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Introduction

The image of the world projected onto the retina is essentially two-
dimensional. From this image we recover information about the shapes
of objects in a three-dimensional world. How is this done? There are
numerous cues available to help us recover the missing dimension.
When we move around, for example, images of nearby objects are dis-
placed more rapidly on the retina than are images of distant objects.
This so-called motion parallax effect provides one important depth cue.
Another is provided by binocular disparity, the difference between the
relative positions of corresponding features resulting from the spatial
separation of our two eyes. When we look at a moving picture pro-
jected on a screen, however, binocular stereo does not provide a useful
cue, and when we look at a still photograph, even motion parallax can
be of no help.

A passport photograph serves to identify an individual. Such a
photograph, however, cannot simply be matched point for point with
another image of the same individual, particularly if the second image
is taken from a different viewpoint when different lighting conditions
prevail. The two-dimensional distribution of brightness in the pho-
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tograph itself does not provide the required information directly. In-
stead, we are apparently able to recover the three-dimensional shape,
and the nature of the surface markings, from the two-dimensional im-
age. It is this information that is used in matching the photograph
with the person in front of us, not the brightness pattern itself.

Recognizing people is rather important, so we have no doubt de-
veloped specialized means for doing this; we can do it successfully even
when there are many similarities between different faces. One piece of
evidence that this is a highly specialized capability is that we perform
rather poorly when we look at a person while standing on our head.
More general purpose visual abilities tend not to be affected that much
by the orientation of the image on the retina.

We do have the ability to recover the shapes of objects in general,
whether we are familiar with them or not. Images produced by a
scanning electron microscope (SEM), for example, are usually easy to
interpret in terms of three-dimensional shape, even though the viewer
may be unfamiliar with the objects portrayed. Similarly, images of
hilly terrain produced by a synthetic aperture radar (SAR) system
are immediately understood, even though SAR portrays the world at
an unusual scale. Finally, the shape of the surface of a snow-covered
glacier is apparent to anyone looking at it; yet there are few cues, and
the shape may not be much like any shape one has ever seen before.
Where then is the information that provides the hidden cue to shape?

1. Shading and the Recovery of Depth

The answer lies in the variation of brightness, or shading, often exhib-
ited in a region of an image. In a photograph of a face, for example,
there are variations in brightness, even though the reflecting proper-
ties of the skin presumably do not vary much from place to place. It
may be concluded that shading effects arise primarily because some
parts of a surface are oriented so as to reflect more of the incident light
toward the viewer than are others.

Artists have used chiaroscuro for many centuries to convey the
impression of three-dimensional shape. The map of Toscana that
Leonardo da Vinci drew in 1502 or 1503, for example, contains oblique
shaded views of relief forms illuminated from the left (see [Imhof 651]).
Rembrandt van Rijn’s concern with light and dark led, among other
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things, to more realistic use of shading in painting. Some super-realist
art contains wonderful shading patterns, often almost as good as those
in the photographs from which the art was copied! Art education in-
cludes exercises in rendering the shading on simple geometric shapes
as well as more complex surfaces such as the folds in cloth draped over
a body.

One might think at first that it would be natural to use shad-
ing in realistic depictions created while viewing the real world. But
this would be far from correct: our visual system tries to interpret
the brightness pattern on the retina as shading due to spatial fluc-
tuations of surface orientation and spatial variations in the reflecting
properties of the surface. So we “see” the surface as having some
three-dimensional shape and some surface markings, not in terms of
a two-dimensional pattern of light and dark. Attempting to depict
what we see, we tend to pay attention mostly to the surface markings,
leading to a “flat” depiction, devoid of shading. From time to time
such a style has in fact found favor in the art world.

Shading is sometimes confused with shadowing. There are two
kinds of shadows: self shadows (or attached shadows), and cast shad-
ows. A portion of a surface is self-shaded when it is turned away
from the source of light. A self-shadow edge provides localized cues to
shape, since it is the locus of points where the rays graze the surface.
A cast shadow on a surface results when another surface intercepts
the light from the source. Cast shadows also provide localized cues
to shape, although the shadow of a curved surface cast on another
curved surface is very difficult to interpret. Shading, on the other
hand, provides cues all over a surface, not just along special contours.

There are, however, some ways in which shading and shadowing
are related. First of all, in the case of an extended light source (as
opposed to a single point source), shading arises in part from the fact
that the fraction of the light source that appears “below the horizon”
at a particular point on the surface depends on surface orientation.
That is, as far as a particular portion of the light source is concerned,
some parts of the surface are self-shadowed. Smooth shading here
arises in part from a superposition of these shadowing effects from
all parts of the extended source. Secondly, we may be viewing an
undulating surface from a distance so great that the shadows cast by
the undulations are not resolved. The average brightness of a portion
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of the surface will depend in part on how much of it is shadowed.
Thus shadowing of parts of the “microstructure” of the surface may
contribute to the shading effects apparent on a macro scale.

It should be pointed out right away that the recovery of shape from
shading is by no means trivial. We cannot simply associate a given
image brightness with a particular surface orientation. The problem is
that there are two degrees of freedom to surface orientation—it takes
two numbers to specify the direction of a unit vector perpendicular to
the surface. Since we have only one brightness measurement at each
picture cell, we have one equation in two unknowns at every point in
the image. Additional constraint must therefore be brought to bear.
One way to provide the needed constraint is to assume that the surface
is continuous and smooth, so that the surface orientations of neighbor-
ing surface patches are in fact not independent. Note that there is no
magic at work here: we are not recovering a function of three variables
given only a function of two variables. The distribution of some ab-
sorbing material in three-dimensional space cannot be recovered from
a single two-dimensional projection. The techniques of tomographic
reconstruction can be applied to that problem, but only if a large
number of images taken from many different viewpoints are available.
Why then are we able to learn so much about the three-dimensional
world from merely two-dimensional images?

2. Our Special Visual World

Part of the answer is that we live in a very special visual world. In
most cases we deal with opaque, cohesive bodies immersed in a trans-
parent medium. Rays of light pass essentially unmolested through the
medium and they do not penetrate the objects. This means that we
can ignore the medium and that only the surfaces of the objects are of
interest. Points on a surface can be specified by using two coordinates,
so we have a mapping from a two-dimensional surface to a portion of
a two-dimensional image. We are concerned here with inverting this
mapping. Our difficulties would be much greater if we had to deal
with partially translucent objects immersed in a partially absorbing
medium. In this situation two-dimensional images would be very hard
to interpret, as are microscopic images of biological specimens.

The mapping from surface orientation to image brightness is
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unique and can be determined for different surface materials and il-
luminating conditions. Thus the use of shading in computer graphics
(which is very important for the realistic appearance of objects) is
rather simple. Shaded overlays, which make topographic maps much
easier to interpret, constitute a particular illustration of this. The
problem of interest in this book may be considered an “inverse graph-
ics” problem—one that is much harder than that of producing shading
from shape.

Unless we see sharp discontinuities in brightness, or some other
special cues, we assume that the surface of an object is homogeneous
in its reflecting properties. The appearance of the surface will be
altered if the surface properties do in fact vary from place to place.
In this case a vision system that assumes uniform reflecting properties
will recover a shape that is different from the actual one. This effect
can be used to alter the apparent shape of a surface. For example,
the counter shading found on many animals, where the underside is
lighter than the side turned toward the light, may serve as a kind of
camouflage. In this case, the variation in surface reflecting properties
reduces or even cancels the shading one would normally expect to
see, flattening the apparent shape and so reducing the ability of an
observer to see the animal as a three-dimensional shape separate from
the background.

Makeup exploits the same effect, usually in a flattering way. A
cheek, for example, can be made to appear to recede more steeply
than it actually does by applying a darker coloration to its side. A
nose can be made to appear sharper by applying a thin line of light
make-up along its ridge. Unless these alterations are done carefully,
the illusion can disappear, as it often does when the viewpoint or
lighting conditions are changed drastically.

Shading has sometimes been described as a “weak” cue, particu-
larly when compared to motion parallax and binocular disparity. It
is, however, an important cue to shape, especially when other cues
are lacking. This is significant, for example, when we are viewing a
smooth surface without any surface markings—if there were no shad-
ing we could only guess at the shape. Also, many other depth cues are
absent when we look at a still photograph, as mentioned earlier, and
in situations were we are too far away from objects for either motion
or stereo to provide useful cues.
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3. Basic Formulation of the Problem

Although it has been known for a long time that shading provides
an important depth cue, only relatively recently has the shape-from-
shading problem been properly formulated. No conjecture existed
about whether there was enough information in an image to compute
the shape and whether more than one surface could give rise to the
same shading under given lighting conditions. Considerable further
progress has been made, but not particularly rapidly. One reason for
this is that the mathematical analysis of the general problem is highly
complex.

The problem becomes tractable if a number of simplifying assump-
tions are made. The principal simplifications arise from the assump-
tion that the viewer and the light sources are far enough away from
the objects being viewed that the brightness of an oriented portion
of the surface is independent of its spatial position. This means that
brightness depends only on the orientation of the surface patch. It
also means that we are dealing with orthographic projection instead of
perspective projection, something that simplifies most vision problems
(except for motion vision and photogrammetry, which depend on the
effects of perspective to recover all of the components of an unknown
displacement). The simplification engendered by these assumptions
was noted, but not exploited, in the early work on shape from shad-
ing.

We clearly need a way to talk about the orientation of a surface
patch. One way to do this, as already indicated, is to specify a unit
vector, n̂, perpendicular to the local tangent plane. Another way is
to specify the components p and q of the surface gradient. These
are the partial derivatives of surface height z above some reference
plane perpendicular to the optical axis, that is, p = (∂z/∂x) and
q = (∂z/∂y). The two notations are connected by the equality

n̂ = 1
√

1 + p2 + q2
(−p, −q, 1)T .

A third way of specifying surface orientation is to give the slope and
the direction of steepest descent. The terms slant (σ ) and tilt (τ ) have
been introduced for angles used in this fashion, which is unfortunate,
since these terms are not mnemonic and are frequently confused (even
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the terms dip and strike, used in geology to specify the orientation of
a sedimentary layer in the earth, would have been more suggestive).
The relationship of slant and tilt to the unit normal is given by the
equality

n̂ = (sin σ cos τ, sin σ sin τ, cos σ)T .

Each notation for surface orientation has its own advantages, and the
above three, as well as some others, are used in this book.

4. The Reflectance Map and Radiometry

If we do make the simplifying assumption that the viewer and the
light sources are far from the object, we can introduce the reflectance
map, a means of specifying the dependence of brightness on surface
orientation. If we elect to use the unit surface normal n̂ as a way of
specifying surface orientation, then we can write the brightness as a
function of orientation in the form R(n̂). If we use p and q instead, we
can use the form R(p, q). A graphic representation of the reflectance
map is possible if we plot contours of constant brightness in the pq-
plane, also called gradient space. Sometimes the term reflectance map
is reserved for this graphical representation.

Proper formulation of the shape-from-shading problem had to
await a thorough understanding of the image formation process. Two
issues are critical in regard to image formation: first, how the position
of a point in the image is related to the position of the corresponding
point in the environment; and second, what determines the bright-
ness at a point in the image. The first issue is rather straightforward
and well understood, involving as it does the well-known perspective
projection. Much less attention has been paid to the second issue,
which is of great importance in understanding vision, whether natural
or artificial. The analysis of image formation was until quite recently
hampered by a lack of clarity in certain aspects of radiometry.

It is generally thought that the definition of the unit of. brightness
is the weakest part of the SI system of units (Systeme International
d’Unites), because it involves the candela, the only unit still defined
with reference to human sensations. The understanding of terms used
for various measures of reflectance also was unsatisfactory until the
U.S. National Bureau of Standards (NBS) introduced the bidirectional
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reflectance distribution function (BRDF) and defined a number of de-
rived quantities (see [Nicodemus et al. 77]).

The microstructure of the material of a surface determines how
much of the incoming light will be reemitted in various directions.
Thus it is the microstructure that determines the BRDF. The re-
flectance map, needed for work on the shape-from-shading problem,
can be determined if the BRDF of the surface material is known, along
with the light source and viewer geometry. In practice the dependence
of brightness on surface orientation is often determined experimentally
using a calibration object of known shape, such as a sphere. Also, cer-
tain phenomenological models have found favor as approximations to
real surface behavior. This includes the ideal diffuser, or Lambertian
surface, which reflects all incident light and appears equally bright
from all directions. The brightness of such a surface can be shown to
be proportional to the cosine of the incident angle, the angle between
the surface normal and the incident ray.

Note, by the way, that we eschew the term image intensity, since
intensity is a term with a technical meaning in radiometry quite dif-
ferent from the intended one: the intensity of a point source of light is
the power per unit solid angle radiated in a particular direction. The
appropriate term for image brightness is image irradiance, the power
falling on the image per unit area. The correct term for the bright-
ness of a part of a surface in the scene being viewed is scene radiance,
the power per unit solid angle per unit apparent area emitted from
the surface. (The apparent area is the foreshortened area as seen by
the viewer—it is the actual surface area times the cosine of the an-
gle between the surface normal and the viewing direction.) We can
use the common term brightness for both of these concepts without
fear of confusion, since the two have been conveniently defined in such
a way that they are intimately related: image irradiance is directly
proportional to scene radiance in an optical imaging system.

5. History of the Problem

The earliest work on the quantitative use of shading information ap-
pears to have been in the mid-1960s on recovering the shape of parts
of the lunar surface in preparation for the human exploration of the
moon. This work used careful measurements of the reflective proper-
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ties of the material in the maria of the moon, made mostly by Russian
researchers. They discovered in the early part of this century that the
brightness of this material was a function of the ratio of the cosine of
the incident angle to the cosine of the emittance angle. (That is, in
the case of the material in the maria of the moon, brightness is a func-
tion only of the luminance longitude, being independent of luminance
latitude.) The reason the reflecting properties of the moon (and rocky
planets) appear to us to be so unusual is that we view the surface from
a great distance, and so what constitutes “microstructure” is very dif-
ferent from what it is when we look at smaller objects from nearby.
Incidentally, anyone can tell that there is something odd about the
reflecting properties of the lunar surface, since the full moon looks
flat—more like a disk than a sphere. In fact, at full moon the lunar
surface is more or less equally bright everywhere, if we ignore surface
markings due to variations in surface albedo. An ordinary diffusely
reflecting spherical surface would instead be bright in the middle and
dark near the limb.

The unusual reflecting properties of the lunar material allow one
to determine the slope of the surface, in the direction toward the sub-
solar point, from a local measurement of brightness. (The subsolar
point is where the shadow of the camera is cast—that is, the point
where a ray from the sun through the viewer intersects the surface.)
This is because, in the case of the material in the maria of the moon,
brightness happens to be a function of a linear combination of the
components of the surface gradient, p and q. The slope at right angles
to the direction toward the subsolar point is completely unconstrained.
One can integrate the slope along a line through the subsolar point to
generate a profile of the surface. Many such profiles, closely spaced,
define the surface shape. This relatively simple method applies only
in the case of the rather special reflectance properties of the material
in the maria of the moon and does not generalize to other materials,
such as Lambertian reflectors.

6. The Image Irradiance Equation

The general solution of the shape-from-shading problem revolves
around the so-called image irradiance equation relating image irra-
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diance to scene radiance:

E(x, y) = R(n̂(x, y)),

where E(x, y) is the image irradiance at the point (x, y), while
R(n̂(x, y)) is the radiance of a surface patch with unit normal n̂(x, y).
The unit surface normal at the point in the scene corresponding to the
image point (x, y) is n̂(x, y). Actually, image irradiance is not equal to
scene radiance, only proportional to it, but the proportionality factor
is usually ignored, because it is assumed that some calibration process
normalizes one of these quantities so that it is commensurate with the
other.

The image irradiance equation is a nonlinear first-order partial
differential equation, as can be seen by noting that the normal can
be expressed in terms of the two first-order partial derivatives p and
q. As such, it can be solved using the method of characteristic strips,
which reduces the partial differential equation to an equivalent set of
five coupled ordinary differential equations (for x, y, and z, as well as
p and q). A particular solution of these equations generates a so-called
characteristic curve on the surface, along with surface orientation on
that curve. The projection of such a curve into the image is called a
base characteristic. The characteristic curve, along with the orienta-
tion, defines a characteristic strip on the surface. Many closely spaced
strips define the shape of the surface.

Figure 1 shows the method of characteristic strip expansion at
work. Figure 1(a) is a (rather coarsely quantized) gray-level image
of a smooth surface illuminated by a light source near the viewing
position. Even though the reader will most likely not have seen this
before, the shape should be apparent from the shading in the image.
Figure 1(b) shows the base characteristics computed by the numerical
algorithm superimposed on the gray-level image. With the light source
near the viewer, the reflectance map is rotationally symmetric and so
the characteristics follow curves of steepest descent on the surface.
Note how the base characteristics emerge from a singular point in
the image (the brightest spot in this case) and how the algorithm used
here sprouts new strips when existing ones stray too far apart from one
another. The nested contours crossing the base characteristics connect
points reached at the same stage in the expansion of the characteristics.
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Figure 1. Recovery of shape from shading using the characteristic
strip expansion method. A. Gray-level image. B. Base characteristics
superimposed on the gray-level image. C. Contour map constructed
from the three-dimensional characteristic strips.
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Each contour is the locus of points at a fixed distance from the
singular point. Finally, figure 1(c) shows contours of constant eleva-
tion above a reference plane obtained by interpolation from the three-
dimensional characteristic strips. In this particular case, since the
characteristics are lines of steepest descent, the contours are orthog-
onal to the base characteristics. The reader should verify that this
contour map is in accord with the apparent shape of the object in the
original image.

7. Iterative Solution on a Regular Grid of Points

Unfortunately, the method of characteristic strip expansion suggests
neither reasonably likely biological schemes for solving the shape-from-
shading problem, nor efficient and robust computational methods.
This is why, from the very beginning, there has been a search for alter-
natives that are more like the methods used for solving linear second-
order partial differential equations. These methods are iterative and
can be implemented in parallel on a grid of locally interconnected cells.

Iterative approaches repeatedly make adjustments to surface ori-
entation until the predicted shading, based on the estimated shape,
matches that actually observed in the image. In most of these meth-
ods, the shape is specified not by height above a reference plane, but
by surface orientation. Orientation estimates are stored for every point
in a dense grid of points, usually one point for every picture cell. Now
it is trivial to match the observed shading at a particular grid point
by picking one of the infinite number of orientations that produces
the observed image brightness there. The resulting field of surface
orientations will most likely not correspond to a continuous surface,
however.

It is possible to show that neighboring orientations cannot be cho-
sen independently, since they have to correspond to some underlying
surface. One cannot independently specify the two partial derivatives
of a function of two variables. They must satisfy the condition that
the two mixed derivatives of second order are the same. Thus we must
have zyx = zxy , or equivalently, py = qx . This condition is referred
to as integrability, since one can recover the underlying surface z(x, y)

by evaluating line integrals of (pdx + qdy) along arbitrary contours if
the surface orientation information satisfies this constraint. Iterative
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methods make repeated adjustments to surface orientation to improve
the match between brightness predicted from the estimated surface
shape and brightness actually observed. Some methods attempt to do
this in a way that maintains integrability of the estimated surface.

This turns out to be hard and so other methods instead ensure
only that neighboring surface orientations remain similar. Such meth-
ods attempt to minimize the integral of a penalty term measuring “un-
smoothness.” With these simpler methods there is a problem when
one wants to estimate the surface shape in terms of a depth map,
since typically no shape corresponds exactly to the computed field
of normals. Two approaches have been taken to solve this problem:
one uses a projection onto the subspace of integrable solutions using
Fourier Transform methods (see chapter 5 by Frankot and Chellappa),
while the other involves a least-squares approach that leads to a linear
second-order partial differential equation (see chapter 7 by Horn and
Brooks).

8. Convergence of Iterative Methods

With few exceptions, there is so far only empirical evidence that the
iterative schemes discussed above converge; it is not clear that they
always do (but see chapter 12 by D. Lee). The solutions produced by
these iterative schemes are also typically not quite accurate. There
are two reasons for this: methods that enforce integrability can get
stuck in local minima in their search for the global extremum, and
methods that do not enforce integrability inherently trade off increased
surface smoothness against departures from exact match of the shading
information.

It has been claimed that the shape-from-shading problem is in-
herently ill posed. (An ill-posed problem is one that does not have
any solution, does not have a unique solution, or has a solution that
is very sensitive to the given data.) The shape-from-shading problem
certainly is ill posed if one considers only an image patch that does
not include a singular point or the projections of the limb of an ob-
ject, since there are an infinite number of surfaces that yield the same
shading pattern. However, the problem is not necessarily ill posed if
singular points and information from the limbs of the objects are taken
into account. (This is not unlike the case of a linear higher-order par-
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tial differential equation, which has a unique solution if appropriate
boundary conditions are specified, but has an infinite number of solu-
tions if they are not.)

The notion that the shape-from-shading problem is ill posed in
general (even when singular points and limbs are included) probably
has its origin in the use of an “unsmoothness” penalty term in methods
that do not enforce integrability. The problem is in fact ill posed if
the components of the surface gradient are treated as unrelated, since
one can then choose orientations at each image point independently,
and there are an infinite number of orientations that correspond to
a particular observed brightness. To obtain a unique solution in this
case, one has to apply a regularization method, one that selects a
particular solution out of an infinite number of possible solutions. This
is not necessary when one takes into account the fact that the surface
orientation field is supposed to be integrable.

9. Existence and Uniqueness

Questions about the existence and uniqueness of the solution have,
in fact, proved very difficult to answer. For example, suppose we are
given the reflecting properties of the surface and the arrangement of
the light sources. Then, is there always a surface shape that will gen-
erate, under these conditions, any given (arbitrary) image brightness
pattern? The answer is not known. It may be that there are patterns
that could not have been produced as the result of shading on any
three-dimensional shape. If this is so, then the shape-from-shading
problem has no solution in this case. People often appear to be able
to tell that a particular pattern is not due to shading but to spatial
variations in the reflecting properties of the surface. This may suggest
an answer to the above question, or it may suggest something about
our a priori assumptions about the world.

Typically there will be some unique surface orientation for which
the brightness is a maximum (or a unique minimum, in some unusual
cases). In the case of an ideal Lambertian surface illuminated by a
single point source, for example, this occurs when the surface normal
points directly toward the light source. A point in the image where this
maximal brightness is observed is called a singular point. These image
points have particular importance since the surface orientation at the
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corresponding point on the surface is immediately known (provided,
of course, that the reflectance map is given).

Surface orientation can also be determined easily for points on the
limb of an object. The limb is the locus of points on a smoothly curved
surface where the rays to the viewer graze the surface. It separates
those points that are visible to the viewer from those that are not.

In the case of a smoothly curved object, the silhouette is the pro-
jection of the limb. (Sharp edges of objects, where the surface normal
does not vary continuously with position, may also project to form
part of the silhouette.) The term occluding boundary is often used
for the limb, since the surface on one side of the boundary occludes
the background, which is visible in the image on the other side of the
boundary. The surface normal at a point on the limb is clearly perpen-
dicular to the viewing direction. Also, a plane can be constructed that
is tangent to the object on the limb as well as the silhouette at the cor-
responding image point. This means that the surf ace normal on the
limb is parallel to the normal to the silhouette at the corresponding
point in the image.

In contrast to the special considerations that apply to points that
are either singular or on the silhouette, the orientation at most points
cannot be determined directly from image brightness. In fact, the
brightness pattern in an arbitrary image region could in general arise
from an infinite number of different surfaces. A very important issue,
then, is how singular points and silhouettes constrain possible solu-
tions. When is there only one shape that can give rise to the observed
shading pattern? This is a mathematical problem that is just about
impossible to solve unless details of the reflecting properties of the sur-
face and the distribution of light sources are provided, and it is still
very hard when this information is available. Only a small number of
special cases have been successfully dealt with so far.

Now suppose that the position of the light source is also unknown.
Can we determine both shape and light-source position from a shaded
image? This problem is clearly less constrained than the basic shape-
from-shading problem described above, and so we might expect that
typically there may be several solutions.
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10. Local Methods and Photometric Stereo

As mentioned above, shading information in an arbitrary image patch
is, in general, infinitely ambiguous. If we make sufficiently strong
assumptions about the surface, however, some useful information can
be recovered from the first- and second-order variations of brightness
within a patch. One assumption that leads to interesting results is
that the surface is everywhere locally spherical. Another assumption
of interest is that the surface is everywhere locally cylindrical. Such
local methods have been explored only recently, but show promise.

A single measurement of image brightness provides only limited
information about surface orientation. As explored above, one way
of removing the local ambiguity is to take into account neighboring
points. A quite different and simpler approach uses information from
several registered images taken with different lighting. Two such im-
ages provide two constraints to recover the two unknown parameters of
surface orientation at each point in the image. Since the corresponding
image irradiance equations,

E1(x, y) = R1(n̂(x, y)) and E2(x, y) = R2(n̂(x, y)),

are typically nonlinear, however, several solutions may be found at a
particular picture cell. Additional images can help remove this ambi-
guity and also allow one to recover further unknown parameters, such
as the albedo of the surface.

How good are people at recovering shape from shading? One prob-
lem with a question like this is that it is hard to obtain quantitative
information about the apparent shape seen. Various means have been
devised for addressing this issue, including methods based on compar-
isons of estimated surface orientation with given reference orientations.
A conclusion that may be drawn from the experiments performed so
far is that people use shading information well, but they may not
develop the kind of detailed quantitative representation of the shape
used in machine vision systems. Since shading depends on surface ori-
entation, and hence first partial derivatives of surface height, we can
expect that lower spatial frequencies will have only a small effect on the
image. Conversely, we should not be surprised if the largest errors in
reconstruction of shape are in the lower-spatial-frequency components.
Indeed it appears that people are good at recovering shape informa-
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tion corresponding to rapidly undulating surface features, while slow
changes may be missed or misinterpreted.

11. The Papers Selected and the Bibliography

We have chosen not to place this collection of papers in chronological
order, because there is no way to organize the book so that each part
depends only on what comes earlier. Instead, we have simply arranged
the chapters in alphabetical order of the authors’ names. The subject
of shape from shading is multifaceted as should be clear from the
above, and we have attempted to include at least one contribution
relevant to every major facet. The following is a brief introduction to
each paper:

Chapter 2: Surface Descriptions from Stereo and Shading
by A. Blake, A. Zisserman, and G. Knowles

This is a paper with wide-ranging scope touching on many aspects
of research on shape from shading. An important uniqueness result is
presented. It is somewhat similar to the uniqueness theorem presented
in chapter 4 by A. R. Bruss, except that the image boundary here is
known to correspond to a particular curve in space, not necessarily a
limb. This is important in integrating shading information with cues
that generate shape information in this form, such as binocular stereo.

The paper also makes an interesting observation about the conver-
gence properties of the approach presented in chapter 3 by Brooks and
Horn. As the derivation of their method does not use a convex func-
tional, extrema may exist that are not global minima. Additionally,
an analysis is presented of the local approach described in chapter 15
by Pentland. The magnitude of the errors in surface slant and surface
tilt are estimated.

The authors also consider the method described in chapter 10
by Koenderink and van Doorn for detecting parabolic lines from the
directions of contours of constant brightness. The material is presented
with novel simplicity, and an implementation is discussed. Finally, a
battery of techniques is proposed that forms the basis for an assault
on the shape-from-shading problem, with emphasis on reducing the
amount of prerequisite information.
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Chapter 3: Shape and Source from Shading
by M.J. Brooks and B.K.P. Horn

This paper deals with the situation in which a diffuse surface is illu-
minated by a light source in an unknown position. This is a special
case of a situation in which the reflectance map is not known. Here
it is assumed that its general form is given, but that some parameters
are not specified. An iterative scheme is presented that alternately es-
timates the surface shape and the light source direction. The scheme
is derived using the variational approach expounded in chapter 7, the
companion paper by Hom and Brooks. The unit-normal vector nota-
tion is used for the first time in shape from shading schemes, and this
leads to a particularly elegant formulation.

The method is extended to the case in which, in addition to the
point light source, there is a distributed “sky” source. The iterative
scheme itself is then generalized to arbitrary reflectance maps. All of
the methods presented in this paper are simple to implement, but they
do not enforce integrability.

Chapter 4: The Eikonal Equation: Some Results Applicable
to Computer Vision
by A.R. Bruss

The author presents a uniqueness result for the situation in which
the reflectance map is rotationally symmetric and the silhouette is a
smooth, closed curve corresponding to the limb of the object. It is
clearly important to know under what circumstances surface shape
may be determined uniquely by image shading. This difficult problem
finds its most serious treatment in this paper. (One of the few other
attacks on this problem can be found in [Deift & Sylvester 81].)

Results in Bruss’s paper are based on analysis of the Eikonal equa-
tion, studied in the context of wave propagation in optics:

F(x, y) = p2 + q2,

where, as mentioned before, p and q are the partial derivatives of
height z with respect to x and y respectively. It can be shown that
the analysis applies in general to the case of a rotationally symmetric
reflectance map with monotonic dependence of brightness on slope.
For example, a Lambertian surface illuminated by a point source at
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the viewer leads to an image irradiance equation of the form

E(x, y) = 1
√

1 + p2 + q2

which can be transformed into an Eikonal equation by letting

F(x, y) = 1

E(x, y)2 − 1

The above problem is shown to have a unique solution (aside from a
simple reversal of depth) if F(x, y) equals zero at a single point in the
domain, the height z vanishes to second order at that point, and the
smooth closed silhouette corresponds to the limb of the object.

Chapter 5: A Method for Enforcing Integrability in
Shape-from-Shading Algorithms
by R.T. Frankot and R. Chellappa

This paper addresses the issue of integrability of the surface normal
field computed. Most iterative schemes that recover shape from shad-
ing do not attempt to enforce integrability, as discussed also in chap-
ter 7 by Hom and Brooks. In Frankot and Chellappa’s very original
work, an orthogonal basis set of functions is used to describe surfaces.
A standard iterative scheme is used to obtain successive estimates, at
each image point, of the directional derivatives of surface height. These
derivative estimates are then expressed in terms of a linear combina-
tion of orthogonal basis functions. In general, the estimated deriva-
tives, and hence the associated expansion in terms of basis functions,
will not satisfy the integrability condition. So, the critical step is to
map these estimates to those corresponding to the “nearest” integrable
field of surface orientations. This is done by finding the closest set of
coefficients, in a least-squares sense, that also have the property of
integrability.

A least-squares scheme for obtaining a depth map from inconsis-
tent first partial derivatives is, by the way, mentioned in chapter 7
by Hom and Brooks. The depth map computed using their method
could be numerically differentiated to obtain new, consistent estimates
of the first partial derivatives. This approach provides an alternative
to the projection scheme for assuring integrability described in this
chapter by Frankot and Chellappa. (A companion paper explores the
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application of this technique to synthetic aperture radar imagery—see
[Frankot & Chellappa 87].)

Since the method presented in this paper uses p and q, the first
partial derivatives of height to represent surface orientation, it cannot
deal with the limbs of objects. On the other hand, the method shows
promise in dealing with situations in which boundary information is
absent, while some low resolution height information is provided.

Chapter 6: Obtaining Shape from Shading Information
by B.K.P. Horn

This is the part of Horn’s 1970 Ph.D. thesis that appeared in The Psy-
chology of Computer Vision [Horn 75]. In it, the shape-from-shading
problem is formulated and then solved using the characteristic strip
approach. Methods for computing characteristic strips from noisy data
are discussed and various special cases explored, including imaging in
the scanning electron microscope and the recovery of lunar topogra-
phy. While the importance of singular points is emphasized, little
attention is paid to limbs of objects.

The mathematical notation in this paper is somewhat more com-
plex than that in much of the later work, since the common assump-
tions of distant viewer and distant light sources are not made. (This
belies the general impression that the shape-from-shading problem can
only be dealt with when one assumes orthographic projection.) If one
does assume a distant viewer and distant light sources, the problem
becomes simpler, as pointed out in this paper. In fact, in this case,
one can use ’the reflectance map, introduced later in a related paper
[Horn 77]. The reflectance map is discussed in detail in chapter 8 by
Horn and Sjoberg.

Chapter 7: The Variational Approach to Shape from Shading
by B.K.P. Horn and M.J. Brooks

In this paper the analysis of a number of existing and new iterative
approaches to the shape-from-shading problem is unified using as a
theme the minimization of some criterion function that measures the
departure from exact match between observed and predicted image
brightness, as well as some other properties of the solution, such as
departure from smoothness or integrability.
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Several iterative methods, such as the one developed earlier by
Strat [Strat 79], are compared with that presented in chapter 9 by
Ikeuchi and Horn. A least-squares method for recovering height from
(possibly inconsistent) estimates of the partial derivatives is also de-
scribed. The integrability condition is expressed in terms of the surface
normal and its partial derivatives. It is found that strictly enforc-
ing the integrability condition does not lead to convergent iterative
schemes-in essence one is trying to simulate the solution of the charac-
teristic strip equations on a grid. Methods involving a penalty term for
departure from integrability, on the other hand, show definite promise.
Using surface normals to describe surface orientation is shown to have
a number of advantages, including the ability to deal better with the
limbs of objects.

Chapter 8: Calculating the Reflectance Map
by B.K.P. Horn and R.W. Sjoberg

Here it is shown how the reflectance map may be computed if the
bidirectional reflectance distribution function (BRDF) and the distri-
bution of light sources is given. The reflectance map relates brightness
to local surface orientation and is essential to the formulation of the
image irradiance equation, which in tum is central to most approaches
to the shape-from-shading problem.

In this paper, relevant parts of radiometry are reviewed and im-
age formation analyzed carefully. Importantly, the paper adopts the
new nomenclature of the National Bureau of Standards as set out in
[Nicodemus et al. 77]. The computation of the reflectance map requires
mathematical functions describing both lighting and surface reflection,
and an appropriate integration over all incoming illumination direc-
tions. To illustrate the method, reflectance maps are generated for
a variety of situations, encompassing collimated, uniform, and hemi-
spherical sources striking both Lambertian and specularly reflecting
surfaces. A large number of reflectance maps are also developed in a
paper on hill shading, [Horn 81].

Chapter 9: Numerical Shape from Shading and Occluding Boundaries
by K. Ikeuchi and B.K.P. Hom

Here an iterative method for solution on a grid of points is developed
for computing shape from shading. It is formulated in a way that
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makes it possible to incorporate information from the limbs of objects.
The surface normal at a point on the limb of an object is parallel to the
normal in the image plane to the corresponding point on the silhouette.
This, along with the information from singular points, provides strong
constraint on possible solutions. As shown by Bruss in chapter 4, there
are situations in which the shape is uniquely determined by this in-
formation and the shading in the image. A difficulty arises, however,
in using the boundary information in an iterative scheme where sur-
face orientation is represented by the two partial derivatives of surface
height, because the slope of the surf ace becomes infinite at the limb.
In this paper the first iterative scheme able to use information from
the silhouette is described. The method uses a novel parameterization
for surface orientation, resulting from a stereographic projection (f
and g) of the unit normal from the Gaussian sphere rather than the
more common gnomonic projection (p and q).

This paper was the first to use the variational calculus in the
derivation of iterative schemes for shape from shading. This approach
was inspired by the use of the variational calculus in the estimation
of optical flow, the first use of variational methods in machine vision
[Horn & Schunck 81]. One disadvantage of the stereographic param-
eterization is that it is somewhat harder to express the condition of
integrability than it is with the gnomonic parameterization. In part
because of this, the authors here elected to ignore integrability, in-
stead minimizing the integral of an “unsmoothness” penalty term.
This leads to a simple iterative scheme, but also unfortunately sug-
gested to some that the shape-from-shading problem is inherently ill
posed and that it needs to be regularized. The issue of integrability
is addressed in chapter 7 by Horn and Brooks and in chapter 5 by
Frankot and Chellappa.

Chapter 10: Photometric Invariants Related to Solid Shape
by J.J. Koenderink and A.J. van Doorn

The authors deal with the relationship between patterns of the con-
tours of constant brightness in the image and the differential geometry
of the surface being imaged. They consider Lambertian surfaces and
show that the parabolic curves on the surface are of particular impor-
tance. (The Gaussian curvature is zero at each point on a parabolic
curve, so that these curves separate elliptic regions from hyperbolic re-
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gions.) It turns out, for example, that the contours of constant bright-
ness cut the parabolic lines at a fixed angle, independently of the light
source position. The parabolic curves are shown to be important in
another respect: certain singularities travel along the parabolic curves
as the light source is moved.

Patterns of the constant brightness contours are derived for certain
canonical surface undulations, such as furrows, dimples, and a shape
like a hat with the brim turned down. A particularly exciting aspect of
this work is the way it relates classes of surfaces to types of brightness
patterns. Most other work on shape from shading deals with methods
for recovering specific solutions to particular brightness patterns. The
discussion of surface undulations in this paper is aided by appealing
to a mapping onto the Gaussian sphere. The authors conjecture that
human observers can interpret shading information because of certain
invariants of the pattern of constant brightness contours.

Chapter 11: Improved Methods of Estimating Shape from Shading
using the Light Source Coordinate System
by C.-H. Lee and A. Rosenfeld

Along with Pentland (see chapter 15), the authors assume that a por-
tion of the surface is spherical.

If there is a single light source at the viewer, then the reflectance
map is rotationally symmetric, and slope can be determined directly
from the brightness, although the direction of steepest ascent cannot
be recovered. The reflectance map of a surface illuminated by a point
light source in an arbitrary position can be transformed to a rotation-
ally symmetric form in a light source coordinate system. The authors
find a way of applying this basic idea and show that two points on
the surface have the same tilt in a coordinate system aligned with
the direction of the incoming light if and only if the direction of the
brightness gradient is the same at corresponding image points. This
relationship can be used to recover the surface shape if the direction
of the illumination is known. A coordinate transformation can be
used to translate the result into a coordinate system aligned with the
viewing direction. This leads to estimates for slant and tilt that are
based on first-order derivatives of image brightness—in contrast to
the earlier method of Pentland, which uses second-order derivatives.
Lee and Rosenfeld also present a method for estimating the direction
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of the light source that may be compared with the method given in
chapter 15 by Pentland.

Chapter 12: A Provably Convergent Algorithm for Shape from
Shading
by D. Lee

This paper deals with the problem of convergence of iterative schemes
for recovering shape from shading, such as the one discussed in chap-
ter 9 by Ikeuchi and Horn. These algorithms are based on a variational
approach with a penalty term for departure from smoothness. Such
methods involve a parameter that determines the tradeoff between er-
rors in matching brightness and departure from smoothness. The au-
thor shows that a particular iterative scheme he developed converges
to a unique solution for certain ranges of this parameter. This is an
important result since iterative schemes are the most commonly used,
and there was, before this paper appeared, only empirical evidence
that some of them might converge.

The author also notes that, at least for some values of the pa-
rameter, the estimated surface is too smooth and departs noticeably
from the true surface. The algorithm considered here does not enforce
integrability.

Chapter 13: Recovering Three-Dimensional Shape from a Single
Image of Curved Objects
by J. Malik and D. Maydan

The authors of this paper address the problem of recovering the shapes
of surfaces that are only piecewise smooth. Almost all of the work on
shape from shading has focused on smoothly curved objects, where sur-
face normals vary continuously with position on the surface. There has
also been some work on recovering the shapes of polyhedral objects—
that is, objects bounded by planar faces. With few exceptions, how-
ever, the brightness of the faces of the polyhedra has been ignored. It
turns out that it is impossible to completely recover the shape of a
polyhedron from a single line-drawing of the object—there are always
at least three degrees of freedom unspecified. Only when the bright-
ness of the surfaces is also used is a unique solution possible (see, for
example, [Sugihara 86]). The discussion above applies only to objects
with planar faces.
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Malik and Maydan approach the problem of recovering the shape
of an object that is composed of smoothly curved surfaces that in-
tersect along a number of sharp edges. They cleverly combine the
methods of shape from shading for smooth surfaces and methods used
in labeling line-drawings. The task is made more challenging by the
fact that the label of a line may change along its length, something
that does not happen when one considers line drawings of polyhedra.

Chapter 14: Perception of Solid Shape from Shading
by E. Mingolla and J.T. Todd

The authors explore human capabilities for estimating surface orien-
tation in shaded images. Their experiments involved synthetic images
of ellipsoids with varying axes and varying surface reflectance prop-
erties. The perception of surface shape was monitored by having the
viewer compare estimated surface orientations with the orientations of
known planar patches. The authors conclude that specular highlights
and cast shadows have little influence on performance and that the
observer need not know where the light source is. Apparently, percep-
tion of shape is distorted by a tendency to see the ellipsoids with axes
aligned with the display surface. The authors provide some evidence
that shape may not be recovered by the sort of local method favored by
Pentland in chapter 15. They also suggest that the approach of Koen-
derink and van Doorn in chapter 10 may be helpful in understanding
human performance.

This is an important paper, since there has been little in the way
of quantitative psychophysical experimentation exploring human ca-
pabilities in this domain. There are only a few other pieces of work
on this subject (see [Bilthoff & Mallot 87] and [Ramachandran 88b]).

Chapter 15: Local Shading Analysis
by A.P. Pentland

The author makes a case for the recovery of shape information from
brightness patterns in small patches, and so argues against the re-
liance on information from singular points and the image projections
of limbs of objects. To overcome the ambiguity inherent in shading,
the assumption is made that the surface is locally (at least approxi-
mately) spherical. This single additional constraint is powerful enough
to allow a solution based on first and second partial derivatives of
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brightness. In essence, the surface orientation is recovered by match-
ing these derivatives with the brightness derivatives in an image of a
sphere. (In some instances, a combination of brightness derivatives
may be found that does not correspond to that on any part of the
sphere—in these cases it is clear that the assumption made about the
surface is not reasonable.)

Most shape-from-shading methods require knowledge of the re-
flectance map, which indirectly implies that one knows where the light
sources are. In practice this information may not be explicitly pro-
vided. In this paper a method is proposed for recovering the direction
of a single light source based on the statistics of the distribution of
brightness derivative patterns in the image.

Chapter 16: Radarclinometry for the Venus Radar Mapper
by R.L. Wildey

The author uses a different strong constraint to allow the recovery
of surface shape from local information: the surface is assumed to
be locally cylindrical. The direction of the axis of the cylinder is
determined by analysis of the derivatives of brightness in a small patch.
It is illuminating to compare this approach with Pentland’s presented
in chapter 15.

What makes this paper particularly interesting is that it illustrates
a parallel evolution of “photoclinometric” methods in the astrogeolog-
ical community and “shape-from-shading” methods in the field of ma-
chine vision. The two groups apparently were unaware of each other’s
efforts until recently, and developed somewhat different terminology.
This paper explores a particularly important application of such meth-
ods: the recovery of the shapes of the surfaces of other planets. It also
exploits the similarity between shading in ordinary optical images and
in images obtained using synthetic aperture radar, a topic mentioned
also in chapter 5 by Frankot and Chellappa. The term radarclinome-
try is used to describe the recovery of surface slope information from
synthetic aperture radar images.
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Chapter 17: Photometric Method for Determining Surface
Orientation from Multiple Images
by R.J. Woodham

Woodham developed the photometric stereo method described here
while working on his Ph.D. thesis concerned with automated inspec-
tion. The basic idea is to get around the ambiguity inherent in a single
measurement of image brightness by taking more measurements under
different lighting conditions, rather than exploiting surface continuity
or smoothness. Although this multiple exposure approach does not
help explain how people use shading, since we do not usually have the
opportunity to change the lighting at will, it does lead to a method
of great practical importance. The reason is that the recovery of sur-
face orientation is completely local and very simple, involving little
more than table lookup. Calibration for different surface materials
and different lighting conditions is also straightforward, requiring only
observation of an object of known shape, such as a sphere, and con-
struction of the lookup table.

This method may well spark the next revolution in the applica-
tion of machine vision techniques to industrial problems, now that the
limitations of binary image processing methods and edge-based pro-
cessing are becoming apparent to most users. Photometric stereo was
used, for example, in the system described in [Horn & Ikeuchi 84] for
picking parts out of a pile of parts. Woodham, by the way, has written
several papers on shape from shading and related methods, some of
which include excellent surveys [Woodham 79a, 79b, 81, 84, 87].

Bibliography

Following the last chapter of the book are a comprehensive bibliogra-
phy and a discussion of how the various references relate to different
aspects of the shape-from-shading problem. The bibliography is sur-
prisingly short. It seems that the problem of shape from shading is
substantially more difficult than many others in the vision area, and
so many researchers have shied away from it. It is encouraging, how-
ever, to see a renewed interest in the subject, as indicated by the large
number of entries with recent dates.

The field of shape from shading appears to be maturing, judging
by a number of significant recent pieces of work. People working on
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different aspects of the problem, even in quite different disciplines, are
beginning to become more aware of each other’s work. We hope that
this collection of important papers will help speed up this process, and
inspire newcomers to enter the field.
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