on the joint axis, as well as the
direction of the axis, ω̂ω∗

i .
Collecting information in this way about each joint in turn allows one

to estimate the parameters of the kinematic chain. While the estimates
are likely not to be good enough for use in the inverse kinematic solution
program, they will be adequate as starting values for the iterative method
described above for finding the least-squares solution for the parameters.

Kinematics of Non-Ideal Serial Chains

There are several ways of iteratively computing the solution of a non-ideal
kinematic chain. These differ in complexity and computational efficiency.

Method of False Position

Suppose that p is the parameter vector of the ideal kinematic chain, while
p′ is that of the actual (non-ideal) chain. A closed form solution is available
for the inverse kinematic of the ideal chain. It is also straight-forward
to compute the forward kinematics for the non-ideal chain. An iterative
scheme can be based on these two procedures. Suppose that we wish to
place the terminal device in a position and orientation specified by the
vector x. The iteration is based on a modified or “false” goal position xi
for the ideal chain. Let the solution of the inverse kinematics of the ideal
chain for this goal position xi be ti, that is,

xi = f(ti;p).
The position and orientation of the actual chain given this joint angle
vector is

x′i = f(ti;p′).
This differs from the desired position by δxi = (x′i−x). The notion behind
this method is that we can get the actual arm closer to the correct position
by pretending that we want the ideal chain to go to the modified goal
position

xi+1 = xi − δxi
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instead of x. The iteration proceeds by solving the inverse kinematics of
the ideal arm for this new goal position.

If the problem was linear, the exact solution would be found in one
step. Since it is not linear, one only comes closer to the exact solution.
The iteration can be started by letting x1 = x. The iteration converges
rapidly, provided that the parameters of the actual arm are close to those
of the ideal arm. Even a single iteration provides accuracy in position-
ing significantly better than that to be expected if the inverse kinematic
solution of the ideal arm is used directly.

Some trigonometric function evaluation can be avoided if one notes
that the forward kinematics depends only on the cosine and sines of the
joint angles. That is, one need not calculate the joint angles themselves
(until the final step of the iteration). In the solution of the inverse kine-
matics of the ideal chain it is sufficient to determine the cosines and sines
of the joint angles.

Definition of the Workspace

The work-space of a kinematic chain is the part of the space of positions
and orientations that can be attained by the final link6. Note that this
space has a higher dimension than the space in which the kinematic chain
is embedded and that it may have a non-trivial topology7.

For a kinematic chain in a plane, for example, the work-space is three-
dimensional. Two of the dimensions correspond to the position of the ref-
erence point in the final link, while the third one corresponds to the direc-
tion in which the final link points. This third dimension “wraps around,”
since adding 2π to the orientation of the final link yields the same posi-
tion and orientation. If there are three revolute joints, the work-space is
cylindrical, with opposite faces of the cylinder identified.

For a kinematic chain in three-dimensional space, the work-space, as
defined here, has six dimensions, three for position and three for orien-
tation. The three dimensions for orientation also “wrap around” and can
best be thought of in terms of the surface of a unit sphere in four dimen-
sions.

Various projections and slices of the work-space that are easier to
visualize are commonly used. For example, manufacturers often specify a

6In the discussion here we ignore mechanical limits on joint angles and joint
extensions.

7The joint-variable space too has an interesting topology, since it “wraps around”
in the direction of each of the joint variables corresponding to a revolute joint.
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weak projected work-space, that is, the set of points reachable using some
orientation of the final link. A more useful projection is a strong projected
work-space, defined to be that set of points that can be reached using any
orientation of the final link. The latter is obviously much smaller than the
former (and in some cases is actually empty!).

Near the Boundary of the Workspace

The mapping from the space of joint variables to the work-space is many-
to-one. That is, several different sets of joint variables will yield the same
position and orientation of the final link. Different sets of joint variables
yielding the same position and orientation are said to correspond to dif-
ferent arm configurations. One can think of this in terms of Riemann
sheets, with the folds in the sheets on the boundary of the work-space.
The superimposed sheets at any given point in the work-space correspond
to different arm-configurations. The boundary of the work-space is where
the number of solutions is reduced. The configuation of an arm can only
be changed on the boundary of the work-space. Singularities occur on the
boundaries of the work-space. These are places where finite velocities in
the work-space require infinite velocities in some of the joint variables.
This suggests that the iterative methods described above are likely to re-
quire a large number of iterations in parts of the work-space that are close
to the boundary.

In addition, the inverse kinematic solution method presented above
will not work at all in two cases:

• When the desired position and orientation is outside the work-space
of the actual arm (but inside that of the ideal arm).

• When the desired position and orientation is outside the work-space
of the ideal arm (but inside that of the actual arm).

In the first case, an inverse kinematic solution exist for the ideal chain, but
none for the actual one, so the iteration cannot converge. In the second
case, no inverse kinematic solution is found for the ideal arm, and so no
starting values are available for the iteration. Because of these problems,
and the need to stay away from singularities, it is suggested that positions
and orientations near the boundary of the work-space not be used.
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Summary and Conclusions

The new notation for describing serial kinematic chains with revolute
joints has been shown to be unique, unambiguous, simple to determine,
easy to use and well-behaved when small changes are made in the ar-
rangement of the elements of the chain. It has also been shown that the
notation has advantages when used in least-squares calibration proce-
dures designed to recover the parameters describing the kinematic chain.
Methods for computing the forward kinematics have been presented and
an iterative method given for solving the inverse kinematics of near-ideal
kinematic chains.

References

Brady, Michael, John M. Hollerbach, Timothy L. Johnson, Tomás Lozano-
Pérez, & Matthew T. Mason (1982) Robot Motion—Planning and Con-
trol, MIT Press, Cambridge, Massachusetts.

Craig, John J. (1986) Introduction to Robots—Mechanics & ControlAddison-
Wesley Publishing, Reading, Massachusetts.

Denavit, J. & R.S. Hartenberg (1955) “A Kinematic Notation for Lower-Pair
Mechanisms based on Matrices,” ASME Journal of Applied Mechanics,
pp. 215–221, June.

Hartenberg, R. S. & J. Denavit (1964) “Kinematic Synthesis of Linkages,”
McGraw-Hill, New York.

Deist, F. H. & L. Sefor (1967) “Solution of Systems of Non-Linear Equations
by Parameter Variation,” The Computer Journal, Vol. 10, No. 1, PP. 78-
82, May.

Gupta, K. C. (1986) “Kinematic Analysis of Manipulators using the Zero
Reference Position Description,” The International Journal of Robotics
Research, Vol. 5, No. 2, Summer.

Hollerbach, J. M. & G. Sahar (1983) “Wrist-partitioned inverse kinematic ac-
celeration and manipulator control,” International Journal of Robotics
Research, Vol. 2, No. 4, pp. 61–76.

Horn, B.K.P. & Hirochika Inoue (1974) “Kinematics of the MIT-AI-VICARM
Manipulator,” MIT AI Working Paper 69, May.



20

Kahn, M.E. & B. Roth (1971) “The Near-Minimum-Time Control of Open-
Loop Kinematic Chains,” Transactions of the ASME, Series G, Vol. 93,
pp. 164–172.

Paul, Richard P. (1972) “Modeling, Trajectory Calculation and Servoing of
a Computer-Controlled Arm,” Stanford AI Memo 177.

Paul, Richard P. (1981) Robot Manipulators—Mathematics, Programming
& Control, MIT Press, Cambridge, Massachusetts.

Pieper, Donald Lee (1968) “The Kinematics of Manipulators under Com-
puter Control,” Stanford AI Memo 72.

Uicker, J.J. Jr. (1965) “On the Dynamic Analysis of Spatial Linkages using
4×4 Matrices,” Ph.D. Dissertation, Northwestern University, Evanston,
Illinois, August.

Uicker, J.J. Jr. (1967) “Dynamic Force Analysis of Spatial Linkages,” Trans-
actions of the ASME.

Appendix

Notation for Rotation

The transformations between the coordinate systems of the links in the
chain are composed of translations and rotations. Few would argue that
vectors are the appropriate way of representing the translational offsets.
Things are not so clear when it comes to methods for representing ro-
tation. The most commonly used notation for rotation in robotics and
computer graphics is the orthonormal matrix with positive determinant.
A vector is rotated simply by multiplying the matrix by the vector, and
rotations are composed by multiplying the corresponding matrices. In
dealing with the kinematics of serial chains, other notations also have
their attractions.

Since the axes of the revolute joints and their angles of rotation are
known, it is natural to consider the axis-and-angle notation, for example.
Suppose the rotation is by an angle θ about an axis through the origin
with direction specified by the unit vector ω̂ω. Then Rodrigues’s formula
tells us that the vector x is rotated into

x′ = x cosθ + (ω̂ω · x) ω̂ω(1− cosθ)+ (ω̂ω× x) sinθ.
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A slight savings in the computation effort is achieved if we use the equiv-
alent form

x′ = x+ (ω̂ω× x) sinθ + ω̂ω× (ω̂ω× x) (1− cosθ),
since the cross-product of ω̂ω and x is re-used. Unfortunately, there is
no simple formula for composition of rotations using the axis-and-angle
notation, so it is not directly useful in dealing with kinematic chains.

A related notation does, however, does yield a simple formula for
composition. A quaternion q̊ can be thought of as composed of a scalar
part q0 and a vector part q. Multiplication of the quaternions p̊ and q̊ to
produce the quaternion r̊ can be defined in terms of the scalar and vector
parts of the quaternions. If

(r , r) = (p,p) (q,q)
then

r = pq − p · q and r = p q+ qp+ p× q.
A quaternion can also be considered as composed of a real part and
three different kinds of imaginary parts. These four numbers together
are known as Euler’s parameters.

A rotation through an angle θ about an axis given by the unit vector
ω̂ω can be represented by a quaternion q̊ of unit magnitude, whose scalar
part q is cos(θ/2) and whose vector part q equals sin(θ/2)ω̂ω. That is,

q̊ =
(

cos
θ
2
, sin

θ
2
ω̂ω
)
.

A vector is rotated according to the rule

x̊′ = q̊ x̊ q̊∗,
where q̊∗ is the conjugate of q̊, obtained by negating the vector part. Here
x̊ and x̊′ are purely imaginary quaternions whose vector parts are equal
to x and x′ respectively. It follows from the above that composition of
rotation corresponds to multiplication of unit quaternions. The formula
for rotation of a vector can also be written explicitly in terms of the scalar
and vector parts of the unit quaternion q̊ as follows:

x′ = (q2 − q · q)x+ 2 (x · q)q+ 2q(q× x).
It is important to realize that the choice of a notation for rotation is in-
dependent of the choice of a notation for the kinematic chain. The unit
quaternion notation for rotation does, however, have a number of advan-
tages that one may wish to exploit.

Computational Effort

The orthonormal matrix provides the most efficient representation when
it comes to rotating a vector. It takes just 9 multiplications and 6 addi-
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tions (3 dot-products). It is relatively expensive to rotate a vector using
unit quaternions. The obvious algorithm, based on the formula given
above, requires 22 multiplications and 14 additions8. In the computa-
tion of the direct kinematics, however, one not only has to rotate vectors,
but also compose rotations. The orthonormal matrix is at a disadvantage
here, since it takes 27 multiplications and 18 additions (9 dot-products),
while multiplication of quaternions requires only 16 multiplications and
12 additions.

The forward kinematic computation involves one rotation of an off-
set vector and one composition of rotations per revolute axis. It thus
takes 38 multiplications and 26 additions per revolute joint using unit
quaternions, while orthonormal matrices require 36 multiplications and
24 additions. It thus appears that there is not much difference between
the two notations if we consider only computational effort.

In the above analysis we have assumed the obvious implementations
of the formulae for rotation of a vector and for composition of rotations.
The computational effort can be reduced a little by more careful attention
to the details. In the case of the multiplication of orthonormal matrices,
for example, we can make use of the fact that the third column of the
result must be orthogonal to the first two and that it must have unit mag-
nitude. It can be computed from the first two columns by means of a
cross-product. This reduces the effort to 24 multiplications and 15 addi-
tions/subtractions.

Similarly, the rotation of a vector using unit quaternions can be re-
duced to just 15 multiplications and 12 additions9, using the formula

x′ = x+ 2q(q× x)+ 2q× (q× x),
where the cross-product of q and x is reused. So it takes 31 multiplica-
tions and 24 additions per revolute joint using unit quaternions, while
orthonormal matrices require 33 multiplications and 21 additions.

Once again we see that there is not a significant advantage to either
of the two notations for rotations in terms of computational effort. Other
considerations must motivate the choice of one over the other alterna-
tives. It is also important to point out, once again, that the choice of a
notation for rotation is independent of the choice of a notation for the
kinematic chain.

8Here we count a multiplication by two as an addition.
9Again counting a multiplication by two as an addition.


