
4.1 INTRODUCTION

4.1.1 Shading as a Monocular Depth Cue
An image of a smooth object known to have a uniform surface will exhibit
gradations of reflected light intensity which can be used to determine its
shape. This is not obvious since at each point in the image we know only the
reflectivity at the corresponding object point. For some points (called singular
points here) the reflectivity does uniquely determine the local normal, but for
almost all points it does not. Consequently, the shape of the surface cannot
be found by local operations alone.

For many surfaces the fraction of the incident light which is scattered in
a given direction is a smooth function of the angles involved. It is convenient
to think of the situation as depending on the three angles shown in Fig. 4.1:
the incident angle between the local normal and the incident ray, the
emittance angle between the local normal and the emitted ray, and the phase
angle between the incident and the emitted rays.
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>c Fig. 4.1 Definition of the inci-
dent (i), emittance (e), and phase
angle (g). '

We will show that the shape can be obtained from the shading if we
know the reflectivity function and the position of the light sources. The
reflectivity and the gradient of the surface are related by a nonlinear
first-order partial differential equation in two unknowns. The recipe for
solving this equation involves setting up an equivalent set of five ordinary
differential equations, three for the coordinates and two for the components
of the gradient. These five equations can then be integrated numerically along
certain curved paths. For while we cannot determine the gradient locally, we
can, roughly speaking, determine its component in one special direction. Then
taking a small step in this direction, we can repeat the process. The curve
traced out on the object in this manner is called a characteristic. Figure 4.2
shows the characteristics determined for an experimental sphere. Their
projections on the image plane will be referred to as the base characteristics.
The shape of the visible surface of the object is thus given as a sequence of
coordinates on characteristics along its surface.

Figures 4.3 and 4.4 show stereo pairs for three test cases. Figure 4.5
gives contour maps for the same three objects.

Fig. 4.2 Image of a sphere and a stereo pair of the characteristic curves obtained from
the shading.



Fig. 4.3 Stereo pairs of solutions
for dish-shaped, spherical, and
bullet-shaped objects.

Fig. 4.4 Stereo pairs of same
solutions as in previous figures ^5
(rotated 90°).
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(a)

(b)

(c)

Fig. 4.5 Contour maps of same
solutions as in previous figures.

An initial known curve on the object is needed to start the solution.
Such a curve can usually be constructed near the singular points mentioned
earlier using the known local normal. The only additional information needed
is the distance to the singular point and whether the surface is convex or
concave with respect to the observer at this point—such ambiguities arise in
several other instances in the process of solution as will be seen.

To solve the equations, the reflectivity as a function of the three angles
must be known as well as the geometry relating light source, object, and
observer. Multiple or extended light sources increase the complexity of the
solution algorithm presented. But all of this initially needed information can
be deduced from the image if a calibration object of known shape is present
in the same image. Furthermore, incorrect assumptions about the reflectivity
function and the position of the light sources can lead to inconsistencies in
the solution and it may be possible to utilize this information in the absence
of a calibration object.

In practice it is found that if the object is at all complex, its image will
be segmented by edges. Some of these represent the occlusion of one surface
by another while others are angular edges (also called joints here) on a single
object. Another kind of edge is the ambiguity edge. This is an edge which the
characteristics cannot cross, indicating an ambiguity which cannot be resolved
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locally. One can solve inside each region bounded by these various edges, but
some global or external knowledge is needed to match up the regions. In the
case of an angular edge on an object one can integrate up to the edge and
then use the known location of the edge as an initial curve for another region.

A very similar situation obtains when one bridges a shadow. Since one
edge of the shadow and the position of the light source is known, we can
trace along the rays grazing the edge until the corresponding image points fall
on an illuminated region. Since we know the path of each ray, we can
calculate the coordinates of the point where it impinges on the object by
triangulation. The edge of the shadow (which need not be on the same object)
can then serve as an initial curve from which to continue the solution.

4.1.2 Applications

A number of interesting applications of this method can be mentioned. The
first of these concerns the scanning electron microscope which produces
images which are particularly easy to interpret because the intensity recorded
is a function of the slope of the object at that point and is thus a form of
shading. In optical and transmission electron microscopes, intensities depend
instead on thickness and optical or electron density. The geometry of the
scanning electron microscope allows several simplifications in the algorithm for
determining shape from shading. Because of the random access capability of
the microscope beam, it should be easy and useful to combine it with a small
computer to obtain three-dimensional information directly.

Another interesting demonstration lies in the determination of lunar
topography. Here the special reflectivity function of the material in the maria
of the moon allows a very great simplification of the equations used in the
shape-from-shading algorithm. The equations in fact reduce to one integral
which must be evaluated along each of a family of predetermined straight
lines in the image.

So far we have assumed that the surface is uniform in its photometric
properties. Any nonuniformity will cause this algorithm to determine an
incorrect shape. This is one of the uses of facial makeup, because by
darkening certain slopes those slopes can be made to appear steeper. In some
cases surface-markings can be detected if they lead to discontinuities of the
calculated shape.

Judging by our wide use of monocular pictures (photographs or even
paintings and woodcuts) of people and other smooth objects, humans are
good at interpreting shading information. The shortcomings of our method
which are related to the shading information available can be expected to be
found in human visual perception too. It will of course be difficult to decide
whether the visual system actually determines the shape quantitatively or
whether it uses the shading information in a very qualitative way
only.
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4.1.3 History of the Problem
The literature on perception has only a few conjectures on the possibility of
determining shape from the monocular depth-cue of shading. One relevant
paper is on lunar topography' which gives complete details of a solution
obtained in the form of an integral in the special case of the reflectivity
function of the moon. It can be shown that the result is in fact a special case
of the general solution derived here.

Various defects of image-dissector sensing devices affect the accuracy of
shape measurements. Since very little was known about the characteristics of
this device on other than theoretical grounds, a program was developed to
measure properties such as resolution, signal-to-noise ratio, drift, settling time,
scatter, and pinholes in the photocathode.2 Software now compensates for
some defects such as geometric distortion and nonuniform sensitivity using
measurements from test patterns.

In parallel with the programming work, theoretical efforts were made to
define and get around some of the difficulties of the method. Of particular
interest were applications where the equations simplify greatly. Unfortunately
the massive simplification found in the case of lunar topography seems
unique.

4.2 THEORY

4.2.1 Reflectivity Functions
Consider a surface element of size dS inclined i with respect to the incident
ray and e with respect to the emitted ray. The angles are measured with
respect to the normal as was shown in Fig. 4.1. Let the incident light
intensity be In per unit area perpendicular to the incident ray. The amount of
light falling on the surface element is then Ii cos(i) dS.

Let the emitted ray have intensity I; per unit solid angle per unit area
perpendicular to the emitted ray. Therefore the amount of light intercepted
by an area subtending a solid angle dw at the surface element will be
\T, cos(e) dS dw. The reflectivity function 0(i, e, g) is then defined to be I^/Ii .

If we want to be more precise about what units the intensity is
measured in, we have to take into account the spectral distribution of the
light emitted by the source, as well as the spectral sensitivity of the sensor.
With this proviso we can speak of watts per unit area and watts per unit solid
angle per unit area. We need not be too concerned with this if we either use
white paint, or measure the reflectivity function with the same equipment
later used in the shape-from-shading algorithm. It should be noted that for
most surfaces the reflectivity function is dependent on the color of the light
used. Typically the specular component of the reflected light, being reflected
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before it has penetrated far into the surface, will be unchanged, while the mat
component will be colored by pigments in the surface coating.

Several other definitions of the reflectivity function are in use which are
multiples of the one defined here by TT, 2, cos(e) and/or cos(i). The specific
formulation chosen here makes the equation relating the incident light
intensity to the image illumination very simple.

Surfaces where the three parameters i, e, and g are not sufficient to
fully determine the reflectivity are unsuitable for this analysis. Examples are
translucent objects and those with nonisotropic surface properties like hair
and the mineral commonly called tigereye.

Perhaps the most important determinant of the reflectivity function is
the microstructure of the surface. Different reflectivity functions may apply at
different magnifications. At high magnification many objects become increas-
ingly translucent. It is best therefore to determine the reflectivity function
under conditions similar to those later used in the determination of the shape
of the object.

One way to measure the reflectivity function is to employ a gonio-
photometer fitted with a small flat sample of the surface to be investigated. The
device can be set for any combination of incident, emittance and phase angles.

To avoid having to move the source and the sensor into all possible
positions with respect to a flat sample of the surface when measuring the
reflectivity function, it is convenient to have a test-object which presents all
possible values of i and e for a given g. The constraints are i + e < g, e + g < i
and g + i < e. Use of such an object is greatly simplified by using a telephoto
lens and a distant source, giving almost constant g. It is convenient to tabulate
the reflectivity versus i and e for each of a series of values of g. A sphere is
the easiest test-object to use if one is willing to live with the decreasing
accuracy in determining e as one approaches the edge.

One could also have an object of known shape in the same scene as the
object to be analyzed. This solves the problem of having to know the source
location and the transfer properties of the image forming system. In some
cases objects of known shape and surface characteristics differing from those
of the object under study are useful—for example a sphere with specular
reflectivity can pinpoint the location of the light sources.

Alternately, one might hope to predict reflectivity functions on a
theoretical basis starting with some assumed microstructure of the surface.
White mat surfaces are usually finely divided grains of transparent material
such as snow or crushed glass. White paint consists of transparent 'pigment'
particles (e.g., SiOz or Ti02) of high refractive index and small size (optimally
about the wavelength of visible light) suspended in a transparent medium of
low refractive index. If one chooses to model a regular arrangement of
suspended particles of uniform size and makes restrictive assumptions, one can
derive a reflectivity function and study its dependence on various parameters.
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Another type of surface is that of a highly reflective material (such as a
metal) where the light rays do not penetrate into the material. Choosing a
particular type of surface depression and a statistical distribution of the size
of these, one can again derive a reflectivity function.

Only a few such models have been studied and little hope exists for
modelling real surfaces well enough without having to abandon closed
expressions for the reflectivity function.

4.2.2 The Differential Equation
of Image Illumination

This section contains the derivation of the image illumination equation and
the analytical formulation of the shape-from-shading problem.

At a known point on the object we can calculate g. We should like to
find the gradient (or at least its component in one direction) at this point so
as to be able to continue the solution to a neighboring point. Measurement of
the light reflected tells us something about i and e. Since only one
measurement is involved, we cannot generally hope to determine both i and e
locally, but only a relation between the two. There are exceptional points
where the normal is locally fully determined and this is useful in finding
initial conditions as explained later.

Suppose we collapse the two principal planes of the image-forming
system together, forming the x-y plane as shown in Fig. 4.6. Let the z-axis
coincide with the optical axis and extend toward the object. Let f be
image-plane distance from the exit pupil and assume that the image and object
space refractive indexes are equal.

Source

Fig. 4.6 Details of the geometry of image illumination and projection in the imaging
system.
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Let t be the ratio of image illumination to object luminescence.
Let a(x, y, z) be the incident light intensity (usually constant or obeys

some inverse square law).
Let A(x, y, z) = t • a(x, y, z).
Let r = (x, y, z) be a point on the object and r' = (x', y', f) the

corresponding point in the image.
Let b(x', y') be the intensity measured at the image point (x', y').
Let p and q be the partial derivatives of z with respect to x and y.
Let I = cos(i), E = cos(e) and G = cos(g).

We have A(r) 0(1, E, G) = b(r').

We would like to show that this equation must be a first-order partial dif-
ferential equation. This will be true if it contains only x, y, z, and the first partial
derivatives p and q. We emphasize that this image illumination equation is the
main equation studied here.

When finding a solution we assume A(r) and 0(1, E, G) are known and
b(r') is obtained from the image. We want to show that the equation is a
first-order, nonlinear partial differential equation in two independent variables
of the form:

F(x, y, z, p, q) = 0

From the simple projection geometry we have

f \
•^•'

where f is the image plane distance from the exit pupil. We took care of
image reversal by orienting the x' and y' axes appropriately. It remains to
show that I, E and G are functions of x, y, z, p and q. An inward normal to
the surface at the point r is n = (—p, —q, 1).

Let the light source be at i-s = (xg, ys, zj. Then the incident ray will be
r, = r — is, and the emergent ray —re = —r. Clearly then

I = n • r;, E = A • re and G = r, • ?e

where the "s denote unit vectors. All the terms thus involve only x, y, z, p
and q. On substituting into the image illumination equation, it follows that we
are dealing with a first-order nonlinear partial differential equation in the two
unknowns x and y:

F(x, y, z, p, q) = A(r) 0(1, E, G) - b(r') = 0

4.2.3 Equivalent Ordinary Differential Equations

The usual method of dealing with a first-order nonlinear partial differential
equation is to solve an equivalent set of five ordinary differential equations:
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x = F p , y=Fq , z=pFp+qFq

P = -FX - pFz and q = -Fy - qp^

The dot denotes differentiation with respect to s, a parameter which
varies with distance along a so-called characteristic strip. The subscripts denote
partial derivatives. These equations are solved along the characteristic strips. See,
for example, Garabedian.3 The characteristic strips are the characteristic
curves described earlier (values of x, y, and z) plus the values of p and q on
them.

It can be shown that these equations are equivalent to the image
illumination equation. The demonstration is tedious and is omitted here.
Interested readers may find the mathematics in books on partial differential
equations.

Since we can multiply the equation F = 0 by any nonzero smooth
function X(x,y,z,p,q) without altering the solution surface, we can obtain a
different set of equations:

x=XFp, y=XFq, z=X(pFp+qFq)

P-^-Px-pFz) and q=X(-Fq-qFz)
The solution to this new set of equations will differ only in the values

of the parameter s at any given point. For example if we let

X =
VFp + Fq + (pFp + qFq)2

the parameter s gives us arc-length along the characteristics. This is used in the
programs to be described later. Of course we can only do this if the
denominator is not zero.

At singular points and ambiguity edges the denominator will be zero
since Fp = Fq = 0. A different choice for X will be used later in the discussion
of the scanning electron microscope.

4.2.4 Simplifying Situations

Since the general equations are fairly complex it is of great interest to find
simplifying conditions. Some of these are presented in this section. But first
we will need some partial derivatives, which it is convenient to introduce here.

The development of these partial derivatives requires some further
simple notation. Let A be a vector (3-tuple) and A = |A| be the magnitude of
A. Also let A = A/|A| be the corresponding unit vector. Consider the
dot-product A • B to be matrix multiplication of the 1 by 3 matrix A by the
3 X 1 matrix B1 (the transpose of B). Consider partial differentiation with
respect to a vector to be the 3-tuple whose components are found by
differentiating with respect to each component in turn. We denote this
differentiation by a subscript. Then for example
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A A = A

At times we will also need the partial derivatives of vectors with respect
to vectors. These are defined as 3 X 3 matrices, the first row being the result
of differentiating with respect to the first component and so on. Then for
example

/100\
AA= 0 1 0

\00 I/

We will also use partial derivatives of dot-produces of unit vectors with
respect to vectors. For example

X = A • 6 and we want XA

To avoid finding AA we write A X = A • B and then

AA X + A XA = AA • B

Extending the definition of dot-product in the appropriate way we find

/I 0 0\
AA • B = ( 0 1 0 ) IF = B

\0 0 I/
A XA = B - X A

XA=(-)(B-XA)w
Given these results, we get the important relations, i.e.,

I r=I r ;=(^) (n- I r , )

In =(„)(?,-In)

E,=Er,=^(n-Ere)

En=(n)(re -Bn)

Gr = G», + G,, = (-\ (r; - G ?e) + f1} (?e - G r,)

G n = 0

We will now proceed to list some simplifying situations:
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1. Distant source: Collimated source or the object subtends a small
angle at the source.

A( • r; = 0 and for a truly distant source:

A,=0

Replace r, by kr; and let k -> °°. Then

Ir = 0> In unchanged
ET and En unchanged

GI=(^)(Ti~Gte)' Gn=o

In addition choosing the z-axis along r, removes further terms.
2. Distant camera: Telephoto lens or the object subtends a small angle

at the camera.
Replace re by kfe and let k ->• °°. Then

Ir and In unchanged

Er = 0, En unchanged

Gi=(-')(fe-Gf,),Gn=0

In addition choosing the z-axis along ie removes further terms.
3. Distant source and distant camera:

4 = 0, In unchanged

Ef = 0, En unchanged

Gi = 0, Gn = 0

Most practical situations are an approximation of this case.
4. Source at the camera:

r; = fe I = E and G = 1

Ir = EI unchanged

In = En unchanged

Gr = 0 and Gn = 0

5. Distant source at distant camera:

I, = E, = G, = 0

!„ = En unchanged, Gn = 0
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Choosing the object to be on the z-axis removes further terms.
This is the simplest possible case.

6. Uniform illumination: Uniform illumination (or an approximation
thereof) is fairly common and might at first sight appear not to fit
into our framework. It can be shown however that uniform
illumination is equivalent to a point source at the camera and an
altered reflectivity function.

4.2.5 The Five Differential Equations of Shading
We will now make further use of the notation and results of the last section.
Recall the image illumination equation:

F(x,y,z,p,q)=A(r) 0(1, E, G) - b(r') = 0

We know A(r) and 0(1, E, G), and obtain b(r') from the image. We need
Fx, Fy, Fz, Fp and Fq. Since r = (x, y, z) and n = (—p, —q, 1) we can get all
of these derivatives from Fj and Fn.

F,=A(r) 0,(I,E,G)+A,(r) 0(1. E, G) - b,(r')

Fn=A(r) 0n(I,B,G)

Let a = (I, E, G). Then

0r = 0a 3r an(! <t>n = 0a Sn

Note that a, and an are 3 X 3 matrices, the rows of which we computed
in the previous section.

ar =

(^(n-1,)

(^(n-Ere)

(^)(r,-Gre)+(^(re-GrO

/I G\ /I G\
0 (re-Tl) (r,-re)_

Note that this is the product of two 3 X 3 matrices. Similarly
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an =
' ©"•-

(^•-
0

In)

En)

[
n

E
n

0

1
n

0

0

0

1
n

0

To evaluate the derivative F,. we need br(r').

br(r')=b,'-ri

Written out in full we have

( b x , b y , b z ) = l ^bx',by', t)^0).
where bx' and by' are measured directly from the image.

Since the intensities measured from the image do not locally determine
the normal, one might well ask what, roughly, such measurements do
determine. The components of the gradient of the intensity are related to the
second derivatives of the distance to the surface, while the intensity itself is
related to the magnitude of the first derivatives. This relationship becomes
exact for the case of a distant source at a distant camera.

It should be noted that the equation for F^ also involves Ar. Usually A
is fairly constant over the area of the object recorded in the image, or at least
satisfies a simple inverse-square equation.

If A = (ri/r,)2, then Ar = -2(rf /r?)r,
where r; is the incident vector, and ri is the length of the incident vector to
the singular point.

4.2.6 Initial Conditions and Singular Points

To select a particular solution surface among all possible solution surfaces one
needs to specify an initial curve through which the solution surface must pass:

x = x(t), y = y(t) and z = z(t)

Along this curve we must satisfy
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z'(t)=px'(t)+qy'(t)

F[x(t), y(t), z(t), p(t), q(t)] = 0

Here the dash represents differentiation with respect to t. This pair of
nonlinear equations allows one to find p(t) and q(t) along the initial curve.
There may be more than one solution, in which case there will be more than
one solution surface. The characteristic strips sprout from the initial curve as
for example in Fig. 4.7. The solution surface can be described parametrically:

x=x(s,t), y=y(s,t), z=z(s,t),and
p=p(s,t), q=q(s,t)

Now it would be a great disadvantage if one always required an initial
curve to start the solution from. Fortunately it is usually possible to calculate
some initial curve if one makes some assumptions about the surface and uses the
special singular points where the reflectivity uniquely determines the local normal.

The singular points are the brightest or the darkest points (depending on
the reflectivity function). At all other points the normal cannot be locally
determined. The singular points correspond to values of i and e for which the
reflectivity is a unique global maximum or minimum. These may be either
extrema or at the limiting values of the angles.

This method cannot be used if the surface does not contain a surface
element oriented in this special direction. The points are found by looking for
the brightest (or darkest) points in the image.

All we still need to know then is the distance of this point from the
camera, but since one is usually only interested in relative distances this is not
a serious restriction.

Unfortunately it will be found that the solution will not move from
these singular points because x = y = 0. This is an indication that the
algorithm needs to be informed about which way the surface is curved,
convex or concave.

A characteristic

Fig. 4.7 Characteristic strips sprouting from an initial
curve.



130 The Psychology of Computer Vision

If the surface is convex (or concave) at the singular point and we have a
guess at the radius of curvature (from the overall size of the object for
example), we can get around the problem of singular points by constructing
small spherical caps on them. Difficulties will be encountered if this point
happens to be a saddle point, but the presence of a saddle point usually
indicates that other singular points exist where the surface is either convex or
concave.

Consider Fig. 4.8. Let S be the vector from the camera to the singular
point (found from its known image coordinates and its distance from the
camera). R is the estimated radius of curvature and p the distance we decide
to step away from the singular point, determined in practice by considerations
of uncertainty in the position of the singular point and the desired detail in
the solution. The known normal at the singular point is No. We construct a
spherical cap with center S — RNo.

Let

R i^R 2 ^ 2

Si = S + (Ri - R)No

X = y X No where y = (0,1,0)

Y = No X X

T(t) = p(X cos(27r t) + Y sin(2w t)) 0 < t < 1

Points on the initial circle are then given by

Si + T(t)
We also need an initial guess at p and q, so we construct N1, (an

outward normal):

Ni( t )=RiNo+T(t )

Fig. 4.8 Construction of the ini-
tial curve near a singular point.
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Fig. 4.9 Three solutions ob-
tained for varying initial radius of
curvature and the small effect
which errors in the initial curve
have on the solution.

The requirement for an initial guess at the radius of curvature is not as
restrictive as it might seem, since the required accuracy is extremely low. This
is because p is usually very much smaller than R, and hence a change in R
affects the position of the initial curve very little. Even more importantly, the
values derived for p and q need not be accurate since they are only used as a
first guess in an iterative method of finding p and q on the initial curve before
starting the solution. Figure 4.9 shows graphically how different radii might
influence the solution in a typical case.

4.2.7 Nonpoint Sources
Uniform sources have already been dealt with. Perhaps the easiest other case is
a circularly symmetric source at a distance large compared to the dimensions
of the object.

Distant circularly symmetric sources can be replaced by a point source
after modifying the reflectivity function. One merely convolves the reflectivity
function with the spread function of the source (a bit of spherical
trigonometry is involved). Strictly speaking, one should perform the same
operation with the entrance pupil of the camera since it too subtends a finite
angle at the object and accepts a bundle of light rays. Since 0 is smooth
(except at I = 0 and 1=1) it will be changed very little except at these
points. The main change will be that 0 does not tend to 0 as I tends to 0, but
rather for some negative value of I. Also the specular component will be more
smeared out.

Let the source intensity be I(a) per unit solid angle at the angle a from
its center when viewed from the object. See Fig. 4.10. Then the new
reflectivity function 0'(I, E, G) is

[ w/'aoI(a)0(I',E,G')adadv
A'/T K r-> - °—°______________<t> (I. E, G) = ———-————————————

,2w SQ
f / I(a) a da dv
•'o /o

where ao = total angular diameter of the source
cos(A) = (cos(g) — cos(i) cos(e))/(sin(i) sin(e))
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Fig. 4.10 Circularly symmetric
Obiect source and quantities used in the

convolution.

cos(i') = cos(i) cos(a) + sin(i) sin(a) cos(v)
sin(6A) = sin(i') sin(a)/sin(v)
cos(g') = cos(A + 5 A) sin(i') sin(e) + cos(i') cos(e)

When the source distribution is not easily treated as above one can
introduce a different Ak for each source and replace the main equation by

^Ak(r) 0(Ik,E,Gk)=b(r')

Difficulties in finding initial conditions will be encountered with
multiple sources unless they are of special kinds (e.g., a point source plus a
uniform source).

4.2.8 Shadows and Other Edges
Several kinds of edges appear in an image, each with its own properties and
problems for our algorithm:

1. Overlap—special case of occlusion of one object by another in which
the line of occlusion corresponds to an angular edge on the occluding
object. There is a discontinuity in z. The program must detect this or
it will erroneously continue a solution across such an edge.

2. View edges—special case of occlusion where no angular edge is
involved. The surface is smooth and E tends to 0 as we approach it.
This is easily detected by the program during the calculation of the
solution.

3. Joints—angular edges on an object. There are discontinuities in the
derivatives of z. One cannot continue p and q across such an edge. It
is possible however to use the position of the edge as a new initial
curve. This and the previous condition can be detected as a step in
the intensity distribution or from a highlight on the edge.
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4. Shadow edges—here I tends to 0 as we approach the edge and again
the program can easily detect this.

5. Projected shadow edges—if the shadow is bridged this edge may serve
as a new initial curve as described below.

6. Ambiguity edges—some are lines of aggregation of singular points (on
which X ->• °°). The characteristics will not cross an ambiguity edge.

If the single source is not at the camera, shadows will appear. Solutions
can be carried across shadows since the position of the source is known and
one can construct a ray through the last illuminated point and trace it until it
meets another illuminated region. The place where a glancing ray first strikes
the surface on the other side of the shadow can be determined by
triangulation on the source-surface ray and the surface-eye ray. Only the
coordinates and not the local gradient of this new point will be known. It is
necessary to carry this operation out for all characteristics entering the
shadow, producing a new initial curve at the other edge of the shadow where
we can restart the solution. In practice care has to be taken because of noise.

4.3 SPECIAL APPLICATIONS

4.3.1 The Scanning Electron Microscope
This section deals with two applications in which the equations simplify
considerably. The first is scanning electron microscopy.

The scanning electron microscope device uses an electron beam which is
focused and deflected much like the beam of a cathode ray tube and impinges
on a specimen in an evacuated chamber. As shown in Fig. 4.11 the narrow ray
penetrates into the specimen for some small distance, creating secondary

Fig. 4.11 Detail of electron beam impinging on speci-
men.
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electrons along its path. The depth of penetration, the spread, and the number j
of secondary electrons are all functions of the material of that portion of the
specimen. The number of secondary electrons which emerge from the
specimen back into the vacuum through the surface will depend strongly on
the inclination of the surface with respect to the beam.

These relatively slow secondary electrons are then attracted by a
positively charged grid and impinge on a phosphor-coated photomultiplier. (See
Fig. 4.12.) In this way a current is generated proportional to the number of
secondary electrons escaping the specimen. The emerging electrons are
analogous to photons reflected at a surface but in direct contrast to optical
surfaces the intensity is least when the incident beam is perpendicular. Thus
the steep edges are outlined more brightly. Strangely, people find this effect
appealing.

The output is used to modulate the intensity of the beam in a cathode
ray tube while both beams are scanned synchronously in a television-like
raster. The image created exhibits shading and is remarkably easy to interpret
topographically. This is quite unlike the normal use of optical or transmission
electron microscopes which portray density and thickness.

The magnification is easily increased by decreasing the deflection in the
microscope. The resolution is poor compared to the transmission electron
microscope because of the spread of the beam as it enters the specimen, but
the depth of field is much better than that of an optical microscope because
of the very narrow beam (extremely high f-number).

There are important cases where the shape must be determined and
stereoscopic methods are not applicable. This may be because at the
magnification used the specimen appears smooth without significant surface
detail or because it is difficult to line up the second image. Since the

D H Dy10"
focusing
coils

Photomultiplier

Fig. 4.12 A scanning electron microscope.
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equations for this case turn out to be so simple, it should be rewarding to tie
a scanning electron microscope directly into a small computer.

A little thought shows that this electron microscope situation is
analogous to the case where a source is at the camera (or equivalently, the
case where we have uniform illumination). Note that no shadows appear.
Moreover the projection is ordinarily near-orthogonal. Because of these two
effects the five ordinary differential equations simplify considerably:

x=Fp , y = F q , z = p F p + q F q

P = -Fx - pFz and q = -Fy - qF^

Now

Fn = A 0iln and Fi. = —bi

, n • z 1 >I = —^- = -^ where n = (-p, - q, 1)

^(n^-1-)^)-^"

Ip^P and I,=(^)q

Hence

• p i^^\ • c {A<i)l\
^^^^'y^^^'1

z^)(p^q2)

p = —bx and q = —by

If 0i i= 0 everywhere, we can change to a new measure s along the
characteristic by multiplying all equations by X = n^A 0i) and we get

x = P, y = q, z = p2 + q2

. , n3 _ , n3

P-^A^' '1-^^

Notice that the changes in x and y along the characteristics are given in
this case by the partial derivatives of z with respect to x and y. This
constrains the characteristics therefore to grow in the direction of the
surface's gradient at each point. Thus this extremely simple case has
characteristics which are curves of steepest descent. Also note that the
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equation for z does not couple back into the system of equations because of
the orthogonal projection. This increases accuracy. The equations happen to
be very similar to the Eikonel equations for the paths of light rays in
refractive media. It may be possible to find ready-made solutions to some
special cases by using this analogy.

We assumed that 0i ̂  0; this is equivalent to assuming that an inverse
exists which allows us to find I from a measurement of the image intensity:

^[0(1,1,1)]= I

Let
1 - ̂ (x)

?w 2>Kx)

Then

^Dl-^P'+q2)^I.LDl^^+q2)

So we can find at each point the magnitude, but not the direction of
the local gradient.

Let us turn to the question of ambiguities since the subject is easy
enough in the electron microscope case. Assume the camera and light source
are at the same position and consider the two surfaces:

z = z + x 3 , z = z + |x|3

Clearly they cannot be distinguished in monocular views since they
produce identical intensity distributions in the image. This manifests itself in a
slowing down of the characteristics as they approach the line x = 0
(alternatively X ->• °°). They cannot cross this line aggregation of singular
points. Note that the characteristics approach this line at right angles and that
the edge is determined locally, since in general each point on an ambiguity
edge is a singular point.

A second kind of ambiguity edge can occur parallel to characteristics,
separating those which can be reached from one singular point from those

\- Ambiguity
\---" edge

Fig. 4.13 A locally determined ambiguity
edge:f= l/(x2 + y 2 -I)2.
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Fig. 4.14 A globally determined ambiguity edge:
f = 1/[1 +x 2 + (y-1)2] + 1/[1 +x 2 + (y+1)2] .

reachable only from another. This kind of edge is not locally determined,
since a change in the surface is possible which removes one of the singular
points and makes all the characteristics accessible from the other. This can be
done without altering an area near the two given points previously separated
by an ambiguity edge. Figure 4.13 shows a locally defined ambiguity edge and
Fig. 4.14 shows a globally defined one.

Both types of ambiguity edge occur in the general case but are not so
easily studied there. They divide the image into regions within each of which a
solution can be obtained. Typically most such regions will have one singular
point from which one may obtain initial conditions (provided one makes a
decision about whether the surface is concave or convex and knows the
distance to the singular point).

4.3.2 Lunar Topography
The other very interesting simplification to the general shape from shading
equations occurs when we introduce the special reflectivity function which
applies to the material in the maria of the moon. This in fact was the first
shape from shading problem solved both theoretically and in an operating
algorithm.1 Using the special reflectivity function and the fact that the sun is
a distant source, it is possible (but very tedious) to show that the equations
simplify so that the base characteristics (i.e., the projection of the charac-
teristics on the image, plane) become straight lines radiating from the
zero-phase point, the point corresponding to g = 0. The camera lies directly
between this point and the sun. Actually this is true only when the sun is
located at negative z; for positive z (i.e., in front of the camera), the relevant
point is the w-phase point, directly in the sun.

The variation of light reflected from the surface of the moon with phase
and inclination of the surface has been studied for a long time. At a given
lunar phase g, all possible combinations of incident angle i and emittance
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angle e are represented by some portion of the surface. A fairly good
approximation is the Lommel-Seeliger formula:4

0(I,E,G)= FoO/E)
(I/E) + X(G)

Where Fo is a constant and the function X(G) is defined numerically by
a table. This formula can also be derived from a simplified model of the lunar
surface. A slight gain in accuracy is possible if Fo is allowed to vary with G as
well. In particular Fesenkov finds the more accurate formula

FoCI/EMl+cos^)]
0(1, E, G) ^ + \o [1 + tan2 (a/2)]

where
. . G-(VE)

^'Tr-^
A recent theoretical model is that of Hapke5 which corresponds fairly

closely to the measured reflectivity function. In most of these formulas we
find that for a given G, 0 is a constant for constant I/E. The lines of constant
I/E are meridians.

At full moon, when G = 1 we find that the whole face has constant
luminosity. This is quite unlike the effect on a sphere coated with a typical
mat paint where the image intensity would vary as

^R/

Where R is the radius of the image and r the distance from the center of
the image. The full moon thus has the same appearance as a flat disc if one is
used to objects with normal mat surfaces. This may explain the flat
appearance of the full moon.

In the case of pictures taken of the lunar surface from nearby (e.g.,
from orbit) we have the following:

1. Distant source (the moon subtends an angle of about .03 milliradians
at the sun).

2. Near point source (the sun subtends an angle of about 10 milliradians
at the moon).

3. Camera at the origin.
4. The reflectivity function is constant for constant I/E.

It can be demonstrated that the solution to the lunar topography problem
is a special case of the more general formulation given in this paper. But since
the details are tedious, we only note that the ordinary differential equation
that constrains r has the simple solution:
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_r(s)
r(0)

where

= e-P.^ltai^cO/Q21 ds

r(0)

XQ yo
L = , ° c o s ( t ) + — s i n ( t )ZQ ZQ

and

Note that r(0) is the distance to the point from where the integration
was started, t is a parameter which varies from characteristic to characteristic,
s is a parameter that varies along a given characteristic and ro = (xo, yo, Zo) is
a unit vector parallel to the direction from the sun to the moon.

To sum up, as one advances along each characteristic in turn, one
calculates G, measures b/A and uses V/ to obtain tan(a), which is then used in
the evaluation of the above integral. Here V/(b/A, G) = I/E, that is to say, ^ is
a kind of inverse function for 0(1, E, G). The process is much simpler than the
general shape from shading algorithm.

Let us list some of the major points of interest.

1. The base characteristics are predetermined straight lines (independent
of the image). This makes for high accuracy and ease in planning a
picture-taking mission.

2. Only a single integral needs to be evaluated, not five differential
equations.

3. The primary input is the intensity, not its gradients, again making for
high accuracy.

4. Although, as usual, the reflected light-intensity does not give a
unique normal, it does determine the slope component in the
direction of the characteristic. J. van Diggelen6 first noted a special
case of this when he solved the lunar topography problem for the
special case of an area near the terminator (line separating sunlit
from dark areas). The characteristics are such that the slope along
them can be determined locally. The slope at right angles to the
characteristics cannot be determined locally.

5. Although T. Rindfleisch did not mention it in his paper* it is very
easy to bridge shadows since each light ray lies in a sun-camera-
characteristic plane. Its image can thus be traced on the base charac-
teristic until we again meet a lighted area. One need not even make
special provisions for this, but just use tan(a) for grazing incidence
(intensity = 0) in the shaded section.
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4.4 IMPLEMENTATION

4.4.1 Measuring the Reflectivity Function

The reflectivity functions of some paints were measured using large rubber
spheres as calibration objects. Both camera and source were moved as far
away as possible to achieve almost constant phase angle g. The image of a
convex object is especially useful because it contains two points for all
possible combinations of the incident and emittance angles (i and e) for a
given phase (angle g). The position of the light source is measured, as well as
the distance from the front of the sphere to the entrance pupil. The image
dissector is focused on the edge of the sphere.

With the sphere temporarily illuminated from several sources, a program
finds its exact position and size, as well as the difference in horizontal and
vertical deflection sensitivity of the image dissector. It is now possible to
calculate the points in the image which correspond to given incident and
emittance angles. For a number of choices of both of these angles one then
reads the intensity at a small raster of points near these positions and averages
them to reduce noise and the effect of pinholes in the photocathode. Since
there are usually two places in the image with the same incident and
emittance angle, a check on the data is possible. The resultant table of values
(usually normalized with respect to the brightest intensity) can be printed and
the whole process repeated after moving the light source to a new position for
a new phase angle. The program accounts for such things as change in incident
light intensity as the light source gets moved around.

Clearly the points for given incident angle lie on a circle on the surface
of the sphere. Similarly for points with a given emittance angle. These two
circles may intersect in two, one, or no points. One can find this intersection
by first finding the line along which the planes containing these circles
intersect. Examine Fig. 4.15. Applying the sine and cosine laws,

Fig. 4.15 Finding points for
given incident and emittance an-
gles.
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I = cos (i) as usual and D = IvJ

D ^ r _
sin (w — i) sin (a) l a

r cos (b) = r [cos (i) cos (a) + sin (i) sin (a)]

= (~\ [IVD2 -r^l-I2) + r(l - I2)]

d = r cos (b)

Vp = Vc + d Vs

The equation of the plane in which the circle of points with given
incident angle i lies is

v • Vs = Vp • Vg where v = (x, y, z)

One can find a similar equation for the plane in which the circle of
points with given emittance angle e lies. The introduction of an arbitrary third
plane allows us to find one point v on the intersection of the first two. The
line of intersection of the first two planes must be parallel to the cross
product of their normals (let them be \si an^ Vga). So the equation of the
line we are looking for is

(v — ^a) = k v! where Vi = Vgi X Vg;

The points we are trying to find must also lie on the sphere, that is,

(v-Ve)2^2

(Vg +kVi —Vc)=r 2

k^i • vi +2kv i •(Va-Vc)+(va-Vc)2 - r2 =0

The above equation may have no solution for k, in which case no point
exists for the given incident and emittance angle. Otherwise we can use the
two solutions and substitute back to obtain the desired coordinates which are
then transformed into image coordinates. Figure 4.16 shows the sort of table
that results for a given phase angle g.

The first paint investigated was a mat white paint consisting of particles
of SiO; and TiOa suspended in a transparent base. Very roughly one finds
that the reflectivity function behaves like cos(i) for a given g. After playing
with polynomial fits for a while, the following fairly accurate formula was
found by a process of little interest here:
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1.00 0.97 0.93 0.87 0.78 0.68 0.56 0.43 0.29 0.15

1.00 0.77
0.97 0.87 0.78 0.66
0.93 0.93 058 0.78 0.67 0.57
0.87 0.97 9.94 0.89 0.79 0.67 0.57 0.45

E 0.78 0.99 038 035 030 0.81 0.68 0.59 0.46 0.32
| 0.68 0.98 0.95 0.91 0.82 0.71 0.59 0.47 0.33 0.18
' 0.56 0.94 050 0.83 0.74 0.61 0.48 0.34 0.17

0.43 038 0.79 0.74 0.62 0.50 0.34 0.18
0.29 0.79 0.70 0.58 0.42 0.30 0.15
0.15 0.65 0.50 0.38 0.26 0.13

Fig. 4.16 Table of reflectivity (for a white mat paint) vs. I = cos i and E = cos e for
G = cos g = 0.81. The intervals chosen correspond to constant size steps in the angles.
Note the blank areas for combinations of angles which cannot form a spherical
triangle.

AH F r^ (1 + G)(2 + G) " 1 + 2 I E G - ( I 2 + E 2 + G2)"!0(I,E,G) = ————^———— 1 + —————i6(T~G)—————J

For reasonable angles the above formula is about 5 percent accurate,
becoming worse for extreme angles. The repeatability of this measurement was
disappointingly low, depending on the depth of the paint coat and the details
of its application. Much of the investigation of the behavior of the image
dissector was the result of efforts to trace the remaining causes of inaccuracy.

Some other paints and an eggshell showed a mat component similar to
the above, plus a very strong specular component (which is small except near
the point for which i = e and i + e = g). This component is very sensitive to
small changes in the surface properties such as can be brought about by
handling the object.

The image of a convex object with such a surface will usually have two
local maxima in intensity. One of these will be broad (corresponding to the
mat component), the other narrow and bright (corresponding to the specular
component). These may be distinguished by a computer program on the basis
of just these properties. It would then be possible to start a solution from the
mat maximum (which is not a global maximum) rather than the specular
maximum. This might be a good idea because of the increased accuracy (for
one thing the normalization of image intensities would be more accurate).

In an attempt to track down poor results in the first try at finding
reflectivity functions accurately, the image dissector was investigated in some
detail2 . Among problems found were:

1. Unequal deflection sensitivity in horizontal and vertical directions
(differed by 12 percent).
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Fig. 4.17 Geometric distortion in image dissector for a triangular
raster of points covering the photo-cathode. (The arrows are exagger-
ated three times.)

2. Twist of image varying with distance from center of field of view.
(See Fig. 4.17.)

3. Poor resolution (3 line-pairs/mm — radius of tube 38 mm).
4. Pinholes in the photocathode (about 20 of up to 0.5 mm in size).
5. Nonuniform sensitivity of the photocathode (varies more than 30

percent).
6. Fairly long settling time of the deflection coils (on the order of 300

microseconds).
7. A large amount of scatter, which reduces the contrast by almost

one-third and causes intensities measured on the image of a uniform
square on a dark background to vary by 20 percent, depending on
how close to the edge the measurement is taken.

4.4.2 Numerical Methods for Solving
the Equations

The five ordinary differential equations were at first solved using a well-known
Runge-Kutta method. The idea is to average together several estimates of the
derivatives of the five variables (x , y , z, p , and q ) with respect to the
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parameter s. The first estimates are the actual derivatives at s. These are used
to take a half step forward and calculate new values for x , y , z, p , and q as
though derivatives higher than the first were zero. We then calculate the
derivatives at this new point to get a second set. Next we start over from s,
probing out again by a half step but now using the second set of derivatives.
We then get a third set of derivatives at s + h/2. The third set is used in the
final probe from s which now extends fully to s + h where we get a fourth set
of derivatives. The official full step is taken using a weighted average of the four
sets of derivatives found in this way. Written out in symbols this becomes:
Let h be the step-size (for the parameter s).
Let Y = (x, y, z, p, q).
And let the equations for the derivatives be

Y'=F(s,Y)

(In our case, F is actually independent of s.)
Denote Y(Sn) by Yn then at the rf11 step

Ki =hF(sn,Yn)

K, =hF(sn+|.Yn+-^-)

Ka = h F ^ + t , Y » + ^

K4 = h F ( S n + h , Y n +K.3)

Yn.i = Yn +(i)(Ki + 2K, + 2K.3 + ̂ )

This method is easy to start (requires no previous values of Y) and
stable, but requires four time-consuming evaluations of the derivatives per
step. For this reason various predictor-modifier-corrector methods were tried
and the simplest was found to give adequate accuracy

Pn.i=Yn +2hF(Sn,Yn)

Mn.l =Pn.l -(|)(Pn-Cn)

Cn.l = Yn + (^\ [F(Sn, Mn.i ) + F(Sn, Yn)]

*n+l = Cn+l '*"' I T ) (*n+l t'n+l)

P, M, and C are the predictor, modifier and corrector respectively. This
method is stable and requires only two derivative evaluations per step, but is
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not self-starting. The Runge-Kutta method was retained for the first step in
the integration. Stability and accuracy were not serious concerns since the
noise in the data input contributes far more to errors in the solution.

Under optimal conditions (using methods to cancel out most of the
distortion and nonuniformity of photocathode sensitivity) the program was
allowed to scan a sphere of 100 mm radius. A sphere was then fitted by an
iterative least-square method to the data points found. The data points
nowhere deviated from the fitted sphere by more than 10 mm, and by less
than 5 mm except near the very edge of the image. Such accuracy will not
usually be obtained because of nonuniformity in the paint, shortcomings of
the sensing device, etc. For many purposes, however, less accuracy is quite
acceptable and for object recognition in particular a more important criterion
is that similar objects are distorted in similar ways.

4.4.3 A Program Solving the Characteristics
in Parallel

It soon became apparent that integrating along each characteristic indepen-
dently has many disadvantages in the general case, even though it works well
for lunar topography. The first reason is that characteristics spreading out
from the singular point begin to separate and leave large portions of the image
unexplored. One obtains only a very uneven sampling of the surface of the
object. With a more parallel approach new characteristics can be created as
one goes along and some others can be deleted in areas where characteristics
approach each other too closely.

Next we find that the base characteristics (projections of the charac-
teristics onto the image) may sometimes cross! This would not be possible if
the solution were exact, since it indicates that the surface is double-valued or
at least that its gradient is double-valued. Solution of this problem is easy if
the integrations are carried along in parallel, but involves lengthy comparison
tests otherwise.

Once it had been demonstrated that the equations were correct and a
numerical solution possible, it was decided to write a program which would
explore the surface of the object by moving along all the characteristics in
parallel and by interpolating new characteristics when needed. Accuracy in the
solution was traded for more noise immunity. The solution is achieved by
taking all characteristics one step forward at the same time. An effort
to find a convenient coordinate system for this approach produced the
notation and resultant equations given here. The solution was previously
worked out in a different coordinate system requiring manipulation of extreme
complexity.

The values stored for each point (x, y, z, intensity, p, q and pointers to
the previous point on the same characteristic) are here arranged not by
characteristic but by "ring." A ring is a curve of constant arc-distance from
the singular point. That is, the n^ points on all the characteristics form one
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ring. The complete data structure is made up of a number of rings, the first of
which is the initial curve. As before, individual characteristics may stop for a
variety of reasons and this causes breaks to appear in the current ring. Some
rings thus represent closed curves and others more distant from the singular
point are broken into sections, the final ring having no active point on it.

As we have seen, one of the main inducements for using the parallel
solution method is to allow interpolation of new characteristics. This is one of
the reasons why the number of points in a ring may change from one to the
next and why each point has to have a pointer into the previous ring
indicating which element is its predecessor in the same characteristic.

It should be noted that the use of constant size steps along the
characteristics may produce difficulties on complex objects. For even with
smooth surfaces the curves of constant arc-distance from the singular point
may have cusps. An alternative, which would circumvent this problem, would
be the use of steps traversing a constant increment in intensity. This would
turn the rings into contours of constant intensity.

We have already described how one can obtain p(t) and q(t) on the
initial curve by solving the set of nonlinear equations:

p(t)xt(t)+q(t)yt(t)-Zt(t)=0

A(r)^(I,E,G)-b(r')=0

When solving a difference equation approximation from noisy data we
can expect the solution for p and q to become progressively more inaccurate.
Yet the above pair of equations must hold on any path along the surface of
the object. In particular one can use them on the curve defined by one ring to
determine values of p and q.

For the initial curve we had the additional difficulty that the two
equations might have more than one solution and we selected one on the basis
of some external knowledge (e.g., that the object is convex near the singular
point). We have assumed that the object is smooth and therefore we will have
fairly good values for p and q and cannot get into this difficulty at
nonsingular points. Even a simple Newton-Raphsen method will suffice to get
us more accurate values of p and q.

Let

g(p, q) = P X( + q Yt - Zt

h(p,q)=0(I,E,G)-^

and suppose: g(p + Sp, q + 5q) = h(p + 5p, q + 6q) = 0.
Then ignoring other than first-order terms we have

/gpgq\/5p\/g(p,q)\
\hphJ\8q; \h(p,q)Y



Obtaining Shape from Shading Information 147

That is,

^ yt\/Sp\/g(P,q)\

<P q/\5q/\h(p,q)/

Here X(, yi and Z( have to be estimated from difference approximations.
One may not want to apply the full correction (§p,Sq). More than one
iteration will not be required since after the first iteration p and q are very
close to the correct values. We will call this process the sharpening of p and q.

When the separation between two neighboring points in a ring becomes
greater than 1.5 times the step size along the characteristic, a new
characteristic is interpolated. Its x, y, z, p, and q values are set to the average
of its neighbors. A more complicated interpolation method can also be used
which constructs the line of intersection of the tangent planes at the two
neighboring points. It then finds the point on this line closest to the two
neighbors and finally uses a point half-way between the point determined
previously by the simpler method and this new point. This method does not,
however, add significantly to the accuracy of the solution.

If two neighboring points in a section of a ring come closer than 0.7
times the step-size, one is deleted (it is important that this factor be less than
0.75, that is, one half of the factor used in the interpolation decision, or
succesive rings on a flat region will have points interpolated on one step, only
to be removed on the next, with consequent loss of accuracy).

Finally one wants to stop neighboring characteristics from crossing over
each other. Consider the two points a and b on one ring and their successors c
and d on the next as in Fig. 4.18. The test consists of checking whether c is
to the left of the directed line through bd and whether d is to the right of the
directed line through ac. Both tests are needed. If either fails, the
corresponding characteristic is terminated, causing a break to appear in the
ring at that point. The test is equivalent to checking whether the line segment
cd falls in front of the line segment ab (and does not cross it). This test is
applied across short breaks in rings as well to stop neighboring sections of the
ring from crossing over each other.

Care has to be taken if the remaining sections of a ring all fall on one
side of the singular point, since the break then actually encompasses an arc of

Fig. 4.18 The four points used in
the crossing test.
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more than ir and crossing tests applied across it will invariable terminate more
characteristics on either side of it. This can be avoided if the crossing test is
not applied to points whose images fall too far apart in terms of the
projection of the current step size.

Rather than use the intensities at a small raster of points to estimate the
local gradient, it was decided to use a difference approximation from
intensities measured at neighboring points. Using as many as possible of the
intensities of the point itself and its five immediate neighbors, we can apply a
simple least-squares method to estimate the gradient. (See Fig. 4.19.) Some of
the points may not exist as explained previously and the characteristic is
terminated if less than three points are available or only three which are
nearly coUinear. Suppose the coordinates of the points are (xk,ylc) (image
coordinate system) and the intensities are b^. We wish to find bo, bx' and by',
to minimize the following expression:

^ ( b x ' X k + b y ' y k + b o - b k ) 2

This happens when

^xi,2 ^Xkyi^Xk

;[x,y^y.2 ̂

x^ ̂  ^
b,

by.

I

I

I

bkXk

bkYk

bk

From bx' and by' we can find bx, by, and bz by using the camera
projection equations of an earlier section.

For good noise immunity and some ability to detect surface detail
indicating that the solution is invalid, the intensity for each solution point is
not read from only one image point. Small tilted rectangular rasters of points
are established around each point of the solution as shown in Fig. 4.20. One
axis of the rectangle is parallel to the base characteristic at that point, and the
size is adjusted to correspond to the projection on the image of a square on
the object of side-length equal to the step size. The intensity recorded for a
solution point is the average of the intensities read for the points in this raster
and the rms/average is used to make the edge-crossing decision. The rasters of
all the points in the data structure almost but not quite touch and taken
together almost cover the total area of the image explored. This insures that
the data is not much affected by pinholes in the photocathode of the image
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Fig. 4.19 The five neighbors Fig. 4.20 Covering the im-
used in determining the inten- age with the rasters of points
sity gradient at p. read for each solution point.

dissector and that edge crossing can easily be detected without reducing the
resolution.

This program spends more than half its time accessing the image
dissector. Between 20 and 100 intensities are read for each point in the
solution, and each access takes about 0.2 to 1.0 milliseconds. A complete
solution requires from 1 to 5 minutes of real time.

4.4.4 Operation of the Program
First the program needs to be given such parameters as the position of the
light source, the distance to the object, focal length of the lens and the step
size to be used in the integration. It then proceeds to find a point of
maximum intensity (for some reflectivity functions one needs to search for a
minimum). This search can be directed to allow a choice of one of several
possible maxima. The program then assumes that this point of maximum
intensity is a singular point and that the object is convex at this point (in
some cases we would like to assume it to be concave). After constructing an
initial curve (a small circle) around the singular point, it proceeds to read the
intensities at the corresponding image points. The nonlinear equations for p
and q on this curve are than solved iteratively.

All intensities are normalized with respect to the intensity at the
singular point unless the surface has a specular component. In the latter case,
the intensities on the initial curve are used to establish a normalization value
(the specular reflectivity is too variable for use in normalization). It is
assumed that the initial curve has been chosen large enough to fall outside the
region of strong specular reflection.

For each step in the parameter s, the following procedure is then carried
out:

1. For each point calculate the normal (n), the incident vector (r;) and
the emittance vector (re). From these obtain the derivatives In, Bn
and Gn.
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2. Calculate 0i, 0E, ^G and hence 0n.
3. Then obtain Fp, Fq and X.
4. Add (5x, Sy, §z) to (x, y, z) to get the point on the next ring for

each characteristic. Here (6x, §y, Sz) = X(Fp, Fq, pFp + qFq).
5. Interpolate new points where the points in the new ring are too far

apart and delete points where they are too close together. Produce
breaks where characteristics have crossed over adjacent charac-
teristics.

6. Now read the intensities for all the points. Terminate those
characteristics with points of very low intensity or high rms/average.

7. Calculate bx', by' for all those points for which enough neighbors
exist. From these values obtain bx, by and bz by the projection
equations.

8. Now use n, r; and fe to calculate Ij, Er and Gr.
9. Next use ̂ , ̂ g and 0c to calculate <^.

10. Then obtain Fx, Fy and F^.
11. Add (6p,Sq) to (p,q) to obtain p and q for the uninterpolated

points on the new ring. Here (5p,5q) = [X(—Fx—pFz),
X(-Fy -qF,)].

12. Interpolate p and q for the new points.
13. Sharpen up the values for p and q on all points in the new ring.
14. Garbage-collect various items.

The simpler Euler method for solving the differential equations could be
replaced by a Runge-Kutta method with increases in running time of a factor
of two, but little improvement in accuracy. Distortions in the imaging device
produce distortions in x and y, while nonuniformities in the sensitivity will
affect p and q and hence z. The only effect of low resolution will be that
some edges will not be noticed and the solution erroneously continued across
them.

It should be apparent where the various tests for terminating the
characteristics fit into the above schema. The program terminates charac-
teristics in the following situations:

1. The characteristic has moved out of the field of view of the image
dissector.

2. The rms/average for the intensities read in the raster has become too
great, indicating overlap of two objects or an angular joint on one
object or some surface detail that is being missed.

3. The intensity has become too low, indicating a shadow region.
4. X is too large, indicating approach to either another singular point or

an ambiguity edge.
5. There are too few neighbors to construct a good estimate of the local

intensity gradient.
6. I too small—indicating approach to a shadow edge.
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7. E too small—indicating approach to an edge of the object.
8. The characteristic crossed over a neighboring one.
9. The intensity is equal to or greater than that measured at the singular

point, indicating another singular point or ambiguity edge.

Note that several of these conditions are redundant to ensure that even
with an inexact solution at least one will fail at the right place.

4.4.5 Summary and Conclusions

After defining the reflectivity function, an equation was found relating the
intensity measured in the image of a smooth opaque object to the shape of
the object. This equation was then shown to be a first-order nonlinear partial
differential equation in two unknowns and the equivalent set of five ordinary
differential equations was derived. Two especially simple cases were dis-
cussed, namely applications to lunar topography and the scanning electron
microscope. Methods were described for obtaining the auxiliary information
required (e.g., the reflectivity function) and how to avoid the need for an
initial known curve on the object. Of importance too is the method
demonstrated for continuously updating p and q (sharpening) as the solution
progresses.

The analytical approach to the problem of determining shape from
shading was developed to demonstrate that an exact solution is possible and
to determine just what the limitations of this approach are. This is not to say
that a more heuristic, approximate approach does not have its merits too for
certain types of objects. It was decided to produce a program to allow
experimentation with the solution method because many ideas in the field of
artificial intelligence and visual perception are of little value until they can be
tried on real data. Fortunately an image dissector was available to provide
input of image intensities to the computer.

4.5 RELATED QUESTIONS

4.5.1 Likely Source Distributions
Since the complexity of the algorithms presented here increase with the
complexity of the light source distribution and since we only know how to
bridge shadows cast by one source, it is important to know which light source
distributions occur in practice. First one notes that the situations found
difficult by humans are almost certainly going to give difficulties to our
algorithm. For example, when two sources cast shadows (such as on a road
lighted by widely spaced streetlamps) the shape of unfamiliar objects becomes
difficult to ascertain because of the crossed shadows. If the incident intensity
varies greatly from one image area to another (such as in a lightly wooded
forest) the tangle of lighted and dark areas makes perception more difficult.
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On the other hand one would expect natural conditions to be particularly
easy, as in the case of one point source somewhat above the observer (the sun)
combined with a very diffuse (almost uniform) source (the sky). The diffuse
source will not throw sharp shadows of its own. The absence of either of the
two sources makes vision only slightly more difficult.

One would expect photographers to have something to contribute to
this subject and introductory booklets on artificial light photography confirm
the above conclusions. The beginner is advised to use a number of lights with
different characteristics as follows:

1. The main light—The ideal main light is a large spot light approxi-
mating the effect of the sun. It is usually placed 45 degrees above
and 45 degrees to the side of the subject. Its purpose is to establish
the 'form of the subject' and fix the ratio of lighted to dark areas.
The exact ratio is not important but the position of the source
should result in good shading (which increases as the source is moved
further from the camera) without too much shadow area (in which
detail is more difficult to perceive).

2. The fill-in light (or axial light)—Its purpose is to lighten slightly the
shadows cast by the main light and approximates the effect of the
sky. This light is placed near the camera to prevent it from casting
new shadows of its own and to simulate the effect of uniform
lighting. The appearance of shadows within shadows is considered
extremely "ugly" and should be avoided since it makes the picture
more difficult to interpret. The ratio of fill-in light intensity to main
light intensity is usually chosen to be about 1 to 3.

3. The accent light—Its purpose is to enliven the rendering by adding
highlights and 'sparkle'. It should be a small collimated source which
can be directed to illuminate small sections of the subject. It is
placed behind and to the side of the subject so that it cannot cast
shadows of its own. This light can add catchlights (specular
reflections such as on eyes or metal objects) and bright outlines
(particularly on hair).

4. The background light—Its purpose is to 'separate' the subject from
the background. It illuminates the background only, such that the
intensity reflected by the subject will nowhere match that of the
background. This ensures that the two can be easily 'separated'
because the edge between them will be visible.

Other hints are that too many lights spoil the effect, having the main light at
the camera creates a "flat" image, shadows crossing edges on the subject are
to be avoided and that light parts of the image draw the attention of the
viewer. It is interesting to note how much of what is vaguely formulated in
these introductions to photography can be understood from the point of
view of shading.
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4.5.2 Human Performance and
the Science of Cosmetics

Judging by the popularity of monocular pictures of people and other
smooth objects, humans are good at interpreting shading information. Since
they use the same basic information as our shape-from-shading algorithm we
expect to find similar shortcomings. Supposing the human visual system
does not use the shading information in simple heuristic ways only, one
might expect that the perception system 'solves' the equations or a much
simplified form of them. Since this cannot be done locally (the way some
portions of an edge-finding process might work) it is difficult to suggest an
elegant and simple physiological mechanism and a place to look for it.

When a surface whose photometric properties are taken to be uniform
is treated so as to change these properties in some areas, the apparent shape
is changed. This of course is one of the uses of makeup. The shape of a
face for example can be made to conform more closely to what a person
thinks is currently considered ideal. This is achieved by making some areas
darker (causing them to appear steeper) and others lighter. Areas lightened
usually include singular points and cause a change in the apparent skin
darkness (a normalization effect) and will change the apparent shape in
areas other than the singular points.

These modifications can change the shape perceived when viewed
under the right lighting conditions. The effect will change somewhat with
orientation and may at times disappear when no reasonable shape would
give rise to the shading observed. Because of a number of surface oils the
skin has a specular component in its reflectivity. It is also fairly translucent.
Both of these effects are sometimes controlled with talcum powder. The
removal of the specular components makes the surface appear more rounded
and soft.

4.5.3 Generating Shaded Images

The inverse problem of producing images of a specified scene with shading
and shadows is vastly different from the method of shape-from-shading.
Most programs written for this purpose can be used for objects bounded by
planes only. The main issues of optimization of the calculation of which
surfaces are visible to the source and camera respectively have been dealt
with in some detail. Although the two problems are inverses of one
another, the methods used are quite different.

An interesting problem of a mathematical nature (and incidentally
with application to cutting woodcuts) is that of producing curved lines in a
plane such that the density of lines is proportional to the shading in the
image of some real or imagined object. Preferrably one would like as small
a number of 'unnecessary' breaks in the lines as possible, i.e., the lines
should either close on themselves or leave the image. Another restriction
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one might apply is that the lines should not cross (when producing
woodcuts one would most likely also reflect some of the surface texture in
the choice of lines).

For a special case, a solution is immediately at hand. This is the case
where we have a distant camera at a distant source and a reflectivity
function 0 such that

^U.D-l- , 1 -Vl + p2 + q2

Here the contour lines give a solution, with no crossing lines and no
"unnecessary" breaks. One of the most attractive features of contour maps is
perhaps just this fact that they provide some shading information.

4.5.4 Determining Shape from Texture Gradients
A problem related to that of determining shape using shading is that of
determining shape from the depth-cue of texture gradients. A textured
surface will produce an image in which the texture is distorted in a way
reflecting both the direction and the amount of the inclination of the
surface. An image of a tilted surface with a random dot pattern for
example will be compressed in one direction (the average distance between
dots is decreased) by an amount proportional to the inclination of the
surface. Both direction and magnitude of the gradient can thus be deter-
mined—except for a two-way ambiguity.

In practice it may not always be easy to determine such texture
gradients reliably because of low resolution of the imaging device and
scatter, causing a reduction in constrast. Some simple textures may be
handled by simple counting or distance measurements as suggested above,
while more complicated textures like a plastered wall will need more
sophisticated techniques, such as two-dimensional correlation. Some experi-
mentation with this technique showed promise, but did not supply very
reliable gradients and the method was slow.

The next problem is how to obtain the shape from the texture
gradients. Starting at some point (whose distance from the camera we
assume known), we use some external knowledge to resolve the two-way
ambiguity. We can now take a small step in any direction and find the
gradient at this new point. Continuing in this way we trace out some curve
on the surface of the object (somewhat analogous to the characteristics in
the shape-from-shading method, except that here the curve is quite arbi-
trary).

Let s be the arc-distance along the curve, z the distance to the initial
point, and p and q the components of the gradient. Then

,s
z(s) = z + / (p, q) • ds

^o
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If one takes small enough steps, one can continue to resolve the
ambiguity at each step by using the assumption of smoothness. This can be
done until we meet a point where the gradient is zero. To continue past
such a point would require some external knowledge to again resolve the
two-way ambiguity. An aggregation of points with zero inclination can form
an ambiguity edge which cannot be crossed.

Clearly we can reach a given point through many paths from the
initial point. This allows us some error checking, but there certainly are
better ways of making use of the excess information. For that is what we have,
since we know from the solution to the shape-from-shading problem that only
one value is required at each point for the determination of the shape,
while we here have two (the components of the gradient). Most commonly
when faced with such an excess of information one can make use of some
least-squares technique to improve the accuracy. Perhaps a relaxation
method on a grid would be useful.
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