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The term "parallel networks" in the title of this chapter may appear to
be redundant, because the computations at different nodes of an analog
network naturally proceed in parallel. However, in several of the examples
explored here a number of different interacting networks are used, and
these do indeed operate "in parallel." We have to try and understand
the kinds of computations that simple networks can perform and then use
them as components in more complex systems designed to solve early vision
problem.

Some of the ideas are first developed in continuous form, where we
deal, for example, with resistive sheets instead of a regular grid of resistors.
This is because the analysis of the continuous version is often simpler, and
lends itself to well known mathematical techniques. Some thought must,
of course, be given to what happens when we approximate this continuous
world with a discrete one. This typically includes mathematical questions
about accuracy and convergence, but also requires that the network be laid
out on a two-dimensional plane, because today's implementations allow
only very limited stacking in the third dimension. This can be a problem
in the case where the network is inherently three-dimensional, or layered,
or where several networks are used cooperatively. There are four major
topics addressed here:
1 A Gaussian convolver for smoothing that operates continuously in

time.
2 Coupled resistive networks for interpolation of image derived data.
3 Moment calculation methods for determining position and orientation.
4 Systems for recovering motion and shape from time-varying images.
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In the process we touch on several important subtopics, including:

• Interlaced arrangements of the cells of the layers of a multi-resolution
network on a two-dimensional surface.

• Tradeoffs between closed form solutions favored on serial computers
and iterative or feedback methods better suited for analog networks.

• Laying out time as an extra spatial dimension so as to build a system
in which information flows continuously.

• An equivalence between two apparently quite differently uses of a re-
sistive network.

• Feedback methods for solving constrained optimization problems using
gradient projection, normalization, and penalty functions.

Note, that the four sections of this chapter are fairly independent and not
arranged in any particular order—for additional details see Horn [1988].

A Non-Clocked Gaussian Convolver for Smoothing

Gaussian convolution is a useful smoothing operation, often used in early
vision, particularly in conjunction with discrete operators that estimate
derivatives. There exist several digital hardware implementations, includ-
ing one that exploits the separability of the two-dimensional Gaussian oper-
ator into the convolution of two one-dimensional Gaussian operators [Lar-
son et al. 1981]. Analog implementations have also been proposed that
use the fact that the solution of the heat-equation at a certain time is the
convolution of a Gaussian kernel with the initial temperature distribution
[Knight 1983].

One novel feature of the scheme described here is that data flows
through continuously, with output available at any time. Another is an
elegant way of interlacing the nodes of layers at several resolutions. First
comes a brief review of why there is interest in Gaussian convolution.

Edge detection

The detection of step-edge transitions in image brightness involves numer-
ical estimation of derivatives. As such it is an ill-posed problem [Poggio
& Torre 1984; Torre & Poggio 1986]. All but the earliest efforts (see, for
example, Roberts [1965]) employed a certain degree of smoothing before
or after application of finite difference operators in order to obtain a more
stable estimate. Equivalently, they used computational molecules of large
support (see, for example, Horn [1971]). While most of the early work fo-
cused on the image brightness gradient, that is, the first partial derivatives
of image brightness, there where some suggestion that second-order partial
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derivatives might be useful. Rotationally symmetric ones appeared partic-
ularly appealing and it was noted that the Laplacian is the lowest order
linear operator that (almost) allows recovery of the image information from
the result [Horn 1972, 1974].

It was also clear early on that smoothing filters should be weighted so
as to put less emphasis on points further away than those nearby.1 The
Gaussian was popular for smoothing because of a number of its mathemati-
cal properties, including the fact that the two-dimensional Gaussian can be
viewed as the product of two one-dimensional Gaussians, and, much more
importantly, as the convolution of two one-dimensional Gaussians [Horn
1972]. This gave rise to the hope that it might be computed with reason-
able efficiency, an important matter when one is dealing with an image
containing hundreds of thousands of picture cells. Note that the Gaussian
is the only function that is both rotationally symmetric and separable in
this fashion [Horn 1972]. The separability property, which was the original
impetus for choosing the Gaussian as a smoothing filter, was forgotten at
times when proposals where made later to build hardware convolvers (but,
see Larson et al. [1981]).

Multi-resolution techniques

There are other reasons for smoothing a discretized image, including sup-
pression of higher spatial frequency components before subsampling. Sub-
sampling of an image produces an image of lower resolution, one that con-
tains fewer picture cells. Ideally, one would hope that this smaller image
retains all of the information in the original higher resolution image, but
this is, of course, in general not possible. The original image can be recon-
structed only if it happens not to contain spatial frequency components that
are too high to be represented in the subsampled version. This suggests
suppressing higher frequency components before subsampling in order to
avoid aliasing phenomena. An ideal low-pass filter should be used for this
purpose.2 While the Gaussian filter is a poor approximation to a low pass

1 There was, however, intense disagreement about whether the composite edge
operator should have a sharp transition in the middle or not. Some argued
that the transition should be rapid, because a matched filter has an impulse
response equal to the signal being detected, which in this case was assumed to
be an ideal step transition. Others claimed that the aim was to suppress higher
spatial frequencies to improve the signal to noise ratio. This latter argument
took into account the fact that the signal drops off at higher frequencies while
the noise spectrum tends to be fairly flat. The view of the edge operator as
a composition of a smoothing filter and a finite difference approximation of a
derivative finally reinforced the latter view.

2 For an excellent finite support approximation to a low-pass filter look in Rifman
and McKinnon [1974], Bernstein [1976], Abdou and Wong [1982].
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filter, it has the advantage that it does not have any over- or undershoot
in either the spatial or the frequency domain. Consequently, the Gaussian
smoothing operator has been used in several multi-scale schemes, despite
the fact that it is not a good approximation to a low-pass filter.

The difference of two spatially displaced Gaussians was used quite early
on in edge detection [MacLeod 1970a, 1970b]. The idea of working at mul-
tiple scales occurred around about this time also (Rosenfeld and Thurston
[1971, 1972] and Rosenfeld, Thurston and Lee [1972]). An elegant theory of
edge detection using zero-crossings of the Laplacian of the Gaussian at mul-
tiple scales was developed by Marr and Hildreth [1980] and Hildreth [1980,
1983]). This reversed an earlier suggestion that a directional operator may
be optimal [Marr 1976].

It has been shown, then, that the rotationally symmetric operators do
have some drawbacks, including greater inaccuracy in edge location when
the edge is not straight, as well as higher sensitivity to noise than direc-
tional operators (see, for example, Berzins [1984] and Horn [1986]). Op-
erators for estimating the second derivative in the direction of the largest
first derivative (the so-called second directional derivative) have been pro-
posed Haralick [1984] (see also Hartley [1985] and Horn [1986] ).3 Recently,
Canny developed an operator that is optimal (in a sense he defines) in a
one-dimensional version of the edge detection problem [Canny 1983]. His
operator is similar, but not equal to, the first derivative of a Gaussian.
A straightforward (although ad hoc) extension of this operator to two-
dimensions has recently become popular.

If we view the problem as one of estimating the derivatives of a noisy
signal, we can apply Wiener's optimal filtering methods [Wiener 1966; An-
derson & Moore 1979]. Additive white noise is uncorrelated and so has a flat
spectrum, while images typically have spectra that decrease as some power
of frequency, starting from a low-frequency plateau [Ahuja & Schachter
1983]. The magnitude of the optimal filter response ends up being linear
in frequency at low frequencies, then peaks and drops off as some power
of frequency at higher frequencies. Under reasonable assumptions about
the spectra of the ensemble of images being considered, this response may
be considered to match (very roughly) the transform of the derivative of a
Gaussian.

All this suggests that while there is nothing really magical about the
Gaussian smoothing filter, it has been widely accepted and has many desir-
able mathematical properties (although only a few of these were discussed
here). It is thus of interest to find out whether convolutions with Gaus-
sian kernels can be computed directly by simple analog networks. It is
also desirable to find out whether the Laplacian of the convolution with a
Gaussian, or the directional derivatives, can be computed directly.

3While the second directional derivative is a non-linear operator, it is coordinate-
system independent, as is the Laplacian operator.
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Binomial filters

In practice, we usually have to discretize and truncate the signal, as well
as the filters we apply to it. If we sample and truncate a Gaussian, it loses
virtually all of the interesting mathematical properties discussed above.
In particular, truncation introduces discontinuities that assure that the
transform of the filter will fall off only as the inverse of frequency at high
frequencies, not nearly as fast as the transform of the Gaussian itself. Fur-
thermore, while the transfer function of a suitable scaled Gaussian lies
between zero and one for all frequencies, the transfer function of a trun-
cated version will lie outside this range for some frequencies. These effects
are small only when we truncate at a distance that is large compared to
the spatial scale of the Gaussian.

In addition, when we sample, we introduce aliasing effects, because the
Gaussian is not a low-pass waveform. The aliasing effects are small only
when we sample frequently in relation to the spatial scale of the Gaussian.
It makes little sense to talk about convolution with a "discrete Gaussian"
obtained by sampling with spacing comparable to the spatial scale, and
by truncating at a distance comparable to the spatial scale of the under-
lying Gaussian. The resulting filter weights could have been obtained by
sampling and truncating many other functions and so it is not reasonable
to ascribe any of the interesting qualities of the Gaussian to such a set of
weights.

Instead, we note that the appropriate discrete analog of the Gaussian
is the binomial filter, obtained by dividing the binomial coefficients of order
n by 2" so that they conveniently sum to one. Convolution of the binomial
filter of order n with the binomial filter of order m yields the binomial
filter of order [n + m), as can be seen by noting that multiplication of
polynomials corresponds to convolution of their coefficients. The simplest
binomial smoothing filter has the weights:

^-1-}\2-2f

Higher order filters can be obtained by repeated convolution of this filter
with itself:

Jl 2 ll Jl ll - Jl 3 3 llt i ' i ' i j ^ l ^ j i s ' s ' s ' g j •
The transform of the binomial filter of order n is simply cos" u ) / 2 , because
the transform of the simple filter with two weights is just coso>/2. This
shows that the magnitude of the transform is never larger than one for any
frequency, a property shared with a properly scaled Gaussian. Such a filter
cannot amplify any frequency components, only attenuate them.
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Analog implementation of binomial niters

Binomial filters can be conveniently constructed using charge coupled de-
vice technology [Sage 1984; Sage & Lattes 1987]. It is also possible to use
potential dividers to perform the required averaging. Consider, for exam-
ple, a uniform one-dimensional chain of resistors with inputs applied as
potentials on even nodes and results read out as potentials on odd nodes.
The potentials on the odd nodes clearly are just averages of the potentials
at neighboring even nodes.4

One such resistive chain can be used to perform convolution with the
simple two-weight binomial filter. To obtain convolution with higher-order
binomial niters, we can reuse the same network, with inputs and outputs in-
terchanged, provide that we have clocked sample-and-hold circuits attached
to each node. At any particular time one half of the sample-and-hold cir-
cuits are presenting their potentials to the nodes they are attached to, while
the other half are sampling the potentials on the remaining nodes.

But we may be more interested in non-clocked circuits, where outputs
are available continuously. The outputs of one resistive chain can be ap-
plied as input to another, provided that buffer amplifiers are interposed to
prevent the second chain from loading the first one. We can cascade many
such resistive chain devices to obtain convolutions with binomial filters of
arbitrary order.

It is possible to extend this idea to two dimensions. Consider nodes on
a square grid, with each node connected to its four edge-adjacent neighbors
by a resistor. Imagine coloring the nodes red and black, like the squares
on a checker-board. Then the red nodes may be considered the inputs,
where potentials are applied, while the black nodes are the outputs, where
potentials are read out. Each output potential is the average of four input
potentials, and each input potential contributes to four outputs.

Unfortunately, the spatial scale of the binomial filter grows only with
the square root of the number of stages used. Thus, while a lot of smooth-
ing happens in the first few stages, it takes many more stages later in the
sequence to obtain significantly additional smoothing. Also, the smoothed
data has lost some of its high frequency content and so can perhaps be
represented by fewer samples. These considerations suggest a multi-scale
approach, where the number of nodes decreases from layer to layer. Av-
eraging of neighbors at a later layer involves connections between nodes
corresponding to points that are far apart in the original layer. Thus the
smoothing that results in one of the later layers is over a larger spatial
scale. We discuss later how to efficiently interlace the nodes of several such
layers of different resolution on a two-dimensional surface.

The outputs in this case are offset by one half of the pixel spacing from the
inputs, but this is not a real problem. In particular, an even number of such
filtering stages produces results that are aligned with the original data.
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The kind of network we are discussing here can also be approached in
a different way, starting from the properties of continuous resistive sheets,
and analog methods for solving the heat equation. For details of this ap-
proach see Horn [1988].

Multiple scales

The information is smoothed out more and more as it flows through the lay-
ers of this system. Consequently we do not need to preserve full resolution
in layers further from the input. Very roughly speaking, the information
is low-pass filtered and so fewer samples are required to represent it. This
suggests that successive sheets could contain fewer and fewer nodes.

Note also that it would be difficult indeed to superimpose, in two di-
mensions, multiple layers of the three dimensional network described above,
if each of them contained the same (large) number of nodes. Now if, in-
stead, a particular layer contains only 1/k times as many nodes as the
previous layer then the total number of nodes is less than k / ( k — 1) times
the number of nodes in the first layer, as can be seen by summing the ap-
propriate geometric series. If, for example, we reduce the number of nodes
by one half each time, then a network containing a finite number of layers
has less than twice the number of nodes that the first layer requires. (If we
reduce the number of nodes to a quarter each time, then the whole network
has less than 4/3 times as many as the first layer.)

Growth of standard deviation with number of layers

If we define the width of the binomial filter as the standard deviation from
its center position, while the support is the number of non-zero weights,
then it turns out that width grows only as the square-root of the support.
So another argument for subsampling is that, if all the layers and the
interconnections are the same, then the width of the binomial filter grows
only with the square root of the number of layers. One way to obtain more
rapid growth of the width of the smoothing filter is to arrange for successive
layers to contain fewer nodes. This can be exploited to attain exponential
growth of the effective width of the smoothing filter with the number of
layers.

In the case of a square grid of nodes, a simple scheme would involve
connecting only one cell out of four in a given layer to the next layer. This
corresponds to a simple subsampling scheme. Sampling, however, should
always be preceded by low-pass filtering (or at least some sort of smoothing)
to limit aliasing. A better approach therefore involves first computing the
average of four nodes in a given 2 x 2 pattern in order to obtain a smoothed
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result for the next layer.5 Each cell in the earlier layer contributes to only
one of the averages being computed in this scheme.

The average could be computed directly using four resistors, but these
would load down the network. The average can be computed instead using
resistors connected to buffer amplifiers. Each cell in the earlier layer feeds
a buffer amplifier and the output of the amplifier is applied to one end of a
resistor. The other ends are tied together in groups of four and connected
to the nodes in the next layer. Note that the nodes of the latter sheet
should be thought of as corresponding to image locations between those of
the earlier sheet, rather than lying on top of a subset of these earlier nodes.
But this subtlety does not present any real problems.

Layout of interlaced nodes

A four-to-one reduction in number of nodes is easy to visualize and leads to
rapid reduction in the number of nodes in successive layers, but it does not
yield a very satisfactory subsampling operation. Aliasing can be reduced if
the number of nodes is reduced only by a factor of two. Note that in this
case the total number of nodes in any finite number of layers is still less than
twice the number of nodes in the first layer. An elegant way of achieving
the reduction using a square grid of nodes is to think of successive layers as
scaled spatially by a factor of \/2 and also rotated 45° with respect to one
another. Once again, each of the new nodes is fed a current proportional
to the difference between the average potential on four nodes in the earlier
layer and the potential of the node itself. This time, however, each of
the earlier nodes contribute to two of these averages rather than just one,
as in the simple scheme described in the previous section. A node receives
contributions from four nodes that are neighbors of its ancestor node in the
earlier layer, but it receives no contribution directly from that ancestor.

An elegant partitioning of a square tessellation into subfields may be
used in the implementation of this scheme in order to develop a satisfactory
physical layout of the interlaced nodes of successive layers of this network
(Robert Floyd drew my attention to this partitioning in the context of
parallel schemes for producing pseudo grey-level displays on binary image
output devices [Floyd 1987]). This leads to the interlaced pattern shown
in figure 1, where each cell is labeled with a number indicating which layer
it belongs to.

This scheme leads to an arrangement where the nodes of the first layer
are thought of as the black cells in a checkerboard. The red cells form a

Naturally, because this is not an ideal low-pass filter, some aliasing effects
cannot be avoided. In fact, the resulting transfer function goes through zero
not at the Nyquist frequency, but only at twice that frequency, but this is
much better than not doing any smoothing at all.
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0 1 3 1 5 1 3 1 7 1 3 1 5 1 3 1 9
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
5 1 3 1 6 1 3 1 5 1 3 1 6 1 3 1 5
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
7 1 3 1 5 1 3 1 8 1 3 1 5 1 3 1 7
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
5 1 3 1 6 1 3 1 5 1 3 1 6 1 3 1 5
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
9 1 3 1 5 1 3 1 7 1 3 1 5 1 3 1 6

Figure I. A way to interlace nodes of several layers of a multi-scale network
so they can be laid out on a two-dimensional surface. The network containing
nodes labeled (n + 1) has half as many nodes as the network whose nodes are
labeled n. The total number of nodes is less than twice the number of nodes in
the finest layer.

diagonal pattern with \/2 times the spacing of the underlying grid. We can
now consider this new grid as a checkerboard, turned 45° with respect to the
first. The black cells in this checkerboard belong to the second layer. The
remaining red cells form a square grid aligned with the underlying grid but
with twice the spacing between nodes. Considering this as a checkerboard
in turn, we let the black cells be the nodes of the third layer, and so on ....

Note that one half of the cells are labeled 1, one quarter are labeled 2,
one eighth are labeled 3 and so on. The top left node, labeled 0, does not
belong to any of the partitions. If we consider the nodes labeled with their
row number i and there column number j , both starting at zero at the top
left node, we find that a node belongs to layer k if the binary representation
of i2 + j2 has k — 1 trailing zeros!

Coupled Poisson's Equation for Interpolation

Uniform resistive networks that solve Poisson's and Laplace's equations
have many other applications. One is in interpolation, where data may be
provided on just a few contours, as happens in the edge matching approach



540 Berthold K. P. Horn

to binocular stereo [Grimson 1981].6 Many modern interpolation methods
are based on physical models of deformation of elastic sheets or thin plates.
So these are briefly reviewed here first.

Mathematical physics of elastic membranes

An elastic membrane takes on a shape that minimizes the stored elastic
energy. In two dimensions the stored energy is proportional to the change
in area of the membrane from its undisturbed shape, which we assume here
is flat. The area is given by

J^l+z^+z^dxdy,

where z(x, y) is the height of the membrane above some reference plane. If
the slope components Zx and Zy are small,

^1+^+^1+J(^+^) .
Thus the membrane minimizes

j f ^ l + ^ y ) d x d y ,

provided that the partial derivatives Zx and Zy are small. A unique mini-
mum exists if the sheet is constrained to pass through a simple closed curve
QD on which the height is specified. The Euler equation for this calculus
of variation problem yields

Zxx + Zyy = 0 or Az = 0,
except on the boundary where the height z(x, y) is specified [Courant &
Hilbert 1953].

Interpolation by means of a thin plate

The above equation has been proposed as a means of interpolating from
sparse data specified along smooth curves, not necessarily simple closed

The problem of interpolation is harder if data is given only on a sparse set of
points, as opposed to contours. Consider, for example, Laplace's equation with
some constant valne specified on a simple closed curve with a different value
given at a single point inside the curve. The solution minimizes the integral
of the sum of squares of the first partial derivatives. It turns out that this
is not a well-posed problem, because there is not a unique solution. One of
the "functions" that minimizes the integral takes on the value specified on the
boundary everywhere except at the one point inside where a different value
is given. Clearly no "interpolation" is occurring here. This problem is not
widely discussed, in part because the discrete approximation does not share
this pathological behavior [Grzywacs & Yuille 1987].



Chapter 43 Parallel Networks for Machine Vision 541

contours. We explored the use of this idea, for example, in generating
digital terrain models from contour maps in our work on automated hill-
shading (Strat [1977] and Horn [1979, 1981, 1983]) as well as in remote
sensing (Bachmann [1977], Horn and Bachmann [1978], and Sjoberg and
Horn [1983]). Some undergraduate research project work was based on this
idea [Mahoney 1980], as were the bachelor's theses of Goldfinger [1983], and
Norton [1983]. Recently, a 48 x 48 cell analog chip has been built to do
this kind of interpolation [Luo, Koch & Mead 1988].

The result of elastic membrane interpolation is not smooth, however,
while height in the result is a continuous function of the independent vari-
ables, slope is not. Slope discontinuities occur all along contour lines, and
the tops of hills and bottoms of pits are flat.7

This is why we decided to use thin plates for interpolation from contour
data instead. The potential energy density of a thin plate is

. / 1 1 \ 2B
A -2+^ +——'\Pi Pi} P\Pi

where A and B are constants determined by the material of the plate,
while p\ and p^ are the principal radii of curvature of the deformed plate
[Courant & Hilbert 1953]. Again, assuming that the slopes Zx and Zy are
small, we can use the approximations

1 1 1 ^ 2
— + — ?a (Zxx + Z y y ) and —— ss ZxxZyy — Zxy .
Pi P2 PlP2

This allows us to approximate the potential energy of the deformed plate
by a multiple of

// ((zxx + Zyy)2 - 2(1 - p,)(zxxZyy - z^y)) dx dy ,

where ^ = B/A. If the material constant p, happens to equal one, this
simplifies to the integral of the square of the Laplacian:

/Y (^dxdy .

The Euler equations for this variational problem lead to the bi-harmonic
equation

A ( A z ) = 0 ,
except where the plate is constrained. This fourth-order partial differential
equation has a unique solution when the height z(x,y), as well as the
normal derivative of z{x, y) are specified on a simple closed boundary 9D.

It turns out that the same Euler equation applies when the material
constant p. is not equal to one, because ( z x x Z y y — z ^ y ) is a divergence expres-
sion [Courant & Hilbert 1953]. Solution of the bi-harmonic equation, while

Discontinuities in slope are not a problem for many applications of interpolated
depth or range data. Shaded views of the surfaces, however, clearly show the
discontinuities, because shading depends on surface orientation.
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involving considerably more work than Laplace's equation, produces excel-
lent results in interpolation from contours. Iterative methods for solving
these equations are available (see for example Horn [1986]). Some obvious
implementations may not be stable, particularly when updates are executed
in parallel, so care has to be taken to ensure convergence. The problem is
that computational molecules or stencils with negative weights are needed,
and these can amplify errors with some spatial frequencies rather than at-
tenuate them.8 This issue is not pursued any further here. The proper way
of dealing with boundary conditions is also not discussed here, for details,
see the cited references.

The same methods were used in interpolation of surface depth from
stereo data along brightness edges [Grimson 1981, 1982, 1983]. Grimson
observed that the null-space of the quadratic variation (2^3. + 2z^y + z^y)
is smaller than that of the squared Laplacian (A.z)2, and so decided to use
the quadratic variation as the basis for his binocular stereo interpolation
scheme. This corresponds to choosing p, = 0. Note that this affects only
the treatment of the boundary; one still solves the bi-harmonic equation
inside the boundary.

The methods discussed here rapidly get rid of high spatial frequency
components of the error, but may take many iterations to reduce the low
frequency components. The number of iterations required grows quadrati-
cally with the width of the largest gap between contours on which data is
available.

Efficient multiresolution algorithms were developed to speed up the
iterative computation of a solution [Terzopoulos 1983]. This approach has
also been applied these to variational problems other than interpolation
[Terzopoulos 1984].

Resistive networks for the bi-harmonic equation

It is clear then that methods for solving the bi-harmonic equations are
important in machine vision. Unfortunately, simple networks of (posi-
tive) resistances cannot be constructed to solve discrete approximations
of this equation. Computational molecules or stencils [Horn 1986] for the
bi-harmonic operator involve negative weights and connections to nodes
two steps away.

It is of interest then to discover ways of using methods for solving
Poisson's equation

Az(x,y) = f ( x , y )
in the solution of the bi-harmonic equation, because simple resistive net-
works can be constructed to solve Poisson's equation. One simple idea is

8The corresponding system of linear equations is not diagonally dominant.
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to use the coupled system,
Az(a-, y) = u(x, y) and ^u(x,y) = f ( x , y ) ,

because here
A(Az) = A u = f ( x , y ) .

The constraints on z(x, y) can be handled easily in this formulation, but
constraints on the partial derivatives of z(x, y) are harder to incorporate.
This idea will not be pursued further here.

An alternative explored recently by Harris [1986] involves minimization
of the functional

I I ((^ - P)2 + {zy - q)2 + ̂ (Pl +pl+ql+ qD) dx dy .

The Euler equations for this calculus of variation problem yield
A;z = px + qy ,

AAp =p- z ^ ,
AAg = q - Zy .

In this scheme, three coupled Poisson's equations are used, each of which
can be solved using a resistive network. Constraints on both z(x,y) as well
as Zx and Zy can be incorporated.

The relationship to the problem of solving the bi-harmonic equation
can be seen by expanding

A(Az)=A(p,+<^),
and noting that differentiation and application of the Laplacian are linear
operations, so that they can be interchanged:

A(p,) = (Ap), = (l/A)(p - z^ = (l/A)(p, - z^}
A((^) = (Ag)^ = (l/A)(g - Zy)y = (1/A)(^ - Zyy)

and finally
A(A^) = (I/A) ((p, + qy) - (z^ + zyy)) = 0,

since Az = (px+<ly)- (Note that this does not necessarily imply that p = Zx
and q = Zy.)

This scheme is reminiscent of the one developed by Horn for recovering
depth z(x,y), given dense estimates of the components p and q of the
gradient of the surface (as used in Ikeuchi [1984], and described in Horn
and Brooks [1986]). There one minimizes

// (^ - P)2 + (zy - Q)2 dx dy ,

for which the Euler equation yields
A.Z = px + qy ,

where p and q are here the given estimates of the components of the surface
gradient. In Harris's scheme we do not have these estimates at all points,
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instead we are given z at some points, and some linear combination of p
and q at some other points.

The above ideas can be extended to solving the image irradiance equa-
tion that occurs in the shape from shading problem [Horn 1989; Horn &
Brooks 1989]. See Harris [1989] for other ideas on an analog implementa-
tions of the thin plate interpolation method.

Moment Calculations for Position and Orientation

Calculations of sums of products of image coordinates and functions of the
picture cell grey-levels are useful in several early machine vision algorithms.
These moments are easily calculated using many different architectures,
including bit-sliced, pipelined, analog networks, and by means of charge
coupled devices. Such methods have several applications. A new technique
for directly estimating motion of the camera from first derivatives of image
brightness, for example, depends on the calculation of such moments (as
discussed in the next section).

In addition, a large fraction of all binary image processing methods
involve the computation of the zeroth, first and second moments of the
regions of the image considered to be the image of one object. Presently,
most commercially available machine vision systems have only rudimentary
mechanisms for dealing with grey-level images and are aimed mainly at
binary images. These systems typically have digital means for computing
the moments. While such systems are restricted in their application, they
are widely available and well understood. They can be used, for example, to
determine the position and orientation of an isolated, contrasting workpiece
lying fiat on a conveyor belt (see, for example, Chapter 3 in Horn [1986]).
Once the position and orientation of the object is known, a robot hand with
the appropriate orientation may be sent to the indicated position to pick
up the part. A device that finds the centroid of a spot of light in the image
can also be used as a high-resolution light-pen and a means of tracking a
light source, such as a light bulb attached to an industrial robot arm.

A variety of methods is available for efficiently computing the zeroth-
and first-order moments, including methods for working with projections
of the image or run-length coded versions of the image. Less appears to
be known about how to easily compute second- and higher-order moments,
except that iterated summation can be used to avoid the implied multipli-
cations.

Such ideas are used in special purpose digital chips that have been built
for finding moments [Hatamian 1986,1987]. We nevertheless explore analog
networks for this task, partly to see whether they may have advantages
over existing digital implementations and partly because they constitute a
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stepping stone on the way to some types of networks used in the recovery
of motion from time-varying images [Horn 1988].

In this section several different methods are explored for computing
moments using analog networks. It will be shown that some elegant meth-
ods exist that make it possible to obtain these moments using networks
with relatively few components.

Use of first moments for position

Suppose that we have a characteristic function that indicates places in the
image where the object region is thought to be. That is,

»,/„ ,,\ _ J 1' if (a;' V) ls in the region;
'• '•"{0, otherwise.

Under favorable circumstances, such a characteristic function can be ob-
tained by thresholding a grey-level image. The area of the object is obvi-
ously just the zeroth-order moment

A= b ( x , y ) d x d y ,

where the integral is over the whole image.
The position of the object can be considered to be the location (x,y)

of its center of area, denned in terms of the two first-order moments as
follows:

Ax = I xb(x,y)dxdy and Ay = / / y b(x, y) dx dy .

The center of area, or centroid is independent of the choice of coordinate
system.9

Use of second moments for orientation

There are three second-order moments, and these can be used to define the
orientation of the object as well as a shape factor. The orientation of the
object may be taken to be specified by the direction of the axis of least
inertia, which is independent of the choice of coordinate system axes.10

The inertia of a particle relative to a given axis is the product of
the mass of the particle and the square of the perpendicular distance of

^hat is, the position of the centroid relative to the object does not depend on
the choice of coordinate nsed in the calculation.
If we rotate the coordinate system, we find that the axis of least inertia deter-
mined in the new coordinate system is just the rotated version of the axis of
least inertia in the original coordinate system.
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the particle form the axis. So the inertia of an extended object about an
arbitrary axis in the image plane can be denned as

I = // ^(^'y)^2''1/)^3'^'
where

r(x, y) = x sin 0 — y cos 6 + p
is the distance of the image point (x, y) from the line with inclination 9
(measured anti-clockwise form the a;-axis) and perpendicular distance p
from the origin.

It is easy to show that the axis of least inertia passes through the
center of area, so it is convenient to compute the second-order moments
with respect to the center of area (see, for example, Chapter 3 in Horn
[1986]). Let

j j x'2 b(x, y) dx dy ,

b' = x ' y ' b ( x , y ) d x d y ,

c/ = y ' 2 b ( x , y ) d x d y ,c
J J D

where x' = (x — x) and y' = (y — y). The inertia can then be expressed as
a function of the angle of inclination of the axis in the form

I = l(a '+c /)+ l(c '-a ')cos261-6 /sin26l.
Zi Zi

Differentiating this with respect to 0 and setting the result equal to zero
yields

(c' - a') sin 26>o + 2 b' cos 20o = 0,
for the inclinations of the axes corresponding to extrema of inertia. Note
that we do not actually need all three of the second-order moments to com-
pute 0o, only the combination (c'-a') and b' are required. This observation
is exploited later in a circuit designed to find the orientation of the axis of
least inertia.

There is a two-way ambiguity here, since the equation is satisfied by
(0o + T!-) if it is satisfied by 60. This is to be expected, because we are
only finding the line about which the region has least inertia. Higher order
moments can be used to resolve this ambiguity, but we will not pursue this
subject any further here.

The axis through the center of area yielding maximum inertia lies
at right angles to the axis yielding minimum inertia. The maximum and
minimum inertia themselves are given by

Anax = J^ + C') + J^/2+(c'-a02,

Anin = J(a' +C') - J^+^-a^.
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The ratio of Jmin to Jmax is a factor that depends on the shape of the object.
It will be equal to one for a centrally symmetric object like a circular disc
and near zero for a highly elongated object. Note that we need all three
second-order moments to compute a "shape factor."

So-called moment invariants are combinations of moments that are
independent of translation and rotation of the object region in the image
[Cagney & Mallon 1986]. The second order moment invariants are all
combinations of the minimum and maximum inertia. There are thus only
two degrees of freedom. One may choose any convenient combinations,
such as

-'max i -^min — 0 -t- C ,

(^nax - ̂ nin)2 = b'2 + (c' - 0')2 .

These invariants are sometimes used in recognition,.

Additional comments and higher moments

In practice the double integrals that apply in the continuous domains are
replaced by double sums, in the obvious way. So the area, for example, is
just a multiple of

A=EE^--
i=l j=l

The second-order moments a', b', and c', relative to the centroid (x,y),
can be computed from the moments a, b, and c relative to the (arbitrary)
origin of the coordinate system, provided that the zeroth and first-order
moments are known:

a' = a — A x2, b' == b — A xy, and c' = c — A y2 .
Still higher moments may be used to get more detailed descriptions of
the shape. Also, as noted, the axis of least inertia leaves an ambiguity in
orientation. The third-order moments can be used to disambiguate the two
possibilities.

We have assumed so far that b(x,y) can only take on two values. It
should be obvious that the same analysis holds when b(x, y) is not binary
(yet independent of accidents of lighting and viewing geometry). This may
be advantageous, for example, when one has a coarsely sampled image, in
which case the position and orientation of the part may not be determined
very accurately from a mere binary image because of aliasing problems.
Intermediate grey-levels on the boundary of the object can provide infor-
mation that allows one to determine the position and orientation to much
higher precision.
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Resistive networks for moment calculation

If area and center of area are all we are computing, then a very simple
scheme can be used. Consider first a regular one-dimensional chain of N
resistors each of resistance R. We can use such a simple resistive chain
to generate potentials at each node linearly related to the position. This
potential can then be used in further calculation—to generate a current
injected into a global buss [Horn 1988]. Now consider a different way of
using the very same chain. Suppose that the chain is grounded at each end,
and that we can measure the currents 7; and Ir flowing into the ground at
these points. There are k resistors to the left and (N — k) to the right of
the fc-th node. Suppose a potential V develops at the fc-th node when we
inject a current / there. Clearly

V V
Ii= — and Ir• kR ' ( N - k ) R

while the total current is
. . . N V
I = 11 + Ir k(N - k) R '

so that
Ii N - k Ir k
— = ——— and -I N I N '

We can compute the "centroid" of these two currents:
II , Ir , k , ,

X = X[— + Xr— = Xl + Jr^r — X f ) ,

which is the x coordinate of the place where the current was injected. If
we inject currents at several nodes, we can show, using superposition, that
the computation above yields the centroid of the injected currents.

Now imagine a regular two-dimensional resistive grid grounded on the
boundary. Current is injected at each picture cell where b(x,y) = 1. The
currents to ground on the boundary from the network are measured. The
total current obviously is proportional to the area, that is, the number of
picture cells where b(x,y) = 1. More importantly, the center of area of
the current distribution on the boundary yields the center of area of the
injected current distribution.

To see why, consider a uniform resistive sheet covering the region D,
grounded on the boundary 9D. Current i(x, y) per unit area is injected into
the sheet at the point ( x , y ) , where the potential is v(x,y). The potential
satisfies Poisson's equation

Ar(a:,y) = -pi(x,y),

where p is the resistivity (per unit square). Now consider the current
density per unit length extracted from the sheet at the boundary:

. . . 9v
j ( x , y ) = - p ^ ,
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where the normal derivative of the potential can be denned by
9v _ 9v dy Qv dx
Qn Qx ds 9y ds '

with the tangent to the boundary given by

/cte d^^
\ ds ' ds )

It is clear that the total cnrrent injected into the sheet must equal the total
current leaving through the boundary. We can show this formally using the
two-dimensional version of Green's formula [Korn & Korn 1968]:

/•/• . . , ,, /• / 9v Qu\ ,l i (uAv — v/\u) dA= u— — v— as,
J J D JQD\ 9"- <9"/

with v = v(x,y) and u(x,y) = 1. We obtain

I f ^ v d A = f ^ d s ,
J J D JQD 9n

or
/ / i(x,y)dA= / j ( x , y ) d s .

J J D J9D
This works, of course, even when the boundary is not grounded.

Now, if we instead use u(x, y) = x in Green's formula, we obtain
/ • / . , , /• / 9v 9x\ ,

x/\vdA= x— -v— ds,
J J D JQD \ 9n Qnj

which, since v(x, y ) = 0 on the boundary, becomes just
/ • / . , , /• 9v .i f a-AudA= / x— as,

J J D J8D 6n

so that
// xi(x,y)dA= / x j ( x , y ) d s .

J JD J8D
So the first-order moment in the ^-direction of the boundary current is
equal to the first-order moment in the re-direction of the injected current.
Similarly,

// yi(x,y)dA= / y j ( x , y ) d s .
J J D J9D

The same trick can be used with any harmonic function u(x,y), that is, a
function for which Au = 0.

It is easy to see that xy and (y2 — a"2) are harmonic functions, so we
can compute their integrals in this fashion also:

// (y2-x2)i(x,y)dA= / (y2 - x 2 ) j ( x , y ) ds ,
J J D J9D

and
/ / xyi(x,y)dA = f x y j ( x , y ) d s .

J J D J9D
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Now the first of these integrals corresponds to (c — a), while the second
corresponds to b in the calculation of orientation. This means that we can
obtain the position and orientation of a region just from the currents on
the boundary of the resistive network.

Note, however, that we cannot obtain all three second-order moments
independently from the boundary currents. We only obtain one of the two
second order moment invariants. Consequently, we also cannot compute a
shape factor from the boundary currents.

The two-dimensional Laplacian operator can be written in polar form
as

1 9 ( Qu\ 1 Q^u
Au = -— 1 r— + —i-ani '

r Or \ or j r2 90-
so we see that

Uk = T^ cos(k0) and Ufc = r^ svn(k0) ,
are two families of harmonic functions. We have used the first few members
of these sets already, namely,

1, x=rcos0, y=rsvn.0, x2 — y2 = r2 cos 20, and Ixy = r2 sin 20.
The next pair of harmonic functions one could use are the monkey-saddle
functions

a;3 — 3xy2 and 3x2y — xy2 .
Continuing in this way, we see that one can compute two combinations of
each of the (n + 1) moments of n-th order from the boundary currents.
We cannot compute all of the moments independently. For purposes of
determining the position and orientation, however, we only need the first
few.

Implementation details and previous work

To obtain the required combinations of moments, we have to integrate the
product of the boundary current with

1, x, y , (x2-y2) and 2xy.
The first is just the total current flowing out of the resistive network. The
computation of the rest will be affected somewhat by the shape chosen for
the resistive network. In the case of a circular image region, for example,
we multiply the currents by weights that vary as

1, cos 0, sia0, cos 20 and sin 20,
where 0 is the angle measured from the center of the image. Note that the
weights are fixed for each point on the boundary. The computation may be
simplified by using a square boundary, but at the cost of loss of rotational
symmetry.
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There has been considerable work on finding moments using digital
means. Special purpose systems have been developed for tracking objects
using these schemes [Gilbert et al. 1980; Gilbert 1981]. Also, a number of
special purpose digital signal processing systems have been built to compute
moments. Some of these systems have much of the required circuitry on a
single digital chip [Hatamian 1986, 1987]. Furthermore, a discrete analog
chip has been built that determines the centroid using a gradient descent
method [DeWeerth & Mead 1988]. With considerable increase in circuit
complexity this could perhaps be extended to also determine orientation
using the approach described in the first part of this section.

There also exists a continuous analog light-spot position sensor that
uses a method similar to the one described above (Selspot Systems). It
consists of a single, large, square photo-diode and some electronics. Elec-
trodes are attached on four edges of the "lateral effect" photo-diode and
four operational amplifiers are used to measure the short-circuit current
out of each of the four edges. The total current is just the integral of the
signal. The ratio of the difference to the sum of the currents on opposite
edges gives the position of the centroid in one direction. The currents in
the other two edges give the other component of the centroid.

Apparently the possibility of computing combinations of higher mo-
ments from the boundary currents, and thus determining orientation also,
has not previously been noted.

A network equivalence theorem

In the above we have discussed two apparently quite different ways of using
a simple resistive network:
• Apply a given potential distribution along the edge of the network and

use the open-circuit potentials at interiors nodes in further calculation,
and

• Inject currents at interior nodes and use the measured short-circuit
currents on the edge in further calculation.

There is an intimate relationship between these two ways of using a resis-
tive network. In some cases one of the two schemes leads to much simpler
implementation than the other, so it is important to understand the equiv-
alence. This will now be explored in more detail for arbitrary networks of
resistors.

Consider a resistive network with external nodes segregated into two
sets A and B of size N and M respectively. Now perform two experiments:
1 Connect the nodes in group A to voltage sources with potentials Vn

for n = 1, 2, ..., N and measure the resulting open-circuit potentials
on the nodes in group B. Let these be called Vm, for m = 1, 2, . . . , M.
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2 Connect the nodes in group B to current sources with currents im, for
m = l , 2 , . . . , M , and measure the short-circuit currents in the nodes
of group A. Let these be called In for n = 1, 2, ..., N .

Then
N

EW
71=1

M

== V, imVm

m=l

Proof: Consider in case 1 that we apply a potential only to node n in
group A, that is, Vk = 0 for k 7^ n. Let the resulting open-circuit potential
on node m in group B be called Vm,n- We note that superposition tells us
that the potential on node m in group B when potentials are applied to all
of the nodes in group A is

N

^m — / ^ '^m,n -

n=l

Next, consider in case 2 that we inject current only at node m in group
B, that is ii = 0 for I ^ m. Let the resulting short-circuit current at node
n in group A be called In,m- We note that superposition tells us that the
current in node n of group A when currents are injected into all of the
nodes of group B is

M

^71 = / _, •'n.nz •
m=l

The reciprocity theorem tells us that

•'71,771 'n — ^771 ̂ m,n •

Now sum over all of the nodes in group A:
N N

/ ^ ^-n^m 'n — / ^ ^m ^m,7l 7'n.Tn •• n

7i=l n=l

or
N N

/ ^ in^n\ 'n — ^"m / ^ '^m,n — ^m ̂ •m •

7i=l n=l

Then sum over all of the nodes in group B:
M N M

/ ^ / ^ ^n^m 'n — / ^ ^m ^m i^n,7n 'n
771=1 n=l 771=1

or
N M N M M

S S KJn,77i ='^vn'^ In,m = ̂  im Vm ,
n=l m=l n=l m=l •m=l
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or, finally
N M

^ In Vn = Y^imVm-

n=l m=l

Application

One application of this theorem is in the simplification of circuits for the
analog computation of some weighted average. Suppose that we have a
resistive network that is used to compute some quantities Vm, (for example, a
potential representing the x position in an image) from some fixed inputs Vn
(for example, potentials representing x on the edge of the resistive network).
These potentials are then used to compute a weighted average like

v = Z^m=l t'" v"
_M ,
Z^m=l "m

where the quantities im are the weights (for example, image brightness).
Then an equivalent way of obtaining the same result is to inject cur-

rents proportional to im into the resistive network, now grounded in the
places where inputs where applied earlier. Let the currents at the places
where the network is grounded be /„. Then the same weighted average can
be obtained by computing instead

^N T V•V ^ Z-^n=l -'" •"
y^ T '
Z^n=l •'"

Which of the two schemes is simpler depends on details of the implemen-
tation, including the relative sizes of N and M.

Example

In the one dimensional version of the centroid-finding chip, a potential
representing x is generated from two fixed input potentials applied at either
end of a uniform resistive chain. An output current proportional to the
product of the light intensity at a picture cell and the local value of x
is injected into a global bus. The weighted average of the potentials at
the picture cells can then be computed from this current and a current
proportional to the total brightness

EM
— _ m=iv"1 ̂ "lu — _ nf^M

2^m=l 1"m

This allows us to determine the x position of the centroid of the light spot
-_ (V2-^xi+(v-Vi)x^

V, - Vi
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where x^ and 3-2 are the coordinates at either end of the resistive chain, at
the points where the potentials Vi and Vy are applied.

The computation can also be performed by injecting currents propor-
tional to the brightness at each picture cell into the same uniform linear
resistive chain now grounded at either end. The centroid can be computed
from the currents flowing into ground at the ends:

_ _ a-i Ji + 3:2/2
x- h+h '

In this particular case, the second scheme appears to be simpler.
For generalizations of these ideas to the continuous domain, see Horn

[1988].

Short Range Motion Vision Methods

Attacks on the motion vision problem can be categorized in a number of
ways. First of all, there is the question of how large a change between suc-
cessive images the method is meant to deal with. Feature-based methods
appear to be best suited for the so-called long-range motion vision problem,
where there is a relatively large change between images. Conversely, these
methods generally are not good at estimating motions with subpixel accu-
racy. Feature-based methods essentially solve the correspondence problem,
which is the central problem in binocular stereo. Unfortunately, the prob-
lem in motion vision is typically even harder than the binocular stereo
problem, because the search for a match is not confined to an epipolar line.

Gradient-based methods are better suited to situations where the mo-
tion between successive images is fairly small, that is, the short-range mo-
tion vision problem. Correlation methods appear to fall somewhere in
between, because they cannot deal with significant changes in foreshorten-
ing or photometric changes, yet are not able to easily produce displacement
estimates with subpixel accuracy.

There are several different approaches to the short-range motion vision
problem. Here we briefly list some based directly on brightness derivatives
rather than matching of isolated features or correlation. We first discuss
several methods for recovering optical flow and then go on to methods
for recovering rigid body motion directly, without using optical flow as an
intermediate result.

All methods for recovering motion implicitly make some assumptions
about how images change when the viewer moves with respect to the
scene. Simple correlation methods, for example, assume that changes in
foreshortening can be ignored. This is not a good assumption in wide-
baseline binocular stereo nor in some long-range motion vision applica-
tions. Feature-based methods and correlation methods also assume that
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the brightness pattern does not change drastically with viewpoint. Fortu-
nately, the brightness of many real surfaces does not depend significantly
on the viewing direction for a fixed illumination geometry.

Methods based on brightness gradients implicitly assume that the vari-
ations in brightness at a particular point in the image due to motion are
much larger than the brightness fluctuations induced by changes in view-
point. This is a reasonable assumption unless the surface lacks markings
and is illuminated by rapidly moving light sources. Most methods will be
"fooled" by the motion of virtual images resulting from specular or glossy
reflections of point light sources.

Recovering optical flow from brightness derivatives

The motion field is the projection in the image of velocities of points in
the environment with respect to the observer. Observer motion and object
shapes can be estimated from the motion field. The optical flow is a vector
field in the image that indicates how brightness patterns move with time.
The optical flow field is not unique, because the matching of points along
an isophote in one image with an isophote of the same brightness in the
other image is not unique. Additional constraints have to be introduced in
order to select a particular "optical flow." Under favorable circumstances
the optical flow so computed is a good estimate of the motion field. There
are several algorithms of different complexity and robustness for estimating
optical flow. At one end of the spectrum we have algorithms that assume
the flow is constant over the image, at the other, there are algorithms that
can deal with depth discontinuities. Many of the interesting variations are
listed here in order of increasing complexity:

1 Constant Optical Flow [Nagel 1984; Weldon 1986]: Here the flow
velocity, (u,v), is assumed to be constant over the image patch. This
may be a good approximation for a small field of view. Several cameras
aimed in different directions (spider head) could yield flow vectors that
provide the information necessary to solve for the observer motion. Al-
ternatively, this computation may be applied to (possibly overlapping
and weighted) patches of one image. A basic least squares analysis
leads to a simple algorithm. All that is required is:
a Estimation of the brightness derivatives Ex, Ey, and E f .
b Accumulation of the sums of the products E^, E^Ey, Ey,

ExEt, and E y E f , and,
c Solution of two linear equations in the two unknowns u and

v. This last step could be done off-chip, using the totals
accumulated on-chip. Alternatively, the computation can be
done in an iterative or feedback mode on chip (as it is in
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Tanner and Mead [1987]). The bandwidth going off-chip is
very low in either case.

If the computation is done for many (possibly overlapping and weight-
ed) image windows, then an optical flow vector field results (at resolu-
tion less than the full image resolution). Such a vector field can then
be processed off-chip to yield camera motion and scene structure using
a least-squares method (a Id Bruss and Horn [1983]).

2 Basic Optical Flow [Horn & Schunck 1981]: Here the velocity field
is allowed to vary from place to place in the image, but is assumed to
vary smoothly. Depth discontinuities are not treated, but elastic de-
formations, fluid flows and rigid body motions yield reasonable results.
The calculus of variation problem here leads to a coupled pair of Pois-
son's equations for u(x,y) and v(x,y), the components of the optical
flow. The right-hand sides of these equations (that is, parts not involv-
ing u and v) are computed from the brightness derivatives. One needs
to be able to compute values such as (a2 + E^ + E^) (or approxima-
tions thereto). The partial differential equations themselves, of course,
can be conveniently solved on two interlaced resistive networks. The
inputs may be currents injected at nodes, while the outputs are the
potentials there. The boundaries have to be treated carefully. The
algorithm is robust with respect to small random errors in the resis-
tive network. (It is not robust against round-off error in the digital
version, common when the number of bits available to representing u
and v are limited). As usual, there is some small advantage to working
on a hexagonal grid.

3 Optical Flow with Multiplier [Gennert & Negahdaripour 1987]:
The basic optical flow algorithm is based on the assumption that the
brightness of a small patch of the surface does not change as it moves.
In practice there are small brightness changes, because the shading on
the surface may change slowly as a patch moves into areas that are
illuminated differently. When the surface is highly textured, brightness
variations at a point in the image resulting from motion are much
larger than those due to changes in shading and illumination, and so
these can be safely ignored. If there is no strong texture on the surface,
somewhat better results can be obtained if one takes account of these
small changes in shading. One can do this using a simple multiplier
model. Here the brightness of a patch in a frame of an image sequence
is assumed to be a multiple of the brightness of the same patch in the
previous frame. The multiplier (assumed to be near unity) is allowed
to vary from point to point in the image, but is assumed to vary slowly
with position. The resulting calculus of variation problem now leads
to three coupled partial differential equations. The new algorithm is
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not much more complex (about 50% more work) than the basic one,
yet yields better results.

4 Optical Flow with Discontinuities [Koch, Marroquin & Yuille
1986; Gamble & Poggio 1987; Hutchinson, Koch, Luo & Mead 1987;
Murray & Buxton 1987]: The notion of a line process for dealing with
discontinuities in images originated with Geman and Geman [1984].
This idea was later applied to discontinuities in optical flow by Koch,
Marroquin and Yuille [1986], Hutchinson, Koch, Luo and Mead [1987],
and Murray and Buxton [1987]. To deal with discontinuities in the op-
tical flow, which typically occur at object boundaries, one introduces
line processes that cut the solution and prevent smoothing over discon-
tinuities. The resulting penalty function to be minimized is no longer
convex and the solution involves more than simply solving a set of cou-
pled partial differential equations. It seemed at first that this approach
was doomed to failure, because methods like simulated annealing for
solving such nonlinear problems are hopelessly inefficient on an ordi-
nary serial computer. However, a reasonably efficient method results
if one gives up the demand for the absolute global minimum and in-
stead is satisfied with a good solution, with cost close to the absolute
minimum cost [Blake & Zisserman 1988]. It helps to base the decision
about whether to introduce a line process at a particular place only on
the local change in the cost of the solution [Geman & Geman 1984].
Further improvements in performance can be had if line processes are
allowed only very near to discontinuities in brightness, that is, edges
[Gamble & Poggio 1987]. This suggests integrating some edge finding
algorithm on the same chip. The approach here leads to an analog
network that interacts with some logic circuits implementing the line-
process decision making (see figure 5 in Koch, Marroquin and Yuille
[1986]).

Often there is a concern about the rate of convergence of simple methods for
solving Poisson's equation. Multi-grid methods are suggested as a means
of speeding up the process. This is fortunately not so much of a concern
here because:
• It is rare to have no inputs (zero right-hand side) over large patches

(that is, large patches of uniform brightness are rare).
• The analog networks ought to settle fairly rapidly, even when there

are many nodes because the time-constant should be small.
• Excellent starting values are available from the solution for the previ-

ous frame.
Because it is difficult to get good estimates of optical flow from noisy im-
age data, there has been a trend recently to go directly to the ultimately
desired information, namely observer motion and object shape. Instead of
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computing these from a flow field, they are derived directly from image
brightness and the partial derivatives of brightness. These methods also
lend themselves to implementation in a parallel network (see next section).
They do, however, assume rigid body motion. Thus these methods are
of little use when we are dealing with elastic deformations and fluid flow.
Consequently there is still strong interest in finding rapid, robust methods
for estimating the optical flow.

Direct recovery of rigid body motion

It is possible to derive observer motion and object shape directly from
brightness gradients using something like a least-squares approach. These
methods are not as mature as those for estimating the optical flow, but
may ultimately be of more interest. A number of special cases have been
solved so far:

1 Pure Rotation: [Alomoinos & Brown 1985; Horn & Weldon 1988]
In the case of pure rotation, the motion field is particularly simple
because it does not depend on the distances of the observer from the
objects in the scene. In this case a simple least-squares analysis leads
to a set of three linear equations in the three unknown components of
the angular velocity vector uj = (A,B,C)7'. The coefficients of these
equations are once again sums over the whole image of products of
brightness derivatives and image coordinates. The algorithm is re-
markably robust with respect to noise in the brightness derivatives,
because the problem is so highly overdetermined (three unknowns and
hundreds of thousands of measurements).

2 Pure Translation: [Horn & Weldon 1988] In the case of pure trans-
lation, the task is to recover the direction of the translation vector.
The focus of expansion is the intersection of this vector with the image
plane, that is, it is the image of the point towards which the observer
is moving. Once the focus of expansion has been located, relative dis-
tances of selected points in the scene (where the brightness gradient is
large enough in the direction towards the focus of expansion) can be
estimated. (One simply divides the rate of change of brightness in the
direction towards the focus of expansion by the time rate of change
of brightness.) There are several methods for recovering the direction
of translation. The most promising at this point requires eigenvector-
eigenvalue decomposition of a 3 x 3 matrix constructed using sums of
products of brightness derivatives and image coordinates. These sums
could be computed on-chip, with the final analysis being done off-chip.
This algorithm is not nearly as robust as the one for pure rotation, be-
cause there are now an enormous number of additional "unknowns,"
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namely the distances to the scene at each picture cell. For the same
reason this algorithm is much more interesting because it allows us to
recover depth and thus obtain surface shape information.

3 Planar Surface: [Horn & Negahdaripour 1987] If the scene consists
of a single planar surface (perhaps an airport viewed from a landing
aircraft), it is possible to compute the direction of translation, the ori-
entation of the plane, the rotational velocity of the observer, as well
as the time to impact, directly from certain sums accumulated over
the whole image. There is a two-way ambiguity in the result that
can be resolved using other sensory information or by waiting for new
solutions based on subsequent frames. The sums required are "mo-
ments," products of the partial derivatives of brightness (Ex, Ey, and
Ez) and the image coordinates x, and y. The final calculation involves
eigenvector-eigenvalue decomposition of a 3 x 3 matrix constructed
using these sums, but this can be done off-chip. Both closed form
and iterative solutions are known. There are quite a large number of
different sums needed, but each is relatively simple to compute.

4 Other Constraints on Motion: E. J. Weldon and his students at
the University of Hawaii have been investigating a number of other
special restrictions on motion. A wheeled vehicle moving in contact
with a smooth surface is confined to translation in the local tangent
plane and rotation about the local normal. Thus the rotation vector
has to be perpendicular to the translation vector. This constraint
allows a solution of the motion vision problem that takes a form very
similar to the one discussed above. Another interesting special case
arises when the vehicle can rotate only about an axis parallel to the
translational vector. There is also strong interest in exploiting fixation
or tracking. If one fixates on a point in the moving environment,
a constraint is introduced between the instantaneous rotational and
translational velocities of the observer relative to the environment.
This allows one to simplify the motion constraint equation and reduces
the problem to something similar to that of pure translation.

The general case (arbitrary surface, both translation and rotation) has not
been solved yet. Also, the pure translation solutions are not very robust,
suggesting that one needs to continue the solution in time in order to get
stable results (all of the methods discussed above work "instantaneously"
using two image frames, and do not make much use of information in earlier
frames).

In the case of pure translation, depth is recovered only in places where
the local brightness gradient is strong enough in the direction towards the
focus of expansion. This suggests the need for a smooth interpolation pro-
cess that fills in the rest. It might take the form of the solution of Poisson's
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equation or the bi-harmonic equation. A simple passive network will do for
Poisson's equation, of course. If the higher order approach is taken, nega-
tive resistances and more connections are required. It is possible, however,
as we saw earlier, 'to decompose the bi-harmonic equation into coupled
Poisson's equations. The latter can then be solved using coupled resistive
network.

Finally, to deal with depth-discontinuities, one can introduce line-
processes once again. Naturally, we are now talking about a very com-
plicated system!

Constant flow velocity

The method that assumes that optical flow is constant in a patch will be
considered next, as a simple illustration of the kind of approach taken. First
we review the brightness change constraint equation. Image brightness
E(x, y , t) is a function of three variables. If the brightness of a small patch
does not change as it moves, we can write:

^».
which can be expanded to yield:

9E dx QEdy 9E _
9x dt Qy dt 9t

or
uE^ + vEy + Ef = 0,

where Ex, Ey are the components of the brightness gradient, while Et is
the time rate of change of brightness. This so-called brightness change
constraint equation provides only one constraint on the two components of
image flow, u and v. Thus image flow cannot be recovered locally without
further information.

Suppose now that the image flow components u and v are constant
over a patch in the image. Then we can recover them using a least squares
approach: We minimize the total error

1 = 1 1 (uE^ + vEy + E^2 dx dy .

Differentiation with respect to u and v leads to

— = / / ( u E ^ + v E y + E t ) E ^ d x d y ,
du J J D

— = (uE^ + vEy + Et) Ey dx dy .
dv J J o
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Setting these derivatives equal to zero, we obtain

u i f El + v f t E^Ey = - 1 1 E,Et,
J J D J J D J J D

'•/LE'EX+V/LE^''-/LE'E'•
These are two linear equations that can be easily solved for u and v.

D"' !LEl !L E•B' - //, E•E' !LEVE- •
and D"= //>^ //, ̂  - !LEl !L EIEl •
where D is the determinant of the coefficient matrix, that is,

r t r r / r r \2
D= El E^-[ E^\ .

J J D J J D \JJD /

The coefficients are easily calculated in parallel, if so desired.
While this closed form solution is very appealing in a sequential digi-

tal implementation, it involves division and other operations that are not
particularly easily carried out in analog circuitry. In this case, an iterative
or feedback strategy may be favored. Using a gradient descent approach,
we arrive at

— = -a j j {uE^ + vEy + Et) E^ dx dy ,

— = - a ( u E ^ + v E y + E t ) E y d x d y .
dt J J D

At each picture cell, we estimate the derivatives of brightness, and compute
the error in the brightness change constraint equation

e = [uEx + vEy + Ef) ,
using global buses whose potentials represent u and v. Currents propor-
tional to —e Ej: and —e Ey are injected into the buses for u and v respec-
tively. This is essentially how the constant flow velocity chip of Tanner
[1986] and Tanner Mead [1987] works.

Special purpose direct motion vision systems

We have seen that in short-range motion vision one need not solve the cor-
respondence problem. One can instead use derivatives of image brightness
directly to estimate the motion of the camera. The time rate of change of
image brightness at a particular picture cell can be predicted if the bright-
ness gradient and the motion of the pattern in the image is known. This
two-dimensional motion of patterns in the image, in turn, can be predicted
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if the three-dimensional motion of the camera is given. Given these facts, it
should be apparent that the motion of the camera can be found by finding
the motion that best predicts the time rate of change of brightness (t-
derivative) at all picture cells, given the observed brightness gradients (x-
and y-derivatives). Once the instantaneous rotational and translational
motion of the camera have been found, one can determine the depth at
points where the brightness gradient is large and oriented appropriately.

As discussed above, several special situations have already been dealt
with, including the case where the camera is known to be rotating only,
the case where the camera is translating only, and the case of arbitrary
motion where the surface being viewed is known to be planar. The solution
in the case of pure rotation is very robust against noise (because there
are only three unknowns and thousands of constraints) and so well worth
implementing. The solution in the case of arbitrary motion with respect
to a planar surface is also quite robust, although it is subject to a two-way
ambiguity. In this case there are eight unknowns (the rotational velocity,
the translational velocity and the unit surface normal). The solution in the
case of pure translation is more sensitive to noise (because there are about
as many unknowns as constraints), but of great interest, because depth
can be recovered. An elegant solution to the general case has not yet been
found. It can, however, be expected that it will not be less robust than the
pure translation case (because there are only three more unknowns).

We will now describe in detail a method for the solution of the pure
rotation case and a method for the solution of the pure translation case.
We saw earlier that if the brightness of a patch does not change as it moves,
we obtain the brightness change constraint equation

uEx + vEy +Et=0,
where E,:, Ey are the components of the brightness gradient, while £'< is the
time rate of change of brightness. This equation provides one constraint on
the image flow components u and v. Thus image flow cannot be recovered
locally without additional constraint.

We are now dealing, however, with rigid body motion, where image
flow is heavily constrained. The image flow components u and v dependent
on the instantaneous translational and rotational velocities of the camera,
denoted t = (U, V, W)7' and (i> = (A, B, C)7' respectively. It can be shown
by differentiating the the equation for perspective projection [Longuett-
Higgins & Prazdny 1980], that

—U + xW
u= ——_—— +Axy-B(l+x2)+Cy,

Zi
—V 4- nW

v = y + A(l + y2) - B xy - C x ,
/^

where Z is the depth (distance along the optical axis) at the image point
(x,y). Combining this with the brightness change constraint equation, we
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obtain [Horn & Weldon 1988]

E t + v - i j j + — s - t = 0 ,
Z

where

and

' +Ey + y(xE^ + yEy)
v = I -E^ - x(xE, + yEy)

\ yE^-xEy

( -E^
S= -Ey

, x E ^ + y E y /
This is called the rigid body brightness change constraint equation.

Feedback computation of instantaneous rotational velocity

Horn and Weldon [1988] rediscovered a method apparently first invented
by Alomoinos and Brown [1985] for direct motion vision in the case of pure
rotation. This method uses integrals of products of first partial derivatives
of image brightness and image coordinates and involves the solution of a
system of three linear equations in three unknowns. When there is no
translational motion, the brightness change constraint equation becomes
just

Et + v • uj = 0.
This suggests a least-squares approach, where we minimize

1= [ { (Et+v-ujf dxdy,

by suitable choice of the instantaneous rotational velocity w. This leads to
the simple equation

( / / VVT c l • x d y l ( ^ } = — I I EfV dx dy .
\JJD ) J J D

This vector equation corresponds to three scalar equations in the three un-
known components A, B, and C of the instantaneous rotational velocity
vector. The system of linear equations can be solved explicitly, but this
involves division by the determinant of the coefficient matrix. When con-
sidering analog implementation, it is better to use a resistive network to
solve the equations. Yet another attractive alternative is to use a feedback
scheme (not unlike the one used to solve for the optical flow velocity com-
ponents in the case when they are assumed to be constant over the image
patch being considered).

Finally, the solution can be obtained by walking down the gradient of
the total error. The derivative with respect to w of the sum of squares of
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errors is just

— = 2 / / (Ef + v • (^)v dx dy .
"" J J DI D

This suggest a feedback scheme described by the equation
At> f f ,_ \ , ,
— = -a j I (Et + v • <i;)v dx dy .

The idea revolves around a bus, with potential on three wires proportional
to the present estimates of the components A, B and C of the instantaneous
angular velocity uj. Estimates of the partial derivatives of image brightness
(the components of the brightness gradient and the time rate of change
of brightness) are computed at each picture cell. From them, and the
position (x, y) of the cell, one can compute v. The coordinates x and y
can be made available to each cell using resistive chains that are connected
to fixed potentials on the sides of the chip. (It may be useful also to
directly supply xy, (1 + x2) and (1 + y2), because these are coefficients in
the expression for v).

Next, one computes the error term
e = Et + v • u,

which, in the absence of noise, is zero when the correct solution has been
found. Currents are fed into the bus proportional to

—ev = —(Et + v • fa;)v .

Each of the three bus wires is terminated in a capacitance. We now have
a system that obeys an equation like

=-a (Et + v • h/)v dx dy ,

the steady state solution of which is

/ / ^'t + v • h»)v dx dy = 0,

or
vv^^ dx dy ) u = — \\ Et~v dx dy .

i ) J JD
The feedback scheme involves considerably less computation than the closed
form solution (for example, we do not have to compute the 3 x 3 matrix
vv7'). Also, the feedback scheme can be shown to be stable (as long as the
integral of •w7^ is not singular, that is, as long as there is sufficient contrast
in the image texture).

The elementary components needed are the sensors, differential buffer
amplifiers that estimate spatial derivatives, approximate time delays for
estim'ating the temporal derivative, four-quadrant analog multipliers, and
current sources. There also will be resistive chains to supply values of x
and y at each image location.
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Computation of instantaneous translational velocity

While the scheme described above for recovering the rotational velocity
is very robust as shown both by sensitivity analysis and experimentation
on computers with both synthetic and real images, it is does not allow us
to recover depth. This is because there is no dependence of the bright-
ness derivatives on depth when there is no translational motion. We now
consider the other extreme, when there is only translational motion.

When there is no rotational motion, the brightness change constraint
equation becomes just

Et+(s-t)^=0.

Note that multiplying both Z and t by a constant does not perturb the
equality. This tells us right away that there will be a scale factor ambiguity
in recovering motion and depth. We take care of this by attempting only
to recover the direction of motion. That is, we will treat t as a unit vector.

We can solve the constraint equation above for the depth Z in terms
of the unknown motion parameters. We obtain

z-'^
If our estimate of the instantaneous translational motion t is incorrect,
we will obviously obtain incorrect values for the depth from this equation.
Some of these values may be negative (which correspond to points on ob-
jects behind the camera), while others will be unexpectedly large. Some
methods have been explored that to find a direction of translational mo-
tion that yields the smallest number of negative depth values when applied
to the image brightness gradients [Horn & Weldon 1988]. Although these
methods work, they have yet to show promise in terms of computational
expediency. We consider another approach next.

In many cases, particularly in industrial robotics, the depth range is
bounded and the occurrence of very large depth values is not normally an-
ticipated. One method for estimating the instantaneous translation veloc-
ity makes use of this observation.11 We essentially look for a translational
velocity t that keeps Z small at most points in the image. Suppose, for
example, that we find the translational velocity that minimizes

'-//^^-/W^'-
subject to the constraint that t be a unit vector. We cannot measure
brightness exactly, so there will be some error in our estimate of Et. To
avoid problems due to noise in places where Ef is almost zero, we may

The derivation of the method in terms of a minimization of the integral of Z
is merely an explanatory artifice. There is a way of arriving at the same result
in a way that does not appear to be this ad hoc [Horn & Weldon 1988].
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introduce an offset in the denominator as follows:

1= [ [ w^Et^s-t^dxdy,

where w(Et) = 1/(.E? + e2). This integral can also be written in the form

J=t w(Et)ss1' dxdy\ t=tT St,

where S is a 3 x 3 matrix. The expression for I is clearly a quadratic form
in t. Given the constraint that t be a unit vector, such a quadratic form
attains its minimum when t is the eigenvector of the matrix S correspond-
ing to the smallest eigenvalue (see the discussion of Raleigh's quotient in
Korn and Korn [1968]). Analog circuits can be devised to compute these
eigenvectors [Horn 1988].

It is also possible to deal with a situation where motion can be ar-
bitrary (that is, both rotation and translation), but the surface shape is
constrained. While this problem has a closed form solution [Horn & Ne-
gahdaripour 1987], it turns out to be much easier to use gradient descent
[Horn 1988]. The circuitry for this begins to be more complex, with several
four-quadrant multipliers needed at each picture cell.

Gradient descent methods in general are very appealing when one is
thinking about analog implementation. Fortunately it is possible to deal
with constrained minimization as well as unconstrained minimization using
either gradient projection [Horn 1988] or a reversal of the gradient compo-
nent corresponding to the Lagrangian multiplier, combined with additional
penalty functions [Platt & Barr 1988].

Summary and Conclusions

A number of problems in early vision have been explored here and shown
to lead to interesting analog networks. The focus was on implementations
involving resistive networks, perhaps with capacitors and analog multipli-
ers, as well as simple amplifiers. In several cases, feedback schemes were
shown to be considerably simpler to implement than circuits based on the
closed form solutions usually sought for in digital implementations. Simple
feedback networks with local connections can invert local operations [Horn
1974]. This is of interest because the inverses of local operations typi-
cally are global, and direct implementation of these inverses would require
unimplementably high wiring densities.

A theorem giving an equivalence between two apparently quite dif-
ferent ways of using the same resistive network sometimes allows one to
find a way of implementing a particular computation that is much simpler
than the obvious direct implementation. Gradient projection was men-
tioned as a way of solving constrained minimization problems, although
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in several cases it was possible to avoid this added complication through
judicious normalization of the terms to be minimized and addition of a
penalty term.

Also described here is a novel way of interlacing the nodes of a three-
dimensional multi-resolution network in a two-dimensional tessellation.
The number of nodes decreases from layer to layer by subsampling after
low-pass filtering. Each layer contains half the number of nodes in its
predecessor.

Using a spatial dimension to represent time in a partial differential
equation was shown to lead to new ways of implementing certain convolu-
tional algorithms that would otherwise require a clocked architecture. In
this alternate scheme, image data flows in continuously on one end, while
processed information flows continuously out the other end.

It is clear that many early vision problems lend themselves to im-
plementation in parallel analog networks. This applies particularly to so-
called direct methods, as opposed to feature-based methods, because the
direct methods deal mostly with quantities connected to measurements at
individual picture cells as well as their relationship to values at neighbor-
ing picture cells. Work on analog methods for early vision, started more
than twenty years ago. It has now received a strong new impetus from
the more general availability of facilities for integrated circuit design and
fabrication. This renewed interest is reflected in the pioneering work at Cal-
tech in Carver Mead's group [Mead 1989]. But no one should think that
the methods explored there, or the ideas collected here, comprise anything
more than an extremely sparse sampling of what is yet to come.
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When AI people first wrote image-understanding programs,
processing a 256 X 256 pixel image with even the simplest
program would often take an hour. This limited not only
what people did, but also what people thought about. Back
in the days when the PDP-10 was the dominant AI com-
puter, it was natural to think in terms of 3 X 3 filters and
4 x 4 filters and not as natural to think in terms of the
massive computations that the human eye can deploy.

On the other band, knowing that a blazingly-fast device
can be built enables you to think about what you would do if
you had it even before fully functional hardware takes shape.
Once Knight bad built a small 8 X 10 pixel chip for sens-
ing images and producing the difference-of-Gaussian com-
putation on them, vision researchers could get on with us-
ing difference-of-Gaussian computations. Even though that
computation takes a long time on a serial machine, vision
researchers realized that practical devices could be built if
and when the difference-of-Gaussian computation proved to
have important practical applications.

Now further advances in VLSI technology have enabled
a new round of thinking about what sorts of image-oriented
computations can be done on chips. The collection of ideas
explained by Horn in this chapter, while not intended to be
a thorough review, demonstrates nevertheless that it is rea-
sonable to think in terms of silicon retinas without seriously
overstressing the metaphorical sense of the word retina.
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