
What is wrong with so-called ’linear’ photogrammetric methods?

Berthold K.P. Horn

1999 August 12

Several photogrammetric problem lead to sets of coupled non-linear equa-
tions. In some cases, claims have been made that the solutions can be found
by solving some linear equations instead. These claims invariable depend
on use of a transformation from the world to the image that does not re-
flect physical reality — i.e. perspective projection. Essentially, to obtain
a set of linear equations, some additional — and unnatural — degrees of
freedom are ‘added’ to perspective projection — such as anistropic scaling
or skew of what should be perpendicular axes. While the ’linear’ methods
may produce the correct result with perfect data, they produce physically
meaningless solutions when measurement errors are present. Further, be-
cause of the added degrees of freedom, additional contraint is required.
Importantly, these methods also are more sensitive to noise than the cor-
rect photogrammetric methods. In the case of the central photogrammetric
problems in 3-D this can be hard to demonstarte analytically or numerically.
As a result, it is difficult to make this important point clearly and convinc-
ingly. In this regard, it can be instructive instead to first consider equivalent
2-D problems, where the derivations are short and transparent,

Two-dimensional analog of the “Location Determination Problem”

In the three dimensional “Location Determination Problem” (LDP), the “3-
point” method leads to three coupled sets of quadratic equations. The
“4-point” method instead leads to linear equations, hence is easier to im-
plement, but since it does not model the physical reality correctly, is less
accurate (despite using more measurements). With perfectly accurate mea-
surements the 3-point and 4-point methods produce the same result. So
the question is one of how they differ in sensitivity to measurement er-
rors. It may be hard to see the fundamental differences between these two
methods in three dimensions.

One way to gain intuitive insight is to consider an analoguous but sim-
pler two-dimensional problem. Consider the problem of finding the posi-
tion and orientation of a flat part on a conveyor belt from a direct overhead
view. Position and orientation are relative to a standard position and ori-
entation of the part. If we do not accurately know the height of the camera
above the conveyor belt, then the scale of the image of the object is also
unknown. Overall then we have four unknown quantities: rotation of the
part relative to its reference position (θ say), translation of the part relative
to its reference position ((xo,yo) say), and scale (s say).

We can determine these four parameters by measuring where known
reference points on the object appear. Let P1 be an identifiable point on
the object with coordinates (x1, y1) in its reference position, and measured
coordinates (x′1, y

′
1). Since a measurement of a point in the image only gives

us two numbers ((x′1, y
′
1)), we cannot expect to recover all four parameters

of the coordinate transformation. Intuitively, if we only know where one
point on the object goes to, then we can rotate the object about this point
and shrink or expand it relative to this point without changing where that
particular point lies. So the transformation is not fully constrained by a
single measurement.

Two-dimensional 2-point method (Non-linear)
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If, in addition, we measure a second point P2 with reference coordinates
(x2, y2) and measured coordinates (x′2, y

′
2), we have four numbers, which

is enough to solve for the four unknowns of the transformation (clearly
then two points are the minimum required to obtain a solution). In fact,
the transformation is(

x′
y ′

)
= s

(
cosθ sinθ
− sinθ cosθ

)(
x
y

)
+
(
xo
yo

)

where the translation (xo,yo) is given by

xo = 1
2(x

′
1 + x′2)− 1

2(x1 + x2)

yo = 1
2(y

′
1 +y ′2)− 1

2(y1 +y2)

the scale s = r ′/r where

r =
√
δx2 + δy2 r ′ =

√
δx′2 + δy ′2

and
δx = x2 − x1 δx′ = x′2 − x′1
δy = y2 −y1 δy ′ = y ′2 −y ′1

while the rotation matrix components are given by

cosθ = 1
rr ′

(δx δx′ + δy δy ′)

sinθ = 1
rr ′

(δx δy ′ − δy δx′)

This transformation maps P1 exactly into P ′1, and P2 exactly into P ′2 — as can
be verified by substituting the coordinates into the equation. If there are
no measurement errors the same transformation also maps all other points
of the object into their correct rotated, translated and scaled position.

Two-dimensional 3-point method (Linear)

The above solution of the problem requires use of square-roots (arising
from the solution of a pair of quadratic equations). One may wish to find a
method that only involves linear equations, assuming this is possible. We
can do this by relaxing the constraint on the transformation and “general-
izing” it to the following linear transformation:(

x′
y ′

)
=
(
a b
c d

)(
x
y

)
+
(
e
f

)

with six unknowns a, b, c, d, e, and f . Note that the actual transformation,
discussed above, is a special case of this with the two constraints

a2 + b2 = c2 + d2 and ac + bd = 0

since sin2 θ + cos2 θ = 1 and cosθ sinθ − cosθ sinθ = 0.
With six unknowns, we need three measurements to obtain enough

constraint (since there are two coordinates per measurement). Each such
measurements yields two equations of the form:

x′i = axi + byi + e
y ′i = cxi + dyi + f

2



for i = 1,2, . . .3. We can view these as six linear equations in the six un-
knowns a, b, c, d, e, and f . These can be conveniently split into two inde-
pendent groups of three linear equations:

⎛
⎜⎝x1 y1 1
x2 y2 1
x3 y3 1

⎞
⎟⎠
⎛
⎜⎝ab
e

⎞
⎟⎠ =

⎛
⎜⎝x

′
1
x′2
x′3

⎞
⎟⎠

⎛
⎜⎝x1 y1 1
x2 y2 1
x3 y3 1

⎞
⎟⎠
⎛
⎜⎝ cd
f

⎞
⎟⎠ =

⎛
⎜⎝y

′
1
y ′2
y ′3

⎞
⎟⎠

Conveniently, the 3 × 3 coefficent matrix is the same in the two groups of
equations. The determinant of the coefficient matrix is

x1y2 − x1y3 + x3y1 − x2y1 + x2y3 − x3y2

which is zero when the three points lie on a straight line — in this case the
3-point method fails entirely. If the three points are approximately aligned,
the determinant will be small, and the solution unstable, since then one
will be dividing by a very small determinant, with the potential for great
amplification of measurement error. The 2-point method — despite the
fact that it uses fewer points — has no such problem, of course.

Numerical Example

Suppose (x1, y1) = (−1,0), (x2, y2) = (0, ε), and (x3, y3) = (1,0), with ε
small (ε� 1). The coefficient matrix is in this case

⎛
⎜⎝−1 0 1

0 ε 1
1 0 1

⎞
⎟⎠

The determinant is −2ε, so can be made as small as we please by making ε
small. The inverse of the coefficient matrix is

1
2

⎛
⎜⎝ −1 0 1
−1/ε 2/ε −1/ε

1 0 1

⎞
⎟⎠

The coefficients of the solution that are particularly sensitive to small mea-
surement errors in this case are

b = −(x′1 − 2x′2 + x′3)/(2ε)
d = −(y ′1 − 2y ′2 +y ′3)/(2ε)

The “second differences” that appear in these two formulae will be very
small when the three points are nearly colinear and evenly spaced, as in
this example. So b and d are given as the ratio of two very small numbers.

If ε is small, 1/ε is large, and so small errors in measuring any of the
six individual coordinate components x1, y1, x2, y2, x3, and y3, can induce
a large error in the coefficients b and d. For example, if ε happens to
be 0.001 then measurement errors are amplified one thousand fold in the
computation of b and d. This in turn will affect how other points away
from the measured points are mapped by the transformation.
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Summary

The two dimensional problem can be solved using methods for linear equa-
tions, but at the cost of not enforcing the known physical constraint. If we
solve the problem with six unknown parameters, it will in general not yield
a solution that corresponds to physical reality. That is, the 2 × 2 matrix
that appears in the transformation will not be the product of a scale fac-
tor and an orthonormal rotation matrix unless measurements are perfect.
In general, the matrix will not satisfy the constraint that its two rows be
orthogonal, and of the same magnitude.

With perfect measurement accuracy, the recovered transformation will
be correct either way. So the question is what happens when there are
errors in the measurements. The transformation recovered will always fit
the three measured points exactly — but large errors will be apparent when
we move away from the points for which we have measurements.

Three point measurements overconstrain the problem since we know
that only two points are needed. The extra information can be used ef-
fectively to obtain a “best fit” or “least squares” solution (we don’t show
details of this here, but in the two dimensional case there is a closed form
solution to this least squares problem) which will be better. If we are will-
ing to measure more points, we should use them optimally, not merely to
make possible a simple linear solution method that discards some of the
real constraints and reduces accuracy.

The same argument applies to the three dimensional “Location De-
termination Problem” (a.k.a. Exterior Orientation in photogrammetry). In
this case, three point measurements are enough, while four measurements
make it possible to use a simpler linear method, but at the cost of throwing
away information.

A more famous analoguous situation can be found in relation to the
problem referred to as "Relative Orientation” by photogrammetrists, where
the task is to recover the translation and rotation of one camera relative
to another using only measurements form the images taken by the two
cameras. Solution of this problem is fundamental to the reduction of aerial
photography in the creation of topographic maps. The same problem also
arises in “motion vision” where the translational and rotational motion of
a vehicle is to be recovered from “before” and “after” images of the same
scene.

In this case, the minimum number of points is five, leading to a coupled
system of five quadratic equations. It has been proposed that one can solve
this problem using instead eight measurements and selectively discarding
constraints in order to obtain a set of linear equations which can be easily
solved. There have been numerous papers pointing out the sensitivity of
the linear “eight-point” method to measurement error. These are backed
up by calculations based on large numbers of simulated measurements.

In photogrammtry, the problems of “interior orientation,” “exterior
orientation,” “relative orientation,” and “absolute orientation” are central.
Since photogrammetrists are committed to make the best possible use of
the (in their situation expensive) raw data, they never considered anything
but least squares methods using many more measurements than the min-
imal set required. They do not resort to methods that throw away some
constraint in order to simplify the equations, since this introduces errors
that they do not need to accept.
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