
Relative Orientation Revisited

Berthold K.P. Horn

15 March 1990

Abstract: Relative Orientation is the recovery of the position and orientation of
one imaging system relative to another from correspondences between five or more
ray pairs. It is one of four core problems in photogrammetry and is of central im-
portance in binocular stereo, as well as in long range motion vision. While five ray
correspondences are sufficient to yield a finite number of solutions, more than five
correspondences are used in practice to ensure an accurate solution using least squares
methods. Most iterative schemes for minimizing the sum of squares of weighted er-
rors require a good guess as a starting value. The author has previously published a
method that finds the best solution without requiring an initial guess. In this paper an
even simpler method is presented that utilizes the representation of rotations by unit
quaternions.

1. Introduction

Relative orientation is one of the central problems in photogrammetry and has at-
tracted attention for more than a hundred years [Hauck 1883] [Finsterwalder 1899].
We briefly review the problem here. For additional background material and list
of references see [Horn 90].

The coordinates of corresponding points in two images can be used to de-
termine the positions of points in the environment, provided that the position
and orientation of one of the cameras with respect to the other is known. Given
the internal geometry of the cameras, including its principal distance and the
location of the principal point, rays can be constructed by connecting the points
in the images to their corresponding projection centers. These rays, when ex-
tended, intersect at the point in the scene that gave rise to the image points. This
is how binocular stereo data is used to determine the positions of points in the
environment after the correspondence problem has been solved.

In both binocular stereo and large displacement motion vision analysis, it is
necessary to first determine the relative orientation of one camera with respect to
the other. The relative orientation can be found if a sufficiently large set of pairs
of corresponding rays have been identified.

Let us use the terms left and right to identify the two cameras (in the case
of the application to long range motion vision these will be the camera positions
and orientations corresponding to the earlier and the later frames respectively).
The ray from the center of projection of the left camera to the center of projection



2

of the right camera is called the baseline. A coordinate system can be erected at
each projection center, with one axis along the optical axis, that is, perpendicular
to the image plane. The other two axes are in each case parallel to two convenient
orthogonal directions in the image plane (such as the edges of the image, or lines
connecting pairs of fiducial marks). The rotation of the left camera coordinate
system with respect to the right is called the orientation.

Note that we cannot determine the length of the baseline without knowledge
about the length of a line in the scene, since the ray directions are unchanged if
we scale all of the distances in the scene and the baseline by the same positive
scale-factor. This means that we should treat the baseline as a unit vector, and
that there are really only five unknowns—three for the rotation and two for the
direction of the baseline1.

It has long been known that five sets of ray pairs are required to obtain a finite
number of solutions of the relative orientation problem [Finsterwalder 1899]. In
practice one measures more than five pairs of rays so that least squares methods
can be used to obtain more accurate results. Several iterative schemes are in use
to find solutions (see text books on stereophotogrammetry as well as references
in [Horn 90]). Most require a good initial guess, and some do not work well
unless the surface being viewed is approximately planar and perpendicular to the
viewing direction.

The author has previously given an iterative scheme for solving the least-
squares relative-orientation problem that does not require a good initial guess,
and that works well even when the surface is not approximately planar [Horn 87b,
90]. Here a new formulation of the coplanarity condition is given using unit
quaternion notation to represent rotation. A new iterative scheme based on this
representation has been implemented and found to be both reliable and faster
than the previous method. The new formulation of the coplanarity condition
also suggests better continuation methods for solving the special case when there
are only five ray pairs, and leads to a short proof that there can be at most twenty
solutions in this case.

1.1 New Expression for the Coplanarity Condition

The volume of the parallelipiped formed by three vectors is equal to their triple
product, so three non-zero vectors are coplanar if and only if their triple product
is zero, For the ray � from the left center of projection and the ray r from the right
center of projection to be coplanar with the baseline b, we must have [Horn 87b,

1If we treat the baseline as a unit vector, its actual length becomes the unit of length
for all other quantities.



1. Introduction 3

90]

[b �′ r] = 0
(1)

where �′ is the left ray rotated into the right imaging system’s coordinates2. Using
the unit quaternion q̊ to represent this rotation, we can write

�̊′ = q̊�̊q̊∗, (2)

where �̊ and �̊′ are unit quaternions with zero scalar part and vector part equal
to � and �′ respectively, that is,

�̊ = (0, �) and �̊′ = (0, �′). (3)

(For use of unit quaternion notation in a related photogrammetric problem,
including a discussion of numerically stable methods for converting between or-
thonormal matrix notation and unit quaternion notation, see [Horn 87a]. See
also Appendix A and [McCarthy 90].) We can write the triple product in the form

t = (r × b) · �′, (4)

or, letting b̊ = (0, b) and r̊ = (0, r),
t = r̊b̊ · q̊�̊q̊∗, (5)

where we have used the fact that �̊′ = q̊�̊q̊∗ has zero scalar part and
r̊b̊ = (−r · b, r × b), (6)

since both r̊ and b̊ have zero scalar parts. The triple product can now be further
transformed to yield

t = r̊b̊q̊ · q̊�̊, (7)

or finally3.

t = r̊d̊ · q̊�̊
(8)

where d̊ = b̊q̊. Note that d̊ is orthogonal to q̊, since
d̊ · q̊ = b̊q̊ · q̊ = b̊ · q̊q̊∗ = b̊ · e̊ = 0, (9)

where e̊ is the identity with respect to quaternion multiplication4.
The baseline can be recovered from d̊ using

d̊q̊∗ = b̊q̊q̊∗ = b̊e̊ = b̊, (10)

so one may as well work with the parameters q̊ and d̊, rather than q̊ and b̊, if
this is convenient. Note that the resulting expression is bilinear in the unknowns,
being separately linear in the components of q̊ and in the components of d̊.

2Here the baseline b is also expressed in the right imaging system’s coordinates. The
coplanarity conditions can, of course, be equally well expressed in the coordinates of
the left imaging system.

3In the above a number of quaternion identities, such as åq̊ · b̊ = å · b̊q̊∗, have been used
that can be easily checked by using the rule for quaternion multiplication in terms of
the scalar and vector parts of the quaternions given in Appendix A.

4The identity e̊ has unit scalar part and zero vector part.



4

1.2 Symmetry in the Coplanarity Condition

We can rewrite the triple product using

t = r̊d̊ · q̊�̊ = r̊ · q̊�̊d̊∗ = q̊∗r̊ · �̊d̊∗, (11)

and
t = q̊∗r̊ · �̊d̊∗ = (q̊∗r̊)∗ · (�̊d̊∗)∗ = r̊∗q̊ · d̊�̊∗. (12)

Finally, noting that �̊∗ = −�̊ and r̊∗ = −r̊, since r̊ and �̊ are quaternions with zero
scalar parts, we obtain

t = r̊q̊ · d̊�̊
(13)

The symmetry can be seen in more detail if the dot-product for t is expanded out
in terms of the scalar and vector components of q̊ = (q,q) and d̊ = (d,d):

(d · r) (q · �)+ (q · r) (d · �)+ (dq − d · q) (� · r)+ d [r q �]+ q [r d �]. (14)

Certain other symmetries now become apparent. If the parameters {q̊, d̊} satisfy
the coplanarity condition for corresponding sets of rays {�i} and {ri}, then:

• The set of parameters {−q̊, d̊} satisfy the coplanarity condition also. This
has no physical significance, however, since −q̊ represents the same rotation
as q̊.

• The set of parameters {q̊,−d̊} satisfy the coplanarity condition also. This
corresponds to a reversal of the baseline b.

• The set of parameters {d̊, q̊} satisfy the coplanarity condition also. This
corresponds to the “twisted sister dual’’ obtained by an additional rotation
of π about the baseline [Horn 87b, 90] [Krames 40].

That is, the solutions come in groups of eight related solutions.
Also note that, perhaps somewhat surprisingly, we obtain the same set of

solutions if we interchange the left and right rays, since the expression for t is
symmetric in � and r.

2. The New Iterative Scheme

Given two corresponding sets of rays {�i} and {ri} (for i = 1, 2, . . . n) from the
left and the right imaging systems respectively, the task is to find q̊ and d̊ that
minimize

n∑
i=1

wie
2
i , where ei = (r̊i d̊ · q̊�̊i). (15)

subject to
q̊ · q̊ = 1, d̊ · d̊ = 1, and q̊ · d̊ = 0. (16)

The weight factor is chosen according to the reliability of a particular measure-
ment, but also depends on the ray direction. That is, the error contributions one



2. The New Iterative Scheme 5

wishes to minimize are distances in the image plane, not in the three-dimensional
world [Horn 87b, 90] It can be shown that the appropriate weighting factor is

wi = ‖ci‖2 σ2
o

[ci b ri ]2
∥∥�′i∥∥2 σ2

li
+ [ci b �′i ]2 ‖ri‖2 σ2

ri

, (17)

where ci = �′i×ri and σ2
li

and σ2
ri

are the estimated variances of the measurement

errors of the directions of rays in the left and right images respectively, while σ2
o

is arbitrary. Proper weighting is particularly important when the fields of view
is narrow, since the relative orientation problem then is often not well condi-
tioned. Note that the weighting factor depends on the (unknown) baseline and
rotation. One way of dealing with this is to treat the weights as constant during
any particular step of the iteration. One may start off with unit weights and then
use the current estimate of the baseline and rotation as the iteration progresses
[Horn 87b].

Exact solutions are possible when there are only five pairs of rays, so the
weight factors can be omitted in this case, since they do not affect the solutions
(see section 3).

2.1 Iterative Adjustment

Since no closed form solution is at hand, let us see how small changes in q̊ and d̊
affect the total error. First of all, by ignoring second order terms in

(q̊+δq̊)·(q̊+δq̊) = 1, (d̊+δd̊)·(d̊+δd̊) = 1, and (q̊+δq̊)·(d̊+δd̊) = 0 (18)

we obtain the following constraints on the increments

q̊ · δq̊ = 0, d̊ · δd̊ = 0, and q̊ · δd̊ + d̊ · δq̊ = 0. (19)

We have to find increments δq̊ and δd̊ that minimize
n∑

i=1

wi

(
r̊i(d̊ + δd̊) · (q̊ + δq̊)�̊i

)2
, (20)

subject to the three constraints noted. Ignoring the second order term in the
dot-product (containing both δq̊ and δd̊), and introducing Lagrange multipliers,
we find that we have to minimize

n∑
i=1

wi

(
r̊i d̊ · q̊�̊i + r̊i δd̊ · q̊�̊i + r̊i d̊ · δq̊ �̊i

)2
+ λ(q̊ · δq̊)+ μ(d̊ · δd̊)+ ν(q̊ · δd̊ + d̊ · δq̊). (21)

Differentiating with respect to δq̊ and δd̊ and setting the results equal to zero, we



6

obtain
n∑

i=1

wi

(
r̊i d̊ · q̊�̊i + r̊i δd̊ · q̊�̊i + r̊i d̊ · δq̊ �̊i

)
r̊i d̊�̊∗i + λq̊ + νd̊ = 0,

n∑
i=1

wi

(
r̊i d̊ · q̊�̊i + r̊i δd̊ · q̊�̊i + r̊i d̊ · δq̊ �̊i

)
r̊∗i q̊�̊i + μd̊ + νq̊ = 0,

(22)

where we may wish to note that r̊i∗ = −r̊i and �̊∗i = −�̊i . Differentiating with
respect to the Lagrangian multipliers just gives us back the original constraints

q̊ · δq̊ = 0, d̊ · δd̊ = 0, and q̊ · δd̊ + d̊ · δq̊ = 0. (23)

Isolating the unknowns δq̊ and δd̊, we obtain

A δq̊ + B δd̊ + λq̊ + νd̊ = −s̊,

BT δq̊ + C δd̊ + μd̊ + νq̊ = −t̊,
(24)

where

A =
n∑

i=1

wi(r̊i d̊�̊∗i )(r̊i d̊�̊∗i )T , B =
n∑

i=1

wi(r̊i d̊�̊∗i )(r̊∗i q̊�̊i)T ,

and C =
n∑

i=1

wi(r̊∗i q̊�̊i)(r̊∗i q̊�̊i)T , (25)

while

s̊ =
n∑

i=1

wiei (r̊i d̊�̊∗i ) and t̊ =
n∑

i=1

wiei (r̊∗i q̊�̊i). (26)

We also still have the three equations

q̊ · δq̊ = 0, d̊ · δd̊ = 0, and q̊ · δd̊ + d̊ · δq̊ = 0, (27)

all of which we can write in the matrix form⎛
⎜⎜⎜⎜⎜⎝

A B q̊ 0 d̊
BT C 0 d̊ q̊
q̊T 0T 0 0 0

0T d̊T 0 0 0

d̊T q̊T 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
δq̊
δd̊
λ

μ

ν

⎞
⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝

s̊
t̊
0

0

0

⎞
⎟⎟⎟⎟⎠ , (28)

So we have a system of 11 equations in 11 unknowns, four of which are the com-
ponents of q̊, four are the components of d̊, and three are Lagrangian multipliers.

Since we are usually not really interested in the values of the Lagrange mul-
tipliers, we may eliminate them using the conditions

q̊ · δq̊ = 0, d̊ · δd̊ = 0, and q̊ · δd̊ + d̊ · δq̊ = 0. (29)

leaving us with 8 equations in 8 unknowns. But this takes some effort, while
spoiling the symmetry of the normal matrix, and so may not be desirable.



2. The New Iterative Scheme 7

Note that the upper left 8 × 8 sub-matrix is the weighted sum of dyadic
products

n∑
i=1

wi �ci �ciT , (30)

where the eight component vector �ci is given by

�ci =
(

r̊i d̊�̊∗i
r̊∗i q̊�̊i

)
= −

(
r̊i d̊�̊i
r̊i q̊�̊i

)
. (31)

Also note that the eight non-zero components of the right-hand side vector are
given by the weighted sum

n∑
i=1

wiei �ci where ei = (r̊i d̊ · q̊�̊i). (32)

For computational purposes it may be further helpful to note that

ei = r̊∗i q̊�̊i · d̊ = r̊i d̊�̊∗i · q̊. (33)

A step in the iterative algorithm consist of computing the coefficient matrix above,
as well as the right hand side vector, solving for δd̊ and δq̊, and then updating d̊
and q̊ accordingly.

2.2 Keeping the Quaternions Orthogonal

In practice, the updated quaternions

q̊′ = q̊ + δq̊ and d̊′ = d̊ + δd̊ (34)

will not be exactly orthogonal, even if d̊ and q̊ where, because of the finite step
size of the increment. It is therefore important to adjust the new values to make
them more nearly orthogonal. The smallest adjustment that will achieve this is
obtained by finding k such that q̊′′ · d̊′′ = 0, where

q̊′′ = q̊′ + k d̊′ and d̊′′ = d̊′ + k q̊′. (35)

This leads to a quadratic equation for k. The solution for k has the term (q̊′ · d̊′)
in the denominator, and so is numerically unstable when q̊′ and d̊′ are already
nearly orthogonal. If instead we ignore the term in k2, we obtain

k ≈ − q̊′ · d̊′

q̊′ · q̊′ + d̊′ · d̊′ ≈ −1

2
(q̊′ · d̊′). (36)

While an adjustment based on this value of k will not make the two quaternions
exactly orthogonal, it will insure that they converge to orthogonal values after a
number of steps of the iteration. It is, of course, a simple matter to adjust the
quaternions to have unit magnitude. This should be done after the adjustment
to obtain more nearly orthogonal vectors.



8

Sometimes when the starting values are far from a minimum, a large ad-
justment suggested by the above algorithm may make matters worse rather than
better. As an added refinement, one can compare the error after the adjustment
with that before, and take only half the step if the error has increased. If the error
with the smaller step is also larger than the initial error, the step size can again be
halved. Repeated halving of the step size in this fashion will normally only occur
when one is very close to the solution and the algorithm is unable to reduce the
error due to limitations of computer arithmetic. This condition may be used as
a termination test for the iteration.

Typically a solution is found to single precision after fewer than ten iterations.
In some cases convergence is slow, however, particularly when the initial guess is
near a saddle point. To avoid wasting time in this case, one may wish to insist
that the error after the adjustment not merely be smaller, but that it be smaller
by a reasonable fraction, say 1% of the old error. The iteration is abandoned
if it is not improving the solution at least this much. The minimum that might
have been reached after a long computation will almost certainly be reached from
some other starting value, so nothing is lost by abandoning a particular solution
path.

2.3 Starting Values

To find all local minima, and so be in a position to determine the global minimum,
a number of different starting values for the orientation q̊ are needed. These can
be generated:

• using the elements of a finite rotation group [Horn 87b, 90].
• by some other systematic sampling of a unit hemisphere, or
• at random.

Points on the unit hemisphere (in four dimensions) may be generated systemati-
cally using

q̊ = (cosα cosβ cos γ, cosα cosβ sin γ, cosα sinβ, sin α).

If the proper ranges of α, β, and γ are divided evenly, an uneven sampling of the
hemisphere results, which is wasteful, in that in order to achieve a given minimum
sampling rate in some areas, other areas need to be sampled much more finely. To
obtain roughly even sampling of the hemispherical surface, discrete sampling in
each of the three variables can be made dependent on the other variables. While
sampling evenly in α, one should sample β at a rate proportional to cosα, and
sample γ at a rate proportional to cosα cosβ. This is analogous to sampling
the unit sphere using longitude and latitude, where, to avoid oversampling near
the poles, one should sample along parallels at a rate that is proportional to the
cosine of the latitude.



2. The New Iterative Scheme 9

The number of starting values needed is greatly reduced if it is noted that each
solution {q̊, d̊} that is found belongs to a set of eight related solutions obtained
by changing the signs of q̊ and d̊, and by interchanging q̊ and d̊, as discussed
earlier. Typically all solutions are found after trying a few dozen initial guesses.
If a particular solution has a small basin of attraction in parameter space, it will
typically still be found, since it is very unlikely that all seven of the solutions
related to it also have small basins of attraction.

While it might be expected that random sampling should be less efficient,
in that a larger number of samples are needed to ensure that the largest gaps
between samples are as small as they are between samples generated by some
systematic method, it typically appears not to take a larger number of starting
values to find all the solutions from random starting points. This simplifies the
algorithm. Typically all solutions are found from fewer than thirty or so random
starting values. Occasionally one solution will be missed. But in this case the
number of solutions found is an odd an multiple of four, and the search can be
extended when this is noted.

2.4 Finding d̊ given q̊ (and vice versa)

If either of the unit quaternions q̊ or d̊ is known, it is possible to find a best fit
value for the other. This is useful when setting up starting values, since it means
that one only need explore the unit sphere in four space for one of the two sets
of parameters. Since the total error term is completely symmetric in q̊ and d̊, we
need only explore one of the two cases. Suppose for concreteness that q̊ is known
and we are to find the best fit value for d̊.

We can look for the d̊ that minimizes
n∑

i=1

wi(r̊i d̊ · q̊�̊i)2, (37)

subject to
d̊ · d̊ = 1 and q̊ · d̊ = 0. (38)

Reversing our argument at the beginning regarding the form of the error term,
we write the above in the form

n∑
i=1

wi(�̊
′
i r̊i · b̊)2, (39)

where b̊ = d̊q̊∗ and �̊′i = q̊�̊i q̊∗. We know that �̊′i and r̊i have zero scalar part.
But b̊ also has zero scalar part since

b̊ · e̊ = d̊q̊∗ · e̊ = d̊ · q̊ = 0. (40)



10

So the above can be written
n∑

i=1

wi [b�′i ri ]
2, (41)

where b̊ = (0, b), and �̊′i = (0, �′i). Now

b · b = b̊ · b̊ = (d̊q̊∗)T d̊q̊∗ = d̊ · d̊ q̊∗q̊ = d̊ · d̊ = 1. (42)

So the condition that d̊ be a unit quaternion is equivalent to the condition that b

is a unit vector. So we are trying to minimize

bT

(
n∑

i=1

wicic
T
i

)
b (43)

where ci = �′i × ri , subject to b · b = 1. The solution is the eigenvector of the
3 × 3 matrix associated with its smallest eigenvalue [Horn 87b, 90] (see also the
discussion of Raleigh’s quotient in [Korn & Korn 68]). From b we can recover d̊
using d̊ = b̊q̊, where b̊ = (0, b).

It has been found experimentally, perhaps somewhat surprisingly, that one
can actually just pick a random initial value for d̊. Convergence to machine
precision is on average delayed by less than one step compared to the number of
steps needed when the method described here is used to find an optimal initial
value for d̊. This simplifies the algorithm.

3. Five Ray Pairs

The minimum number of ray pairs that yield a finite number of solutions is five,
since each pairing of rays yields one constraint, and there are five unknowns.
There are five degrees of freedom, because there are three constraints on the
eight components of q̊ and d̊—the two quaternions have to be orthogonal and
of unit magnitude. With five rays pairs exact solutions are possible, that is, solu-
tions that satisfy the coplanarity condition exactly. In practice, if at all possible,
one uses more than five ray pairs in order to achieve higher accuracy and avoid
ambiguity. Nevertheless, this minimal case has attracted some attention and is
worth discussing.

The question of how many solutions there may be when five ray pairs are
given has been long debated. Since each ray pair yields a homogeneous second-
degree polynomial in the unknown components of q̊ and d̊, we see right away
by Bézout’s theorem that there can be at most 25 = 32 solutions (ignoring sign
changes of q̊ and d̊). Kruppa showed long ago, however, that there can actually
be no more than 22 solutions [Kruppa 13]. More recently, it has been observed
experimentally that there appear to never be more than twenty solutions, that
these solutions generally come in groups of four, and that sets of ray pairs can
be found that yield no solutions, or as many as twenty [Horn 87a, 90]. Proofs



4. Conclusions 11

that there can be no more than twenty solutions have recently been given by
[Demazure 88] [Faugeras & Maybank 89] [Netravali et al. 89]. But these proofs are
very complex and use advanced concepts from projective geometry and algebraic
geometry.

We can show more simply that there can be no more than twenty solutions by
noting that the equations are bi-linear, that is, separately linear in the components
of q̊ and the components of d̊. This means that the equations derived from
the coplanarity conditions are actually 2-homogeneous (see Appendix B). The
number of solutions of a system of m-homogeneous equations is less than that of
a general homogeneous system of equations of the same degree. In our case, we
have five equations that are linear and homogeneous in each of two sets of four
variables, so the maximum possible number of solutions is given by(

(8− 2)

(4− 1)

)
= 6!

3! 3!
= 20.

Methods have been developed for tracking the paths of roots as one system
of polynomials is continuously transformed into another [Morgan 87]. These
methods can be used here to track the roots from a special system of equations
with the same degree that can be solved explicitly, as it is transformed into the
system of equations equations arising from the given ray pairs (see Appendix C).
One can even exploit the symmetry of the equations in q̊ and d̊ so that one only
needs to track 10 roots, not 20.

Preliminary experiments with this method suggest, however, that the iterative
method described earlier, designed for the more general least squares problem
when more than five ray pairs are given, is much faster and also more reliable.
One problem with continuation methods is that, while in theory paths of roots
should never cross, in practice they often come close enough to allow “path
jumping,’’ unless the path is followed with impractically tight tolerances.

4. Conclusions

An elegant new iterative method for solving the least squares problem of relative
orientation has been described. The utilitity of unit quaternions for representing
rotations in three-dimnesional space has once again been demonstrated. A new
short proof has been given that there can be at most twenty solutions of the
relative orientation problem when only five ray pairs are given. In this special
case continuation methods can (at least theoretically) find all of the solutions.



12

5. Acknowledgments

The author would like to thank Professor John Canny, Professor Bernard Roth,
Doctor Alexander Morgan, Shawney Harpeet, and Mark Snyder for helpful
comments. Olivier Faugeras and Steve Maybank provided references to early
work on photogrammetry, and Jason Grant pointed out several typos.



6. References 13

6. References

Demazure, M. (1988) “Sur Deux Problemes de Reconstruction,’’ INRIA Re-
port 882 Institut National de Recherche en Informatique et en Automatique,
Domaine de Volcueau, Rocquencourt, Les Chesnay, Cedex, France.

Finsterwalder, S. (1899) “Die geometrischen Grundlagen der Photogrametrie,’’
Jahresbericht Deutscher Mathematik, Vol. 6, pp. 1–44.

Hauck, G. (1883) “Neue Konstruktionen der Perspektive und Photogrammetrie,’’
Crelle J. f. Math., pp. 1–35.

Horn, B.K.P. (1987a) “Closed-Form Solution of Absolute Orientation using Unit
Quaternions,’’ Journal of the Optical Society of America A, Vol. 4, No. 4,
pp. 629–642, April.

Horn, B.K.P. (1987b) “Relative Orientation,’’ Memo 994, Artificial Intelligence
Laboratory, MIT, Cambridge, Massachusetts. November.

Horn, B.K.P. (1990) “Relative Orientation,’’ International Journal of Computer
Vision, Vol. 4, No. 1, pp. 59–78.

Korn, G.A. & T.M. Korn (1968) Mathematical Handbook for Scientists and En-
gineers, 2-nd edition, McGraw-Hill, New York, NY.

Krames, J. (1940–41) “Zur Ermittlung eines Objektes aus zwei Perspektiven. (Ein
Beitrag zur Theorie der ‘gefährlichen Örter’.),’’ Monatshefte für Mathematik
und Physik, Vol. 49, pp. 327–354.

Kruppa, E. (1913) Sitzgsber. Akade. Wien, Math.-Nat., IIa, No. 122, pp. 1939–
1948.

Faugeras, O.D. & S. Maybank (1989) “Motion from Point Matches: Multiplicity
of Solutions,’’ Proceedings of IEEE Workshop on Motion Vision, Irvine, CA,
March 20–22.

McCarthy, J. (1990) “Introduction to Theoretical Kinematics,’’ MIT Press, Cam-
bridge, Massachusetts.

Morgan, A.P. (1987) Solving Polynomial Systems using Continuation for Engi-
neering and Scientific Problems, Prentice-Hall, Englewood Cliffs NJ.

Morgan, A.P. (1989) “Polynomial Continuation,’’ Impacts of Recent Advances
on Operations Research, Sharda, R., B.L. Golden, E. Wasil, O. Balci, & W.
Stewart (eds.), Elsevier Science Publishing Co., pp. 101–113.

Morgan, A.P. & A. Sommese (1987a) “A Homotopy for Solving General Polyno-
mial Systems That Respects m-Homogeneous Structures,’’ Applied Mathe-
matics and Computation, Vol. 24, pp. 101–113.



14

Morgan A.P. & A. Sommese (1987b) “Computing All Solutions to Polynomial
Systems Using Homotopy Continuation,’’ Applied Mathematics and Com-
putation, Vol 24, pp. 115–138

Morgan, A.P & A.J. Sommese (1989) “Coefficient-Parameter Polynomial Con-
tinuation,’’ Applied Mathematics and Computation, Vol. 29, pp. 123–160.

Netravali, A.N., T.S. Huang, A.S. Krishnakumar & R.J. Holt (1989) “Aleg-
braic Methods in 3-D Motion Estimation from Two-View Point Correspon-
dences,’’ International Journal of Imaging Systems and Technology, Vol. 1,
pp. 78–99.

Raghavan, M. & B. Roth (1989) “Kinematic Analysis of the 6R Manipulator of
General Geometry,’’ ISSR, Tokyo, pp. 314–320.

Wampler, C.W., A.P. Morgan & A.J. Sommese (1988) “Numerical Continuation
Methods for Solving Polynomial Systems Arising in Kinematics,’’ Research
Report GMR-6372, General Motors Research Laboratories, Warren, Michi-
gan, August. To appear in ASME Journal of Mechanisms, Transmissions,
and Automation in Design.

A. Quaternion Products and Rotation in 3-D

It is often convenient to consider quaternions as composed of a scalar and a
vector part:

å = (a, a). (44)

The conjugate of a quaternion is the quaternion with the vector part negated:

å∗ = (a,−a). (45)

The dot-product of two quaternions is a scalar given by

å · b̊ = (a, a) · (b, b) = ab + a · b. (46)

The norm of a quaternion is just the square root of the dot-product of the quater-
nion with itself:

‖å‖ = √
å · å. (47)

A unit quaternion is a quaternion of unit norm.
The quaternion product is defined by the relation

åb̊ = (a, a) (b, b) = (ab − a · b, a b + b a + a × b). (48)

The appearance of the cross product in the result alerts us to the fact that quater-
nion multiplication is not commutative. Quaternion multiplication is associative,
however. It is easy to see that the identity with respect to multiplication is

e̊ = (1, 0), (49)

where 0 is the vector whose components are all zero. Note that

åå∗ = (a, a) (a,−a) = (a2 + a · a, 0) = (å · å) e̊, (50)



A. Quaternion Products and Rotation in 3-D 15

so that a quaternion with non-zero norm has an inverse,

å−1 = å∗/‖å‖2, (51)

and the inverse of a unit quaternion is just its conjugate.
Using the definition given above of the quaternion product, it is easy to show

that
(åq̊) · (b̊q̊) = (å · b̊) (q̊ · q̊). (52)

We conclude that the operation of multiplying by a unit quaternion preserves
dot-products. We also obtain as a special case

(åb̊) · (åb̊) = (å · å) (b̊ · b̊), (53)

thus the norm of a product is the product of the norms. Using these results, we
can also see that

(åq̊) · b̊ = å · (b̊q̊∗). (54)

Scalars can be represented by quaternions with zero vector part, while vec-
tors can be represented by quaternions with zero scalar part. If r̊ is a quaternion
with zero scalar part, then

r̊∗ = −r̊. (55)

If r̊ and s̊ are quaternions with zero scalar part then

r̊ · s̊ = r · s, (56)

and
r̊s̊ = (−r · s, r × s) = (s̊r̊)∗. (57)

Finally, if r̊, s̊ and t̊ are quaternions with zero scalar part, then

(r̊s̊) · t̊ = r̊ · (s̊t̊) = [r s t], (58)

To represent rotations in three-dimensional space, we need an operation that
maps quaternions with zero scalar part into quaternions with zero scalar part.
The operation

r̊′ = q̊r̊q̊∗ (59)

multiplies the scalar part by (q̊ · q̊), that is

r ′ = (q2 + q · q) r, (60)

so that if r̊ has zero scalar part, so will r̊′. As for the vector part, we can write

r ′ = (q2 + q · q) r + 2 q (q × r)+ 2q × (q × r). (61)

If q̊ is a unit quaternion, then the above simplifies further, and r̊′ actually has the
same magnitude as r̊, that is, (r̊′ · r̊′) = (r̊ · r̊).

If s̊ is a second quaternion with zero scalar part, then

r̊′ · s̊′ = (q̊r̊q̊∗) · (q̊s̊q̊∗) = r̊ · s̊. (62)

Thus dot-products are preserved by the operation. The signs of triple products
are also preserved, since

(r̊′s̊′) · t̊′ = (r̊s̊) · t̊. (63)



16

Since length of vectors, angles between them, and the handedness of triads are
preserved, we conclude that r̊′ = q̊r̊q̊∗ corresponds to a proper rotation of the
vector r into the vector r ′. We next determine what this rotation is.

From
(q,q) (0,q) (q,−q) = (q2 + q · q) (0,q) = (0,q) (64)

we conclude that q is parallel to the axis of rotation. Now suppose that r is a
unit vector perpendicular to the axis of rotation, that is, r · r = 1 and r · q = 0.
The cosine of the angle of rotation is then given by the dot-product of r and r ′.
Then, if r̊′ = q̊r̊q̊∗, we have

r ′ · r = r̊′ · r̊ = (q̊r̊) · (r̊q̊) (65)

or
cos θ = q2 − q · q, (66)

where θ is the angle of rotation. The sine of the angle of rotation is given by the
triple product of r ′, r and a unit vector in the direction of the axis of rotation.
Now

[r ′ r q] = (r̊′r̊) · (0,q) = 2q (q · q), (67)

so
sin θ = 2q‖q‖. (68)

Finally, using q2 + q · q = 1, and some trigonometric identities for multiple
angles, we obtain q2 = (cos θ + 1)/2 or

q = cos(θ/2) and q = ω̂ sin(θ/2), (69)

where ω̂ is a unit vector parallel to the axis of rotation.
Thus a rotation about an axis through the origin parallel to the unit vector

ω̂ can be represented by the unit quaternion

q̊ =
(

cos
θ

2
, ω̂ sin

θ

2

)
. (70)

Note, however, that −q̊ represents the same rotation, since

(−q̊)r̊(−q̊)∗ = q̊r̊q̊∗. (71)

Thus the space of proper rotations in three dimensional space is isomorphic
to the unit sphere in four dimensions, SO3, with anti-podal points identified.
Alternatively, we can identify it with the projective space P3.

B. Systems of m-Homogeneous Equations

A polynomial is homogeneous in a set of variables if, and only if, it is the sum of
terms of the same degree in these variables. Any non-zero multiple of a solution of
a homogeneous system of equations is clearly also a solution, since each term in
the polynomial is multiplied by the same power of the constant multiplier. To ob-
tain a unique solution we have to impose an additional (linear, non-homogeneous)



B. Systems of m-Homogeneous Equations 17

constraint. Given this extra degree of freedom, a homogeneous system of equa-
tions in n variables need typically consist of only (n − 1) equations in order to
yield a finite number of solutions (up to a constant multiplier). In general, the
maximum number of solutions that a system of homogeneous equations can have
is equal to the product of the degrees of the equations (Bézout’s theorem). Most
systems of equations actually attain this maximal number of (possibly complex)
solutions.

B.1 Homogeneous Equations with Special Structure

When the system of equations has some special structure, however, the maximum
possible number of solutions may be lower than indicated above. Consider, for
example, the pair of homogeneous second-degree equations

a xu+ b xv + c yu+ d yv = 0,

e xu+ f xv + g yu+ hyv = 0,
(72)

in the variables x, y, and u, v. We can easily eliminate the term in xu and so
obtain

(eb − af ) xv + (ec − ag) yu+ (ed − ah) yv = 0. (73)

Using this to substitute for u in the first equation leads to

(eb − af ) x2 + (
(bg − fc)+ (ed − ah)

)
xy + (gd − ch) y2 = 0. (74)

This is a homogeneous quadratic equation and so has only two solutions (up to
a constant multiplier). Thus the original pair of equations has fewer solutions
than the four predicted by multiplication of the degrees.

What is special about this particular system of equations is that the polyno-
mials are separately homogeneous in the two variables x and y, and in the two
variables u and v. That is, if we treat u and v as constants, then we have a pair of
equations that is homogeneous in x and y (and vice versa). This means, amongst
other things, that we can multiply x and y in a solution by one non-zero constant
and u and v by another non-zero constant and still have a solution. That is,
to obtain a unique solution we would have to introduce two additional (linear,
non-homogeneous) constraints. It is because of these two degrees of freedom
that we require only two equations, instead of the expected three, in order to con-
strain the problem enough to obtain a finite number of solutions (up to constant
multipliers).

The above set of equations is said to be 2-homogeneous. An equation is
m-homogeneous if we can partition the set of variables into m subsets, such that
the equation is homogeneous in each of these subsets separately (when the other
variables are treated as constants). The largest possible number of roots of a



18

system of m-homogeneous equations is less than the largest possible number of
roots of a general system of homogeneous equations of the same degree.

B.2 Linear 2-Homogeneous Equations

Consider, for example, a system � of equations of (n +m − 2) equations that is
linear in two sets of variables {xi} and {yj }, where i = 0, 1 . . . (n− 1) and j = 0,
1 . . . (m − 1). For a start, let us focus on a very special case of this, where each
of the equations happens to have the simple form

(a0,kx0 + a1,kx1 + . . .+ an−1,kxn−1)

× (b0,ky0 + b1,ky1 + . . .+ bm−1,kym−1) = 0, (75)

for k = 0, 1 . . . (n+m− 3), or

(ak · x)(bk · y) = 0 (76)

for short, where the variables in the two subsets are the components of the vectors
x and y , and the two sets of coefficients are the components of the vectors ak

and bk .

Clearly for x and y to be a solution of this special system of equations �,
we must have either (ak ·x) = 0 or (bk · y) = 0 for each k = 0, 1 . . . (n+m− 3).
Suppose that we partition the system of equations into two subsets, one of size
(n− 1) and the other of size (m− 1). Consider the (n− 1) equations (ak ·x) = 0

in the first subset. This is a set of linear homogeneous equations with one fewer
equations than there are variables. Generally this subset of equations will have
a unique solution for x (up to a constant multiplier). Similarly, the (m − 1)

equations (bk · y) = 0 in the second subset will have a unique solution for y (up
to a constant multiplier). The resulting values of x and y are clearly solutions of
the original system of equations, and there are no other solutions of the original
system of equations.

We conclude that the special system of equations has a number of solutions
equal to the number of ways of partitioning the set of variables in the indicated
manner, namely(

n+m− 2

n− 1

)
=
(
n+m− 2

m− 1

)
= (n+m− 2)!

(n− 1)! (m− 1)!
(77)

This typically is much less than the number of solutions of a general homogeneous
system of second degree equations.

Now suppose that we have a system of equations � that, while linear in two
sets of variables, does not have the special form above. We can always write these
equations in the form

xTMk y = 0, (78)



B. Systems of m-Homogeneous Equations 19

for (n + m − 2) matrices Mk , each with n rows and m columns. What is the
largest number of solutions that such a system of equations can have? We can
form linear combinations of this system of equations and a system of equations
that do have the special form given above. The result can be written

xT
(
λMk + c (1− λ) akbT

k

)
y = 0. (79)

where c is an arbitrary (complex) number. Now this system has the roots of the
special set of equations � when λ = 0, while it has the roots of the more general
system of equations � when λ = 1.

We can follow the roots of the combined system as we continuously vary the
parameter λ. Perhaps somewhat surprisingly, the paths connect the roots of one
system with the roots of the other system. None of the paths can “curve back,’’
or merge, or diverge to infinity. So, in general, the number of roots of the more
general system of equations is the same as that of the special systems of equations.
The proof requires advanced concepts from modern algebraic geometry and will
not be given here [Morgan 87, 89] [Morgan & Sommese 87a, 87b, 89] [Wampler,
Morgan & Sommese 88]

B.3 Linear m-Homogeneous Equations

The above analysis can be easily extended to systems of equations that are linear
in m sets of variables rather than just 2. A special set of equation can be set up,
much as above, where each polynomial is the product of terms linear in each of
the subsets of variables. This special set of (n0 + n1 + . . .+ nm−1 −m) equations
may be partitioned into subsets of size (n0 − 1), (n1 − 1) . . . (nm−1 − 1). The
first subset is used to solve for the n0 variables of the first subset of variables, the
second subset for the n1 variables of the second subset of variables and so on.
Since each subset of equations is linear in one subset of the variables (and does
not contain any of the others), one obtains exactly one solution (up to constant
multipliers). The number of solutions of the special set of equations is equal to
the number of possible ways of partitioning the set of variables in the indicated
manner, namely

(n0 + n1 + . . .+ nm−1)!

(n0 − 1)! (n1 − 1)! . . . (nm−1 − 1)!
. (80)

which is much less than the number of solutions of a general homogeneous system
of m-th degree equations.

Again, it turns out that the number of solutions of the more general set of
equations is equal to the number of solutions of the special set of equations (and
that the solutions of the general set may be found by following the solutions as
one system of equations is deformed into the other).



20

The above analysis can be extended also to deal with systems ofm-homogeneous
equations that are of higher degree in the various subsets of variables. The same
trick is used to partition the equations of the special system, but now the resulting
sets of equations are no longer linear, so there will be more than one solution.
Let us suppose, first of all, that all the equations have the same degrees in each
of the subsets of variables. Suppose that each equation has degree lk in the k-th
set of variables. Then each partitioning leads to

ln0−1
0 ln1−1

1 . . . l
nm−1−1

m−1 (81)

solutions (by Bézout’s theorem). So the total number of solutions is just the
product of this quantity and the expression given above for the linear case.

Counting the total number of solutions becomes a bit harder when the equa-
tions are not all of the same degree in a particular subset of the variables, for then
the number of solutions obtained for different partitions is different. The reader
is here referred to [Morgan 87, 89] [Morgan & Sommese 87a, 87b, 89] [Wampler,
Morgan & Sommese 88] for details.

C. Continuation Methods

The results discussed above can be used to determine the maximum number of
solutions of an m-homogeneous system of equations. They can also be used
to find these solutions using continuation methods. Let us write the system of
equations we wish to solve in the form f (x) = 0. There typically is no closed-form
method for finding the solution of this system. But suppose that by changing some
parameters we can simplify the system of equations to the point were its solutions
can be found directly. Of course, these will be solutions of the ‘deformed’ system,
not the one we originally desired to solve. The idea now is to track these solutions
of the ‘deformed’ system as it is incrementally changed back into the original
form. If the incremental changes are small enough, then it is possible to get
good estimates of the solutions of the next version of the system by starting with
the solutions of the present one. If we are fortunate, then none of the solutions
lead to ‘dead-ends’ where the new system has no solutions near solutions of the
present system, and no new solutions can appear that are not near solutions of
the present system. This is the intuitive motivation for the process to be described
in more detail now.

We construct a system g(x) = 0 of equations of the same degree in the same
set of variables x, in the special form indicated in the previous sections (The
coefficients occurring in these equations should be chosen at random, in order to
reduce the possibility of this system having a special structure that may lead to a
reduced number of solutions). Determine all of the ways of partitioning this set
of equations into subsets of size one less than the number of variables in each of



C. Continuation Methods 21

the m groups. Find the roots of each subset of equations extracted. This yields
all of the solutions of the system g(x) = 0.

Note that to obtain unique solutions (without the constant multiplier ambi-
guity) we have to adjoin to the given system of equationsm linear non-homogeneous
equations, one in each subset of the variables (The coefficients occurring in these
equations should also be chosen at random, in order to reduce the possibility of
the resulting system of equations having a solution at infinity). The added linear
equations can be used to solve for one of the variables in terms of the others,
thus allowing this variable to be eliminated from the other equations. The result
is a system of non-homogeneous equations of the same degree as the original
equations, but with one fewer unknowns.

Now trace these solutions as λ is varied from 0 to 1 in

λf (x)+ c (1− λ)g(x) = 0,

or h(x;λ) = 0 for short. This can be done by taking a small step δλ in lambda
and solving for the increment δx in

dh

dλ
δλ+ dh

dx
δx = 0, (82)

where J = (dh/dx) is the Jacobian of h with respect to x. The updated solutions
x′ = x + δx will not be exact if we are taking finite steps, so one needs to
use Newton’s method to improve their accuracy. That is, we need to find an
adjustment δx such that h(x + δx) = 0, or

h(x)+ dh

dx
δx = 0, (83)

where again the Jacobian J = (dh/dx) appears.
We repeat the above process as λ is varied from 0 to 1 in small steps. The

step size δλ can be adjusted to keep the departure from the desired path smaller
than some chosen threshold.

Perhaps the most awkward practical problem of continuation approach is
“jumping’’ of a solution being traced from its correct path to a path that passes
close to it. Path jumping can be detected when two paths end at the same solution
and when that solution can be shown not to be a multiple root of the system of
equations. Path jumping can also sometimes be detected by tracking solutions in
reverse (that is as λ is decreased towards zero), and noting whether one returns
to the starting solution. Something has gone awry when this does not happen.
The probability of path jumping can be reduced by taking smaller steps, but this,
of course, slows the computation.


