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The standard coded aperture imaging approach assumes:

• sources at infinity;

• isolated point sources in specific directions;

• masks with flat power spectrum (except for DC);

• thin masks free of vignetting;

• collimation to block rays from “out of view” directions;

• visible sources cast full cycle of mask pattern on detectors;

• use of correlation with the mask pattern to generate an image.

In practice, typically:

• sources are not infinitely far away;

• sources may not be point sources;

• masks have finite thickness;

• collimation may be undesirable or imperfect;

• sources may project only a partial mask shadow on detectors.

Using the standard correlation decoding method leads to artifacts in these
circumstances. Some of these artifacts may be ameliorated using mask/anti-
mask techniques. However, one can do even better.

Also, when sources are not infinitely far away, an opportunity exists
to gather more information by taking additional measurements using dif-
ferent positions for the detector array. This extra information may be
useful for recovering additional parameters of the source distribution,
such as distances to sources, or simply to provide finer resolution.

However, the traditional mask correlation method does not provide
an effective way of dealing with this new information, or with the depar-
ture from ideal conditions met in practical applications. Further, only a
very small number of possible masks have the special properties required
for correlation decoding. Only masks with certain number of elements are
usable, and these have the property that they are approximately half open.

With nearby sources, and multiple detector array positions, different
mask arrangements may be preferrable, It may even be advantageous to
have three-dimensional masks (e.g. rods at various distances from the
detector array).
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Basic Concept

For computational purposes, the source distribution must be described by
a finite set of numbers. In the ideal case mentioned above, this is simply
the set of intensities of infinitely distant point sources in a fixed number
of specific directions at equal angular intervals.

The description of the source distribution can instead be the set of
coefficients of some analytic approximation such as a series expansion
(e.g. power series, or orthonormal series). It could also, for example,
be the intensities of extended sources distributed to fill space near the
detector array. The task is to estimate the unknown parameters in the
model of the source distribution assumed. The number of unknowns may
be the order of the series expansion, or may be the number of distinct
sources assumed.

The detector count rates are the measurements. In the case of a single
exposure, the number of measurements equals the number of detectors.
With multiple exposures — with different positions of the detector ar-
ray — the total number of measurments is the product of the number of
detectors and the number of exposures.

To obtain useful results, one would normally ensure that the number
of measurements is equal to, or greater than, the number of unknowns.
Least squares methods may be used in the overdetermined case. If, on
the other hand, fewer measurements than unknowns are available, then
the problem may be “regularized” by adding some penalty term (e.g. dis-
couraging source distributions that have rapid spatial variations).

Method of Solution

Each parameter of the unknown source distribution may be taken in iso-
lation and the detector response calculated that results when only that
parameter is non-zero. For example, if the model is a set of point sources
distributed in some pattern in space, then for each point source position
one determines how each detector responds. The quantities of interest
are the “sensitivities,” the ratios of detector count rates to the source in-
tensity.

In the case of point sources, each of these is proportional to the solid
angle at a source of the part of a detector element not obstructed by
opaque parts of the mask. In the case of an extended source, the desired
result is a weighted average of solid angles for different positions in the
source, where the weights correspond to the fractional intensity of that
part of the source.
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Depending on the complexity of the model of source distributions,
this sensitivity may be obtained using analytic methods involving geo-
metric reasoning, numerical integration, Monte Carlo simulation, or may
even be measured experimentally.

If multiple exposures are to be used with different detector array posi-
tons, then this exercise is repeated for each detector array position. Detec-
tor responses from multiple exposures can be concatenated into a single
measurement vector.

Importantly — if we ignore saturation — detector responses vary lin-
early with each source distribution parameter, and reponses to different
source distribution parameters add up. So the relationship between un-
known source parameters and detector measurements form a system of
linear equations. We can use the linear system to process experimental
data once we have analysed the model to determine the set of sensitivities.

If we have arranged to have as many measurements as there are un-
known source parameters, then we simply invert the matrix of sensitivities
(i.e. solid angles) and use it to process sets of measurements. If instead
there is a mismatch between number of unknowns and number of mea-
surements, pseudo-inverses may be used. If the matrix is too large to
make an explicit inverse feasable, then iterative methods can be used to
solve the equations.

Sanity Check: Applying the Method to Ideal Coded Masks

As a check on how this works, consider the idealized case described at
first. Here we assume a set of infintiely distant sources arranged in spe-
cific direction determined by the spacing between the mask and the de-
tector array and the size of the detector and mask elements. Each source
projects one cycle of the mask pattern onto the detector array.

As we step from source to source, the shadow of the mask is shifted
cyclically by one detector element. Each column of the sensitivity matrix
is proportional to the mask value (0 for a closed element and +1 for an
open element). The coefficients from a circulant matrix, a matrix whose
columns are cyclically shifted versions of one cycle of the mask pattern.

The inverse of this special matrix turns out the be its transpose, with
1’s replaced with one value, a, and the 0’s replaced with another, b (where
a and b have similar magnitude and opposite sign and depend on the
number of open and closed elements in the mask).

Consequently, the rows of the matrix used in processing the detector
array measurements have the same pattern as the mask itself (except for
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the replacement of 1’s by a and 0’s by b). This corresponds to process-
ing the measurements by correlation with a sequence derived in a simple
fashion from the mask. Here a and b are chosen such that the correlation
is 1 when the pattern is aligned, and 0 when it is not.

Limitations of Ideal Coded Mask Method

Note that the sources are assumed to lie in special directions that happen
to align the shadows of the mask elements exactly with the detector ele-
ments. Sources in other positions split shadows of mask elements across
detectors. The simple decoding scheme does not apply in this case. In-
ferior results are obtained in practice when this is ignored and the ideal
source model is used in a situation where the sources in fact do not lie in
the ideal directions.

Note also that the mask pattern repeats cyclically to achieve the de-
sired cyclical shift in detector exposures. As a result, several source direc-
tions can potentially produce the same pattern on the detector array. To
avoid this ambiguity, additional means, such as collimation, must be em-
ployed to prevent radiation from sources that are “too far off-axis” from
reaching the detector. An unavoidable side effect of such collimation is a
drop-off in response with “off axis” angle that causes the observed detec-
tor measurements to differ from the ideal ones.

Further, the mask has two repetitions of the basic pattern and must be
blocked beyond that on either side to prevent ambiguous patterns from
appearing. This means, however, that there are “off axis” source direc-
tions that lead to incomplete shadows of the basic mask pattern. The
ideal correlation decoding method cannot deal with either the effects of
collimation or such partial exposure.

Nearby Sources

If sources are not infinitely far away, then the shadows of mask elements
on the detector array will be magnified and no longer cover exactly one
detector element. If the sources happen to all lie in a plane at a fixed
distance from the mask and detector arrays, then one can compensate
for this by making the detector element spacing correspondingly larger.
But this trick can’t be used if the source distance is unknown, or sources
appear at a variety of distances.

Using the correlation decoding method leads to artifacts in this situa-
tion, since the data does not correspond to the ideal case. These artifacts
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can be ameliorated by subtracting data obtained with the complement of
the mask from data obtained with the mask. This corresponds to using a
mask with mask element values −1 and +1 instead of 0 and 1.

The method presented here, based on setting up and solving a system
of linear equations, can deal with this situation in an exact fashion. For
each assumed source position, the detector measurements are computed
based on the solid angle at the source of the part of the detector not
blocked by mask elements. With nearby sources, open elements in the
mask may illuminate more than one detector element, which means that
entries in the matrix that would have been zero in the ideal case of distant
sources are no longer exactly zero.

The inverse of the new matrix of sensitivities can not be obtained
analytically since it no longer has the perfect circulant structure. The
numerical inverse can, however, still be used to obtain exact solutions for
source intensities in this situtation.

Multiple Exposures

There isn’t, of course, much point in taking multiple exposures from dif-
ferent detector array positions in the ideal case of sources infintitely far
away, since the direction of incident rays are not affected. When sources
are nearby, however, additional information can be obtained by “viewing”
the scene from more than one position. Also, a single exposure cannot
be used to recover the three-dimensional distribution of sources (unless
additional information is provided). Multiple exposures, however, makes
this possible.

The added information from multiple exposures can instead be used
in other ways, such as providing higher resolution of an arrangement of
sources at a fixed distance. The key limitation is always that there be at
least as many measurements as unknowns. The quality of the result will
depend on how near independent the measurements are.

Extended Sources

The ideal coded aperture model treats the sources as composed of a fi-
nite number of isolated point sources each positioned so as to produce
a shadow that has mask elements falling exactly on detector elements.
There are situtations were sources may be extended in space and/or may
not be aligned to produce mask element shadows exactly matching detec-
tor elements. Also, even if the actual sources are point sources, it may be
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advantageous to model them as extended so as to avoid the harsh aliasing
present in the point source model when not aligned with the mask and
detectors.

The ideal coded aperture method does not deal with extended sources
or “misaligned” sources (other than to approximate them with point sources
in the ideal positions). The new method can deal with extended sources,
and sources in arbitrary positions.

Similarly, rather than representing the source distribution as a sum of
localized sources, point-like or not, it is possible to represent it as a series,
orthononormal or otherwise. Even irregular arrangement of detectors can
be accomodated.

Conditioning and Noise Amplification

The sensitivity matrix will be singular if the measurements are not inde-
pendent. If some measurements are closely related, then the matrix may
be ill conditioned. So the practical utility of the method revolves around
properties of the sensitivity matrix, which in turn depends on the data
acquistion strategy and the source pattern model.

One way to get a feeling for the quality of such a method is to con-
sider the magnitudes of the elements of the sensitivity matrix, and, more
importantly, the magnitude of the elements of its inverse.

In the case of the ideal coded aperture method the entries of the sensi-
tivity matrix are all (fixed multiples of) 1 or 0. The elements of the inverse
matrix are all (fixed multiples of) two values: a and b. The signal ampli-
fication is proportional to a times the number of open cells in the mask,
while the amplificition of noise is proportional to the square-root of the
sum of squares of coefficients in a row, which comes to approximately a
times the square root of the number of elements in one cycle of the mask.
This means that the ratio of signal amplification to noise amplification is
inveresly proportional to the square root of the number of cells in one
cycle of the mask pattern.

With non-ideal imaging, such as when a set of sources is nearby, one
finds that the sensitivities no longer just have two values because of the
imperfect alignment of shadows of mask elements and detector cells. The
inverse matrix has coefficients that are larger in magnitude than before.
The inverse matrix does, of course, compute the exact result in the ab-
sence of noise, but it amplifies noise somewhat more than was the case
in the ideal imaging situation. There is no way around this: one either
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accepts artifacts due to inexact reconstruction or has to accept increased
noise.

With poor choice of source pattern model or imaging strategy, the
coefficients of the inverse matrix may get enormous, trying desparately
to differentiate source patterns that happen to produce similar detector
measurements. Poor results will be obtained, for example, if one expects
to increase resolution of the source pattern beyond what is reasonable,
or expects depth resolution in a situation where there is little effect on
detector signal with variations in depth.

While it may be hard sometimes to predict a priori how poorly con-
ditioned the sensitivity matrix will be, it is always possibly to look at the
magnitude of coefficients in the inverse. Generally, measurements that
seem to repeat or nearly repeat measurements already taken do not con-
tribute and should be avoided. Beyond this simple heuristic, there is little
at this point to guide in the design of a source pattern model and a data
collection strategy.

What is so Special about the Ideal Coded Aperture Method?

The original ideal coded aperture method has many restrictions and prac-
tical limitations as pointed out above. However, it has exceptionally low
noise amplification. The inverse matrix contains coefficients that are all
about the same magnitude and are all relatively small.

Attempts to go beyond the severe restrictions of the ideal coded aper-
ture methods tend to be subject to increased noise amplification, unless
carefully designed or heavily overdetermined.

Experiments

The new method has been implemented for the case of a one-dimensional
mask and one-dimensional detector array. In this case, the size of the
sensitivity matrix is such that direct inversion is feasable. Detector fluxes
can be computed using either exact, geometric methods, or approximated
using Monte Carlo simulation of randomly chosen rays emitted from the
sources. When using geometric calculation of detector fluxes, exact in-
verses are obtained even when sources are not infinitely far away, when
sources are not lined up with mask and detector elements, and when
sources are extended.

Multiple exposures with the detectors array and mask arrays in dif-
ferent positions can be used to recover either higher resolution “images”
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of a set of sources at a fixed distance, or sources arranged at more than
one distance.

The numerical values of the coefficients of the inverse matrix show a
wide variation in magnitude, depending on the problem to be solved and
details of the alignment and specific dimensions. When the magnitude of
these coefficients is high, reconstruction can greatly amplify noise in the
detector measurements.

It is hoped that good designs for source patterns and mask and de-
tector arrangements can be guided by study of the magnitude of the co-
efficients of the inverse matrix.

Summary: Capabilities of the New Method

The new method can handle:

• nearby sources;

• extended sources;

• sources not specially lined up with mask and detector elements;

• irregular detector arrangements;

• unconventional masks;

• series representation of source pattern;

• mismatch between number of measurements and number of unknowns;

• multiple exposures;

• recovery of depth information;

• recovery of images with increased resolution.


