
Pattern Generation in Synthetic Aperture Lithography (SAL)

Berthold K. P. Horn — 2002 March 15

Synthetic Aperture Lithography (SAL) uses apparatus similar to that used
in Synthetic Aperture Microscopy (SAM), as described by Mermelstein [1].

We wish to create patterns by interfering N beams of coherent light.
The wavenumbers of the beams all lie on a circle in the frequency do-
main, typically equally spaced around the circle. If the wavelength of the
monochromatic light is λ and the angle between the incident beams and
the reference surface is θ, then the ring in the frequency domain has ra-
dius

ω0 = 2π/λ0

where
λ0 = λ/ cosθ

is the effective wavelength on the surface. The equivalent numerical aper-
ture is cosθ (i.e., the sine of half the cone angle).

Using wavenumbers confined to a circle leads to interference patterns
that are independent of height above the reference plane, since the dif-
ference of any two wavenumbers has zero component in the z direction
(perpendicular to the reference plane). This give us potentially infinite
depth of field. The price we pay for this advantage is that the class of
possible patterns we can created is limited.

Limitations on Patterns Generated

The N beams create N(N − 1)/2 pairwise interference patterns. Hence
the N complex amplitudes of the beams affect N(N − 1)/2 contributions
to the Fourier transform of the interference pattern. It is clear that there
must be some limitations then on what patterns can be generated, beyond
those mentioned above, since there are only 2N “controls” — namely the
amplitudes and phases of the beams.

Linear Superposition Does Not Hold

The complex amplitudes of the electric fields of the beams add up at a
given point, but the brightness does not, since it is the magnitude squared
of the complex amplitude. As a result, superposition does not hold for
brightness. This means that we cannot directly assemble complex pat-
terns by adding up the complex amplitudes needed to create simpler pat-
terns. At the same times, some remarkable patterns can result from the
non-linear interaction of destructive and constructive interference.



2

Note that we can achieve superposition using successive exposures,
although this is of course slower than putting down the desired pattern
in one exposure. So we should attempt to get as as complex a pattern as
possible in a single exposure in order to reduce the overall exposure time.

Approaching the Problem

There are at least two ways to make progress on this problem:

(i) determine what patterns are generated by some simple mathemati-
cally defined complex amplitude distributions for the beams (forward
problem); and

(ii) use numerical optimization techniques to find complex amplitude
distributions that produce a pattern that best fits a desired pattern
(inverse problem).

As it turns out, one method can benefit from insights obtained from the
other. The following discussion illustrates.

The Forward Problem

One approach to discovering useful beam amplitudes to generate particu-
lar patterns is to first study the “forward problem” of finding the pattern
produced by particularly simple choices of complex amplitudes.

If the amplitude, phase, and polarization vector of beam l are Al, φl,
p̂l respectively, then the electric field at position r at time t is

E(r, t) =
N∑
l=1

Al cos
(
kl · r−ωlt +φl

)
p̂l

If we assume that the frequencies ωl of the beams are all the same, then
the brightness averaged over one cycle (T = 2π/ωl) is given by

I(r) = 1
2

N∑
l=1

A2
l +

N−1∑
l=1

N∑
m=l+1

AlAm cos
(
klm · r+φlm

)
p̂l · p̂m

where klm = kl − km and φlm = φl −φm.

Point of Light

We can produce a point of light at the origin if we arrange for all the
beams to constructively interfere there. We can do this by adjusting all
of the phases so they are zero at the origin. In the limit of an infinite
number of beams on the circle, with the same amplitude on all beams, we
are essentially taking the inverse Fourier transform of an impulsive ring
of radius ω0. Using polar coordinates for spatial as well as frequency
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coordinates, we have

f(r ,α) = 1
2π

∫∞
0

∫ π
−π

1
ω0

δ(ω−ω0)ejrω cos(α−φ)ωdωdφ

or

f(r ,α) = 1
2π

∫ π
−π
ejrω0 cosφdφ

So we find that the electric field is proportional to

J0(ω0r)

where r is the distance from the origin and J0 is the Bessel function of
the first kind of order zero. The brightness is just the square of the above
expression.

If the beams all make the same angle θ with respect to the surface,
then the interference pattern is constant in the direction perpendicular to
the surface (because pairwise difference between wavenumbers, kl − km,
all have zero z-components). So the “point of light” is really a “line of
light” when considered in three dimensions.

Lens of Equivalent NA

It is interesting to compare this to the pattern produced by a lens of the
same numerical aperture, that is, where the rays from the edge of the lens
make an angle θ with the surface. In this case the pattern is obtained by
taking the inverse Fourier transform of a disc rather than just a ring. The
disc can be treated as the superposition of an infinite number of rings of
various radii. The amplitude of the pattern created is proportional to∫ω0

0
ωJ0(ωr)dω

or, letting ω′ =ωr ,
1
r 2

∫ω0r

0
ω′J0(ω′)dω′

Using the identity
d
dz
zJ1(z) = zJ0(z)

we finally find that the electric field is proportional to

2
J1(ω0r)
(ω0r)

Again, the brightness is the square of this expression, which is the fa-
miliar “Airy disk” referred to in discussion of the limits of resolution of
optical equipment with circular apertures. For the lens, the pattern is not
constant in the direction perpendicular to the surface, having very limited
depth of field if the numerical aperture is large.
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Note that the first zero of J0(ω0r) occurs at ω0r = 2.4048... while
the first zero of J1(ω0r) occurs only at ω0r = 3.8317.... So the ring of
beams produces a considerably smaller point (radius of about 0.382...λ0)
than does a lens of equal NA (radius of about 0.609...λ0).

On the other hand, the “side lobes” decay only with 1/r when using
the ring compared to 1/r 3 for the lens. This is because

Jn(x) ≈
√

2
πx

cos
(
x − nπ

2
− π

4

)

for x � 1. More of the energy is in the central disc with the lens than
with the ring of beams.

Cyclical Variation of Phase

Suppose now that, instead of forcing all the beams to the same phase, we
adjust the phase of each beam according to the rule φ = nξ for some
integer n, where ξ is the angle that the beam direction makes with the
x-axis when projected onto the reference plane.

Now we have destructive interference at the origin and the complex
amplitude there is zero. If we take the inverse Fourier transform of the
ring with this phase component we find that the amplitude of the electric
field is now

f(r ,α) = 1
2π

∫ π
−π
ej(ω0r cosφ−nφ)dφ

so the electric field is proportional to

Jn(ω0r)
The Bessel function of the first kind of order n, for n > 0, starts at zero
for r = 0 and has its first maximum around

x(n) ≈ n+ 2n+ 1
n+ 3

So a dark area at the origin of radius roughly nλ0/(2π) is surrounded by
a ring of light of radius x(n)λ0/(2π), with additional “halos” further out.

The destructive interference in the center is remarkably good over a
considerable area, since

Jn(x) ≈ 1
n!

(
x
2

)n
for x� 1.

While the ring may not be a pattern of direct interest in lithography,
the above does suggest a way of delivering high power electromagnetic
waves to a ring shaped area while “shielding” the interior of the ring with
surprising effectiveness as the result of destructive interference there.
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In the figures, brightness indicates amplitude, while color indicates phase.
Shown are the bright rings for n = 0, 1, . . . 5. Note (i) the dark interior of
the ring, (ii) the secondary rings or “ghosts”, and (iii) the artifacts in the
outer areas resulting from use of only a finite number of beams.
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Artifacts due to Finite Number of Beams

If we use a finite number N of beams, then the pattern is very close to the
above in areas near the origin, as long as n � N . The brightness along
the ring is more or less constant, again, as long as n� N . Some artifact
appear ouside the ring at a radius of approximately

ra ≈ N/(2π)λ0

This ring of artifact moves inwards as n is increased, to merge with the
bright ring when n = N/2.

Note that due to aliasing we do not obtain new patterns when n is
larger than N/2, since, the pattern for n, when N/2 < n < N , is the same
as that for n′ = N −n.

The patterns for n equal to 13, 18, 26 and 27 with N = 55 beams. The
artifact ring moves inwards as n increases, to merge with the bright ring
when n = N/2. When n = N/2, neighboring beams have opposite phase.
The uniform bright ring breaks up into N bright spots as n increases.
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Phase Variation Along the Bright Ring

In the limit of an infinite number of beams, the amplitude (and hence the
brightness) is constant along the bright ring, but the phase is not. The
symmetry of the arrangement should make it clear that the phase will
vary along the bright ring, and it will go through 2πn radians when we
go around the ring once.

Now along an ordinary travelling of wavelength λ0 we also see a linear
variation of phase, going through 2π radians in one wavelength. So we
may be curious how the variation in phase along the bright ring compares
to that in an ordinary traveling wave. We may ask what is the “effective
wavelength” along the ring. We find

λr = x(n)
n

λ0

or

λr ≈
(

1+ 2n+ 1
n(n+ 3)

)
λ0

So the “wavelength” λr along the ring is somewhat longer than the “natural
wavelength” λ0, particularly for small n.

This suggests that the phase shift variations in the “traveling wave”
along an elongated pattern may need to be “slower” than expected, and
that the “slowness” needs to be more pronounced for shorter features. We
see later that the stretching of the apparent wavelength occurs with other
elongated patterns and that the difference between the apparent and the
underlying wavelength shrinks as the length of the pattern increases.

The total phase change expected with a normal traveling wave would
have been 2πx(n) instead of 2πn. The difference is

2π
2n+ 1
n+ 3

Narrow Rectangle

A point of light is useful, because, given enough time, any shape can be
drawn with it. This is a slow process however. Pattern generation can be
speeded up if larger sub-patterns can be generated. Presently most tools
for generating semiconductor wafer patterns are restricted to combina-
tions of rectangular areas. So it would be useful to find out first whether it
is possible to create rectangular patterns, particulary narrow rectangular
patterns that could be used for sections of lines.

Standing Wave Patterns

When beams with opposite wavenumber interfere, a standing wave pat-
tern is produced with distance between peaks of λ0/2. So it would appear
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that it is may be possible to make patterns that consist of bright spots
separated by about that distance. One could then use two exposures, one
with the pattern displaced by λ0/4 with respect to the other in order to
fill in a line or narrow rectangular area.

Numerical experiments confirm this intuition. But the “double expo-
sure” takes time, so an obvious next question is whether it is necessary
for a pattern to have such rapid fluctuations in amplitude or whether it
is possible to create patterns that have more or less constant amplitude
along some extended feature. The answer is not obvious, since individ-
ual pairwise interference patterns have rapid fluctuations in one direction
(while being constant in another).

Numerical Optimization Methods

We can approach this problem as one of determining the set of complex
amplitudes for the beams that creates a pattern that is as close as possible
to a given pattern in a least-squares sense. We can, for example, set up a
regular grid of points on which the desired brightness is specified, and de-
fine as error terms the differences between the desired and the predicted
brightness at each grid point.

A number of issues arise when considering this approach, including:

(i) how to lay out the pattern of sample points;

(ii) how finely to sample;

(iii) how large a region to sample;

(iv) what error function to use; and

(v) what optimization method to use.

While layouts with hexagonal cells may provide advantages in terms of
the degree of constraint provided by a given number of sample points,
the simplicity of a square arrangement may make the latter the common
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choice. There may be some effects that depend on alignment of the grid
with the elongation of the desired brightness pattern. Irregular patterns
may have some advantages in avoiding interactions between pattern ori-
entation and the orientation of the sample layout.

The finer we sample, the more constraint we provide. At the same
time, the number of components of the error vector grows quadratically
with the fineness of the sampling grid. The brightness pattern we are
sampling is band-limited to frequencies of no more than 2ω0 and so the
sampling theorem tells us that it can be sampled with a uniform grid with
spacing π/(2ω0) = λ0/4 between samples without losing information.

If samples are spaced more widely, the brightness pattern may take
on unexpected values in between samples. For example, with a spacing of
λ0/2, standing waves with peaks on the grid points may occur, satisfying
the constraints on the grid-points, yet dropping to low values in between.

We expect that there will be artifacts due to the fact that there are
only a finite number of beams. These occur at some distance from strong
parts of the pattern, experimentally determined to be round about

ra ≈ N
2π

λ0

The grid on which the desired pattern is defined should go out to about
that distance to force the largest possible area of low brightness around
the desired pattern. It probably makes little sense to go further since
artifacts will occur beyond that that cannot be suppressed in any case.

The simplest measure of error would be the sum of squares of dif-
ferences at each point of the grid between the desired pattern brightness
and the brightness of the interference pattern computed from the set of
complex amplitudes. The contributions may be weighted, by, for example,
assigning low weights to “no care” positions on the grid.

Also note that typically numerical optimization methods work better
when they are given an error vector rather than just the overall sum of
squares of errors. In the simplest form, only the brightness is constrained.
The real and imaginary parts of the complex amplitude are not dealt with
separately, only the sum of their squares is compared with the desired
brightness. If somehow the real and imaginary parts were known, double
the number of constraints would be available to guide the numerical opti-
mization. Interestingly, in areas were the desired brightness is zero, this
observation can be exploited since both the real and the imaginary part
of the complex amplitude should be zero.

Least squares minimization problems with complex relationships be-
tween the unknown variables to be determined and the error function tend
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to be hard to deal with. Fortunately, ready-made packages are available.
The modified Levenberg-Marquardt method is available in the “lmdif”subroutine
of the minpack package. This employs a Jacobian calculated by a forward-
difference approximation. This code was used for some of the numerical
optimizations experiments described here.

For simpler error functions, simple methods like gradient descent will
do. This happens, for example, when we specify the complex amplitude of
the desired pattern rather than just the brightness at each sample point.
We will see that this additional constraint is available if we make some
additional assumptions.

Numerical Optimization Results

Naive numerical optimization for a rectangular brightness pattern, with
large enough grid spacing, can lead to standing wave patterns that fit the
desired pattern on the grid points, but have low values in between grid
points. Such patterns can be used in pairs, one shifted λ0/4 with respect
to the other in order to approximate the desired rectangular shape.

With fine grid spacing the numerical optimization methods struggle
and rarely produce reasonable solutions since they can’t resort to the
standing wave “trick.”

The discussion earlier of travelling wave effects suggests that better
results may be obtained by explicitly picking the phase of the desired pat-
tern as well as the amplitude. The phase can be picked using an apparent
wavelength somewhat longer than λ0 in line with the discussion earlier of
the phase variations along the bright ring.

This indeed allows numerical optimization to produce interesting re-
sults. The quality of the results tends to depend on the “slowness” chosen
for the travelling wave, that is, the ratio of the apparent wavelength to λ0.
For short features, the wavelength should be considerably longer than λ0,
while for long features it needs to be closer to λ0 in value.

In this fashion reasonable approximations to small rectangular fea-
tures were obtained. It is interesting to look at what the distribution of
amplitudes of the beams is in such solutions. The solution typically has
high amplitudes near one side of the ring, with lower amplitudes around
the rest of it. The “standing wave” is produced predominantly by a few
beams of high amplitude, with the other beams apparently mostly acting
to destructively interfere with the main beams in areas where the desired
pattern is zero.

These beam amplitude distributions when plotted against the angle
of the beam direction look a little like decaying sinusoids, or rather like
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“sinc” functions, but with variable sampling (that is, the spacing between
successive zeros is not constant). The next figure shows such amplitude
patterns for rectangular patterns of lengths equal to different multiples
of λ0. Note that the waveform wraps around at the ends and that there
are always two peaks, one on either side of the direction of the length of
the rectangular pattern.

We see below that these amplitude waveforms are in fact samples
along a circle in two dimensional space of a function that varies as the
“sinc” of one of the coordinates.
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Frequency Content of Rectangle

A rectangle centered at the origin with width a and height b can be treated
as the convolution of a rectangular pulse along the x-axis of length a and
a rectangular pulse along the y-axis of length b. Correspondingly, the
Fourier transform is the product of the transforms of these two functions

R(u,v) = ab sin(ua/2)
(ua/2)

sin(vb/2)
(vb/2)

where (u,v) is the frequency.

This function has the first zero in the u direction at ±2π/a and in
the v direction at ±2π/b. The Fourier transform is zero along the edge of
the rectangle defined by these values. While the transform has non-zero
values outside the rectangle, most of the energy is inside it.

Let us assume that the long dimension of the original rectangle in the
spatial domain is along the x-axis (i.e. a� b). Then the rectangle defined
above in the frequency domain is narrow along the u axis and wide in the
v direction since 2π/a� 2π/b.

Now consider that we are restricted to generating frequency compo-
nents along just a ring. We want to get the brightness pattern we gener-
ated to provide the best fit to the desired rectangle in the spatial domain.
Fourier series have the interesting property that the best coefficients for
a truncated series are in fact the first few coefficients of the full series.
Similarly, the best complex amplitudes to assign along the ring — assum-
ing that we are confined to using only Fourier components along that ring
— are just the samples of the Fourier transform R(u,v) along the ring.

In the figure, the circle is the ring on which the transform is sampled, while
the vertical rectangle is where the transform of the narrow rectangular
pattern is zero. Most of the energy of the “double sinc” function is inside
this rectangle and it is clear that the ring samples outside this area.

If the length a of the rectangle is longer than the wavelength λ0, then
2π/a < ω0. So the ring passes mostly outside the rectangle that contains
most of the energy of the transform of the rectangle.
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If the width of the rectangle b is small compared to the wavelength,
then at least 2π/b > ω0.. In this case, the ring will pick up some part
of the desired transform near v ≈ ±ω0 on and near the v axis. The
approximation will nevertheless be poor, even in this case, since most of
the low frequency components are not sampled by the ring.

Shift in Frequency Domain

Things would be better if we could move the rectangle to a place where the
ring intersects more of the area where the large values occur. So what does
a shift in the frequency domain correspond to? Shifting the transform by
(uo, v0) in the transform domain only changes the phase of the spatial
pattern, as can be seen easily from the formula for the inverse Fourier
transform. At (x,y) the complex amplitude is simply multiplied by

ej(u0x+v0y)

Brightness does not depend on the phase, so we do not care about the
phase of the pattern we are creating. Consequently we can freely choose
the phases of different parts of the pattern as desired.

In the case here, we would want to shift the rectangle in the transform
domain in the u direction until much of it overlaps the ring on which we
are allowed to have non-zero frequency components.

How Much to Shift

One remaining question is just how much to shift the transform:

(i) We could shift the rectangle so its center lies on the ring, that is by
ω0. But this may not be optimal, since the ring then curves through
the rectangle exiting on the left, leaving the right-hand side of the
rectangle unsampled.

(ii) Another idea might be to bring the rectangle just far enough out so
its outer edge is tangent to the ring, that is, shift it by by ω0−2π/a.
But this also may not be optimal either, since then the highest part
of the “double sinc” pattern lies inside the ring and is not sampled.
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(iii) A compromise would move the rectangle mid-way between the first
two suggestions, that is by ω0 − π/a. Numerical experiments show
that this is a near optimal compromise.

Note how the shift is substantially less than ω0 when the rectangle is
short, but approaches ω0 as the rectangle becomes longer and longer.

This confirms the “slowed waves” intution inspired by the circular
ring pattern analysed earlier. The apparent wavelength of the travelling
wave is longer than λ0, but gets smaller, and approaches λ0, as the elon-
gated pattern gets longer.

The figure above shows how the circle samples a “sinc” function of u (the
wider “sinc” function of v being omitted for clarity).
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In the figures, brightness indicates amplitude, while color indicates phase.
Shown are the approximate rectanguler patterns generated of length L =
0, 0.5, 1.0 1.5, 2.0, 3.0 λ0. Note (i) “ghost” artifacts near the rectangle due
to use of wavenumbers that lie on a circle in frequency space, (ii) artifacts
in the outer areas due to the use of a finite number of beams.
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Width of the Rectangle

A side-effect of the shift of the rectangle in theu direction in the transform
domain is that some other areas of the transform of the rectangle are no
longer sampled well. Before the shift, areas near the v-axis would be
sampled out to v = ±ω0. With the shift, the curvature of the ring causes
it to depart from the areas directly above the center of the rectangle.

Suppose that we shift by ω0 − α(2π/a), with 0 ≤ α ≤ 1. Then the
left edge of the rectangle lies at ω0 − (α + 1)2π/a. The circle of radius
ω0 intersects this line at

v = ±
√
ω2

0 −
(
ω0 − (α+ 1)

2π
a

)2

or

v = ±
√
(α+ 1)

2π
a

√
2ωo − (α+ 1)

2π
a

Since this in effect limits the high frequency content in the y direction,
we can expect that the actual shape created cannot be arbitrarily thin in
that direction.

If we match this cut-off with the first zero of the sinc function we see
that the “equivalent thickness” b′ of the resulting shape is determined by
2π/b′ = v . Now ω0 � (α+ 1)2π/a when a� (α+ 1)λ0, so

v ≈ 2π

√
2(α+ 1)
aλ0

and

b′ ≈
√

aλ0

2(α+ 1)
That is, the width of the approximate rectangular feature we can generate
grows as the square root of its length. This is born out by numerical
experiments.

So, while, for speed, we would like to be able to make very long linear
features, the fact is that when we make them long, they also get wider.
Consequently very long thin patterns will have to be printed in sections.
Note that what is considered “long” is here determined by how long it is
in relation to the wavelength λ0.
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This figure shows approximately rectangular patterns of length L = 4, 6,
8, and 12 λ0 generated by the method described. Note how (i) the longer
shapes are wider (but not in direct proportion to the length), (ii) the shapes
tend to be somewhat rounded and thinner at the ends, and (iii) artifacts
are more prominent near the ends.

Nature of Artifacts

There are two types of artifacts:

(i) artifacts that arise because we can only use spatial frequencies that
lie on a circle in the transform domain;

(ii) artifacts that arise because we only have a finite number of beams.

Typically artifacts of the latter type appear at a distance of about

ra ≈ N
2π

λ0

from strong pattern features.
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So, if the pattern is a point at the origin, then few serious artifacts
appear closer to the origin than the “ring of artifacts” at about ra. If the
pattern is more complex, with parts of it away from the origin, then some
artifacts will correspondingly be closer to the origin.

Clearly, however, the latter type of artifacts can be pushed outward
by increasing the number of beams.

Summary

The exploration of numerical and analytical approaches to the problem
of discovering complex beam amplitude patterns to produce desired in-
terference patterns has led to some useful insights:

(i) Elongated patterns with constant amplitude can be made if the phase
is allowed to vary linearly along the pattern.

(ii) The variation of phase along the elongated feature is slower than
that along an ordinary travelling wave. That is, the “equivalent wave-
length” is longer than the effective wavelength λ0 of light on the ref-
erence surface.

(iii) The difference in wavelengths is less pronounced for longer features.

(iv) For long features, only a few of the beams on one side of the ring are
being used at high power.

(v) The width of elongated patterns that can be generated this way is
proportional to the geometric mean of the length and the wavelength
of light.

(vi) Numerical optimization is drastically simplified if both amplitude and
phase are specified for the desired pattern. We need to come up with
an intelligent guess at what a good phase distribution might be.

It is expected that additional improvements in the generated patterns
may be possible by allowing numerical optimization to adjust the desired
phases along the pattern, starting from the guess obtained by assuming
a fixed predefined equivalent wavelength for the travelling wave.
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