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Abstract— While many models of traffic flow pre-
dict the instabilities commonly observed—particularly at
higher traffic densities—there are few suggestions for
suppressing them. A method is described here for sup-
pressing instabilities, thereby reducing gas consumption,
accidents, wear and tear on vehicles and roadways as well
as travel times while increasing traffic throughput. The
method uses information about the following vehicle as
well as the leading vehicle. Using information from both
sources allows the gain of feedback to be reduced below
one, thus eliminating the instability characteristic of
“car following.’’ The needed inputs to the control system
can be provided by machine vision (or radar or lidar).
Previous proposals for smoothing traffic flow instabili-
ties do not use information about the vehicles behind—
“car following’’ cruise control methods, for example,
focus only on the vehicle ahead. The method presented
here is based on information flowing both downstream
and upstream, in distinction to traditional approaches
where information flows only upstream.

I. Background

We are all only too familiar with traffic flow instabili-
ties, including alternating stop-and-go driving conditions
(Fig. 1). These not quite periodic and often rapid varia-
tions in speed and traffic density lead to increased danger
of collisions, higher fuel consumption, wear and tear on
vehicles, faster abrasion of roadways, waste of the drivers’
time, and reduction of overall traffic throughput.
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Fig. 1. Sample record of traffic flow fluctuations — speed
versus time (Interstate 93 North from Boston, 2011 March 31
— from data set collected using roof mounted GPS antenna).

A variety of models of traffic flow predict waves of
density and speed moving along roadways [1]–[30], partic-
ularly at higher traffic density. Viewed from any particular
point on the road, these are large fluctuations in vehicle
speed, along with large fluctuations in vehicle density.
Viewed from overhead, these waves of density and speed

move “upstream’’ that is, in a direction opposite to that
of the traffic flow itself. From the vantage point of a par-
ticular vehicle, near periodic variations in vehicle velocity
and density are observed as well, although with a different
time period than what would be reported by a stationary
observer. While there are several ways of explaining the
origin of this highly undesirable phenomenon, there have
been few suggestions for suppressing it. What is needed is
a method for smoothing traffic flow, suppressing travelling
waves in density and speed, thereby increasing average
speed and overall traffic throughput.

II. Simple models that explain the problem

There are several different ways of explaining how
the undesired behavior arises [1]–[30]. These usually start
with an assumed relationship between density and speed.
Drivers generally attempt to keep a safe distance from the
vehicle ahead, that is, a separation large enough so that
if the leading car were to suddenly apply its brakes, the
following car could apply its brakes in time to avoid a
collision, taking into account the finite response time of
driver and vehicle. If we assume that the following vehicle
applies its brakes after a certain response time, and then
decelerates at the same rate as the leading vehicle, then
the minimum safe separation can be seen to equal the
product of the response time T and the speed v1:

dmin = T v

So, in a situation where vehicles are generally moving at
about the same speed, the density (number of vehicles
per unit distance) decreases at higher speeds because
vehicle spacing increases. If everyone is maintaining a safe
separation from the vehicle ahead, then density, ρ, is the
inverse of the sum of vehicle length � and safe separation
distance dmin:

ρ = 1

�+ T v

Throughput, r , (vehicles passing by a fixed point per unit
time) equals density times speed so

r = v

�+ T v

From this we see that at very low speeds (v < �/T ),
throughput is proportional to speed. Throughput in-
creases with speed but does so more and more slowly as

1A more detailed analysis takes into account possible differ-
ences in the speeds of the vehicles as well.

Proceedings of the 16th International IEEE Annual Conference on
Intelligent Transportation Systems (ITSC 2013), The Hague, The
Netherlands, October 6-9, 2013

MoB1.3

978-1-4799-2914-613/$31.00 ©2013 IEEE 13



speed increases. Finally, it would appear that throughput
should asymptotically approach

rmax = 1/T

If we took the total response time to be, conservatively,
1 second, for example, then the limiting throughput would
be 1 vehicle per second (or 3600 vehicles per hour per
lane). This is higher than what is observed in practice.

Throughput is low at low speeds, so high through-
put requires higher speeds (consistent with speed limits
and considerations of safety). Unfortunately the pleasant
scenario of steady increases in throughput with speed
is marred by the appearance of instabilities—waves in
density and speed that grow in amplitude—often until
the speed at the low point of the cycle drops to zero.

One intuitive way of understanding the origin of these
instabilities is positive feedback, where lower speed causes
higher densities, and higher densities cause even lower
speeds, while at the other extreme, higher speed causes
lower densities, and lower densities invite even higher
speeds. That is, rather than damping out variations from
a reasonable average, the system—by its very nature—
amplifies them. Above some density, a driver applying
the brakes can cause the following driver to apply brakes
harder and so on, back to a distant point, sometime
later, where the traffic may come to a complete stand
still (which may occur long after the initial cause has
disappeared). A wave travels backward, with amplitude
increasing with distance from the original disturbance.

III. Cascaded control systems

Another way of understanding where the instabilities
come from is to consider each driver and car combination
as a control system that adjusts the car’s acceleration
in response to the relative position of the car ahead,
as well as the relative speed of that car. Each driver
and car can be thought of as a system with an input
(relative position and velocity of the leading vehicle) and
an output (acceleration, and hence, indirectly, velocity
and position of the vehicle). If there exists any waveform
that is amplified by the control system, even if only by a
small amount, then cascading many such feedback control
systems leads to increasing amplitudes of deviation.

H(s) H(s) H(s)... ...

Fig. 2. Cascade of control systems (car following model).
Gains greater than one lead to instabilities.

Shown in Fig. 2 is a cascade of control systems 2 each
with transfer function H(s). The overall transfer function

2The linear model H(s) may be an approximation of a non-
linear system, obtained by expansion about the current op-
erating point. The stability of the system is governed by the
behavior of the linearized version. For asymototic stability the
poles of H(s) should be in the left half plane.

of n such systems is H n(s). If there is some frequency for
which the amplitude of the oscillations at the output of
a system component is larger than it is at its input (i.e.
|H(jω)| > 1 for some ω), then there will be a problem
when many such components are cascaded. That is, if
the components have gain greater than one for waves of
some frequency, then these gains multiplied together will
lead to larger and larger deviations as more and more
components are cascaded. So, for stability, the gains need
to be strictly less than one for all frequencies. This is the
condition for “string stability’’ [31]–[36].

String stability can be assured through use of “weak
coupling’’ [35] between the control systems. But string sta-
bility is not sufficient to guarantee collision-free smooth
traffic flow. First consider an extreme example of a system
satisfying the string stability condition, namely H(s) = 0.
We can immediately see the problem with this type of
control if we consider two vehicles travelling at the same
velocity until such time as the leading vehicle slows down.
With H(s) = 0, the trailing vehicle does not respond,
and so a collision is unavoidable. The problem is that
conditions on the system function H(s) themselves do not
provide a means of enforcing positive intervehicle spacing.
Naturally, this is a straw man example — no one would
actually suggest using a system with H(s) = 0 — but the
problem is more general, as we show next.

Fig. 3. In the simple car-following model, gain less than one
leads to path intersection with perturbation.

The upper curve in Fig. 3 shows the position of the
leading vehicle as a function of time— relative to the
position it would have if it travelled at constant velocity.
At a certain point, an oscillatory perturbation of its
velocity is imposed, which increases in amplitude with
time. The lower curve shows the response of the following
vehicle— again relative to the position it would have if it
continued to travel at the same constant velocity—in the
case when the control system gain is less than one. It is
clear that the paths of the two vehicles will intersect for
large enough amplitude of perturbation. The illustration
can be extended by adding delay to the response, (and
adding more vehicles, also with gains less than one), which
only serves to make the problem worse.
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Thus the gain cannot be less than one if collisions are
to be avoided. Taken together then, the two arguments
show that the traffic flow instability problem cannot be
solved with the “car following’’ model of control.

It is also well known that delay in a feedback loop
can lead to instabilities [29], [37]. Thus the finite response
time of the driver (and the dynamics of the car and its
control system) plays a role in the instabilities. Shorter
response times allow higher throughput, but for any given
response time there will be a critical density above which
instabilities are amplified and will propagate.

Finally, system components are non-linear (e.g. speed
cannot become negative, cannot exceed some upper limit
and the distance between vehicle cannot become nega-
tive). Such non-linearities, along with positive feedback,
are the classic conditions for chaotic behavior, where small
changes in initial conditions can lead to vastly different
outcomes and make long range predictions difficult.

IV. Root Cause

Overall, the root cause of the problem is drivers’ feed-
back control of vehicles. While each driver does what
seems reasonable and appears to be best for the progress
of their vehicle, the overall effect is clearly not desirable.

Many different models have been made of traffic flow
using mathematical tools such as differential and dif-
ference equations, cellular automata, fluid flow models,
particle tracking, and “car following’’ models [1]–[30].

C L

vlvc

d l

Fig. 4. Two vehicles and their relative positions and velocities.

In Fig. 4, traffic flows from left to right, with controlled
vehicle ‘C’ and leading vehicle ‘L’ ahead of it. The gap
between them is dl . The leading vehicle is traveling at
speed vl while the controlled vehicle travels at speed vc .

Fig. 5 shows the outline of a traditional “car following’’
control system which produces the acceleration command
a for vehicle ‘C.’ The system takes as input the distance
to the leading vehicle, dl , and the relative speed of the
leading vehicle (vl − vc). Such a system may also have
additional inputs, such as the speed of the vehicle vc itself,
as well as parameters that control the operation, such as
the desired speed vdes and the speed limit vmax. The
output of the control system is the acceleration command
a sent to the drive control system. Alternatively it could
be a speed setpoint for the drive control system. Negative
acceleration commands may activate mechanical brakes
and/or a regenerative braking system [38], [39].

a

dl

vl-vc

vdes
vc

vmax

Fig. 5. A simple car following control system.
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Fig. 6. Illustrative car following control system.

A more detailed diagram of an illustrative car following
control system is shown in Fig. 6. Here kd is the gain
for feedback based on the difference between the distance
to the leading car and the desired distance ddes (which
may vary with vc as indicated above). Further, kv is
the gain for the component of feedback based on the
relative velocity (vl − vc). In addition, kc is the gain
for the component of feedback based on the difference
between the desired velocity vdes and the current velocity
vc . Finally, a separate circuit vetoes positive acceleration
when the current velocity vc is at the speed limit vmax.

In a simple, linearized, version of this system, acceler-
ation may be given by

a = kd (dl − ddes)+ kv(vl − vc)+ kc(vc − vdes)

This model and others like it suffer from travelling waves
and amplification of perturbations above some critical
density. None of these models directly suggest a solution
to the problem of traffic flow instabilities.

An important thing to note is that information flow in
such a chained feedback system is strictly one-way: from
front to back. Each vehicle’s acceleration is adjusted based
on information of the relative position and velocity of the
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vehicle in front of it. Each vehicle only influences what is
behind it. There is no information propagating forward
in traffic. The result is reminiscent of the fluid dynamic
phenomena of a shock wave, where no information moves
forward across the shock [4].

V. Prior Suggestions for Improving Traffic Flow

Since the incidence of traffic flow instabilities increases
with traffic flow density, one approach to the problem
of limiting traffic flow instabilities is to keep density low.
More roads and more lanes per road certainly help reduce
the density, but are in many cases no longer a viable
alternative from land use and economic perspectives.

Limiting access, or “metering,’’ at freeway entrances so
as to keep the density on the freeway at or below some
target value certainly helps [40], but forces the freeway to
operate below its maximum carrying capacity.

Another approach is to reduce the response time, thus
allowing vehicles to follow each other more closely at
high speed without danger of collision. The standard
arrangement of accelerator and brake pedal makes the
response time unnecessarily long since the foot has to be
lifted off one and applied to the other, but it is unlikely
that much can be done about this misfeature now [41].

Instead, an automated control system somewhat anal-
ogous to cruise control, but using automatic feedback
based on sensor readings, can reduce the effective “re-
sponse time.’’ But as pointed out above, there is still a
critical density above which instabilities occur. There is
also some question about what happens when vehicles
with such automated control are mixed with vehicles
directly controlled by drivers. To the human drivers, these
automated vehicles will appear to be “tail gating’’ at
uncomfortably close range.

Fully automated control systems with high speed com-
munication between vehicles can allow a lead vehicle to
directly control several following vehicles, allowing them
to travel together in “platoons’’ much as the engine of
a train and the carriages tied to it. However, such an
approach is best suited for a separate road system limited
to platoons of fully automated vehicles. It is unlikely to
be safe in a “mixed’’ environment with some vehicles
controlled by human drivers.

Suggestions for automatic “distance keeping’’ from the
leading vehicle go back at least to the work of Dr. Ichiro
Masaki [38], then at G.M. Technical Center (see e.g. U.S.
patent 4,987,357). His advanced cruise-control system,
which automatically adjusts the car’s speed to keep a safe
separation from vehicles in front, is based on machine-
vision technology. The system detects the presence of a
car directly in front using a video camera, and stores a
reference image. The stream of incoming camera images
are then compared with the stored image as the cars move
down the highway. Because the image of the car being
followed will become larger or smaller—depending on
how close the car is—the system can adjust the distance
between the cars so as to match the scale of the stored

image. Dr. Masaki also suggested using machine vision
methods based on binocular stereo from pairs of cameras
as an alternative method for estimating the distance.

Such suggestions for “adaptive cruise control’’ rely
on information about the leading vehicle, typically the
distance to that vehicle, and perhaps the relative speed.

VI. Bilateral Control

One way to underestand the “trick’’ to solving the
problem is to consider a way of obtaining enough overall
gain in each control system to prevent collisions, yet avoid
a gain greater than one in any individual pathway from
an input to an output. One way to achieve this is for
the control system to take into account not only the car
ahead, but the car behind. That is, allow information to
flow in both directions, not just from front to back3.

C LF

vlvcvf

d ld f

Fig. 7. Three vehicles and their positions and velocities.

More generally, in bilateral control (see Fig. 7), the
acceleration of the controlled vehicle ‘C’ is dependent on
the distance dl to the leading vehicle ‘L’, the relative speed
(vl − vc) of the leading vehicle, as well as the distance df
of the following vehicle and the relative speed (vc − vf )
(compare this to the car following model shown in Fig. 4).

a

dl

vl-vc

df

vc-vf

vdes
vc

vmax

Fig. 8. A system for bilateral control.

Fig. 8 illustrates the bilateral control system which
takes as additional inputs the distance from the following
vehicle, df , and the relative velocity of the following
vehicle (vf − vc). Auxiliary inputs may include signals
that indicate whether there is in fact a vehicle ahead and
whether there is a vehicle following.

3A simplistic version of this idea is to have a vehicle attempt
to maintain a position halfway between that of the vehicle
ahead and that of the vehicle behind.
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Here the acceleration a is a function of the distance
to the leading vehicle dl , the relative velocity (vl − vc),
and the distance df to the following vehicle, as well as the
relative velocity (vf −vc). As before, acceleration may also
depend on the desired velocity vdes, the current velocity
vc of the car being controlled, and a speed limit vmax
(compare this to the car following model shown in Fig. 5).

H1(s) H1(s) H1(s)

H2(s) H2(s) H2(s)

+ + + +... ...

Fig. 9. Cascade of control systems (bilateral control).

Shown in Fig. 9 is a cascade of control systems,
each with backward transfer function H1(s) and forward
transfer function H2(s) (compare to Fig. 2 for the car
following model). If the gain of the control system is
around 1/2 when measured from the leading car input and
also around 1/2 when measured from the following car
input, then there is enough overall gain to avoid collisions,
while the gain going from front to back or from back to
front is less than one (namely about 1/2), thus attenuating
any oscillations or travelling waves. Perturbations are
dissipated by being forced both forward and backward.

VII. Physical model of bilateral control

A simple physical model will make this counter-
intuitive result appear more plausible. Adjustment of
acceleration based on distance can be modeled by a spring
connecting cars, since, by Hooke’s law, the force in a
spring is proportional to the extension from its rest length,
and by Newton’s second law of motion, the acceleration
is the force divided by the mass of the car. We also need
a force proportional to the relative velocity of the cars,
which can be produced by a damper or shock absorber.

Fig. 10. Mechanical analog model of bilateral control systems.

Consider such a mechanical mass/spring/damper ana-
log of a control system with bilateral feedback (Fig. 10).
Here the masses (modeling the vehicles) are connected to
each other with springs that transmit a force proportional
to the difference between the spacing of the vehicles and
the resting length of the spring. In addition, damping is
provided by dashpots or shock absorbers that produce
a force proportional to the speed of compression or
expansion, in the direction opposite to that of the motion.

Suppose now that one grabs hold of one mass in such
a string of masses, springs and dampers. If one moves
that mass periodically in the direction of the length of

the chain to simulate a perturbation, that motion will be
transmitted along the chain, but will be damped out along
the chain by the mass/spring/damper combination. This
damping may work better at some frequencies than at
others, but there will never be an increase in amplitude
along the chain for any frequency. For one thing, in such a
purely passive system (i.e. one without active components
that could amplify signals) there are no energy sources to
support increasing amplitudes of motion.

In fact, the differential equation describing the system
can be shown to be the one-dimensional damped wave
equation — provided a suitable choice of coordinates
is made. It can also be shown that such a system will
approach a steady state, with vehicle speeds converging
to a common value, and vehicle separation approaching
a common value (see Appendix I).

One might wonder why this physical model does not
apply to the simple “car following’’ control systems
described earlier. In that system, it would appear that
a spring and a damper could model a control system
where acceleration is proportional to distance and relative
velocity with respect to the car ahead. But note that
by Newton’s third law, every action has an equal and
opposite reaction, which here means that the springs
and dampers exert forces not just on the following car,
as appropriate for “car following,’’ but also on the one
ahead. But there is nothing comparable to this in the “car
following’’ model, since in it, the driver ahead pays no
heed to the car behind.

An interesting way of looking at the method is to
note how it “cools’’ the relative motions in a group of
vehicles. Suppose that a number of vehicles using this
new type of control system start off with different initial
velocities and different inter-vehicle spacing. The effect
of the “damper’’ part of the control system is to dissipate
the kinetic and potential energy resulting from departures
from the average, thus reducing the difference between
individual vehicle’s motions and the average.

One can compare such a group of vehicles to molecules
in a gas flow. Individual molecules move relative to the
average in a way that depends on the temperature of the
gas—the hotter the gas the more rapid the relative motion.
Dropping the temperature corresponds to reducing the
differences between the velocities of individual molecules
and the average velocity of the group of molecules. As
the gas is cooled it may undergo a phase change, such
as changing from gaseous to liquid form (see also [14],
[15], [42]). Similarly, a group of vehicles using this type
of control may enter a phase in which the vehicles are
all travelling at essentially the same speed and the inter-
vehicle spacings are essentially the same.

Note that such a “cool’’ phase of a group of vehicles
is different from that of a “platoon’’ of cars in that: (i)
there is no direct communication between the lead car
and the other cars, (ii) no single driver is in control of
the group, (iii) it is easy for cars to drop out of the group
and other cars to be added, (iv) the group of cars can
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easily react to disturbances, and, afterwards, once more
drift back towards a “cool’’ equilibrium phase.

VIII. Implementation

There remains an issue of how to implement the control
system. First, drivers could just start paying attention to
the car following them and not follow the car ahead as
closely if there is a gap behind them. A particular simple
version of this notion would have each driver aim to be
half way between the car behind and the car ahead (think
of one spring connecting the car to the one ahead and
another to the one behind). The driver would also need
to take into account the speed relative to the average speed
of the car behind and the car ahead (and slow down if
the speed was higher, or accelerate if it was lower).

This simple solution would damp out traffic flow in-
stabilities, but would require a large fraction of drivers
to adopt an unfamiliar driving mode. Further, paying
attention to the car behind takes attention away from the
car ahead and thus most likely reduces safety4.

Some form of automation is preferable, where sensors
determine the relative positions and speeds of the vehicles
ahead and behind, and use this information to automat-
ically control the acceleration of the vehicle.

In one simple form, the system can operate much in
the way of a cruise control system, except, instead of
maintaining a fixed speed, the system follows the bilateral
control law. Very roughly speaking, the appearance will be
that of a vehicle attempting to match the average speed of
the leading and the following vehicle while staying more
or less in the middle between them (the precise details of
operation are as defined above for bilateral control).

dl

vl-vc

df

vc-vf

vdes

vc

vmax

−

−

−

−

kd

kv

kc

+ + x a

Fig. 11. Illustrative bilateral control system.

A diagram of a sample bilateral control system is shown
in Fig. 11. Here kd is the gain for feedback based on
the difference of the distances to the leading and the

4Also, some drivers are likely to be loath to leave gaps ahead
that non-cooperating drivers from other lanes may populate.

following cars, while kv is the gain for feedback based
on the difference between the relative velocities (vl − vc)
and (vc − vf ). In addition, kc is the gain of feedback
based on the difference between the desired velocity vdes
and the current velocity vc , while a separate circuit vetoes
positive acceleration when the current velocity vc is equal
to the speed limit vmax (compare with Fig. 6. for car
following model). In a simple linearized version of this
system, acceleration may be given by

a = kd (dl −df )+kv
(
(vl −vc)− (vc −vf )

)+kc(vc −vdes)

There would also be additional control rules that take
into account minimum safe separation, relative speeds,
speed limits, weather and lighting conditions, traffic den-
sity and traffic advisories. Special rules could deal with
the situation when there is in fact no vehicle ahead and/or
no vehicle behind. The control system can, for example,
have multiple states, s.a. (1) both leading and following
vehicles present, (2) no following vehicle, (3) no leading
vehicle, and (4) no following or leading vehicle. If there
are no nearby vehicles, it could revert to a simple cruise
control mode where the acceleration is simply a function
of the current speed and the desired speed.

The feedback shown is linear, but non-linear feedback is
also a possibility, including “gain scheduling’’ or “switch-
ing mode’’ feedback. In all of these versions the common
key idea here is that information about distance and speed
of the vehicle following is also taken into account.

The sensors needed to implement this type of control
system would be in the vehicle5. The vehicle could, for
example, have cameras aimed fore and aft able to estimate
distance and velocity to the nearest vehicle, using e.g.
machine vision methods such as “optical flow,’’ “time to
contact,’’ and perhaps binocular or trinocular stereo [38],
[39], [43]–[47]. Laser, ultrasound and radar measurement
technique could be used instead, although likely more
expensive and less able to discriminate between vehicles
in the same lane and those in adjacent lanes.

A system augmenting bilateral control with commu-
nication between adjacent vehicles has been described
recently [48]. This makes possible strong proofs of stability
even in the presence of failures of system components.

IX. Simulation

The “car following’’ model and the “bilateral con-
trol’’ model have been implemented in simulation and
tested under various conditions and with various gain
and parameter settings. These simulations confirm the
appearance of traffic flow instabilities under a wide variety
of conditions when using the car following model. The
feedback systems for “car following’’ and “bilateral con-
trol’’ were based on what is presented here (Fig. 6 and 11),
with some minor additions, such as a more sophisticated
method for calculating the “minimum safe separation’’ for

5It would be much less desirable to depend on sensors in
supporting infrastructure.
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Fig. 12. Unstable traffic flow using car following model.

Fig. 13. Stable traffic flow using bilateral control.

the car following model that takes into account differences
in speed as well as position, and a system for braking
hard when the gap between vehicles should ever become
less than the minimum safe separation.

A java application simulating both the “car following’’
and the “bilateral control’’ system can be downloaded
from http://csail.mit.edu/˜bkph/Traffic_Flow_

Instabilities This application provides for experimen-
tation with variation in parameters. Sample screen shots
show results after running the “car following’’ system for
a few minutes (Fig. 12), and then switching to bilateral
control for a few minutes (Fig. 13)6.

X. Why this should be implemented

If most cars had this kind of system, then traffic would
flow more smoothly at high densities, and existing road-
ways could sustain higher throughputs. Gas consumption
would be reduced, as will time lost sitting in stop-and-go
traffic. Wear and tear on roads and vehicles would be less-
ened and the incidence of accidents reduced. Community
benefits could be significant, since more traffic could be
accommodated without adding to the infrastructure.

6For the default settings of this particular implementation,
the car-following mode leads to an average speed of 15.4 m/sec
(st. dev. 7.8 m/sec) and a throughput of 0.77 cars/second, while
with bilateral control the average speed rises to 25 m/sec (st.
dev. 0.15 m/sec) and the throughput to 1.25 car/sec.
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Appendix I
Proof of stability of simple linear bilateral control

Let

E = 1

2

N−1∑

n=0

ẋ2
n + 1

2
kd

N−1∑

n=0

(xn+1 − xn)
2

We will show that E decreases with time and that it does
so until the velocities of the vehicles match.

In the above expression for E, consider N vehicles
on a closed loop, where the indexes wrap around, with
vehicle number N being the same as vehicle number 0. We
show next that the distance between vehicles approaches
a common value equal to the length of the track divided
by N . We have

dE

dt
=

N−1∑

n=0

ẋnẍn + kd

N−1∑

n=0

(xn+1 − xn)(ẋn+1 − ẋn)

The second sum equals

−kd

N−1∑

n=0

ẋn(xn+1 − 2xn + xn−1)

if the index n is taken mod N . Now, in the case of the
simple linear bilateral control system,

ẍn = kd (xn+1 − 2xn + xn−1)+ kv(ẋn+1 − 2ẋn + ẋn−1)

So the first sum in the expression for dE/dt becomes

kd

N−1∑

n=0

ẋn(xn+1−2xn+xn−1)+kv

N−1∑

n=0

ẋn(ẋn+1−2ẋn+ẋn−1)

The first term in this expression is cancelled by the second
sum in the expression for dE/dt , so that dE/dt simplifies
to

dE

dt
= kv

N−1∑

n=0

ẋn(ẋn+1 − 2ẋn + ẋn−1)

or
dE

dt
= −kv

N−1∑

n=0

(ẋn+1 − ẋn)
2

if the index n is taken mod N . So dE/dt ≤ 0 and
dE/dt = 0 only when all vehicles have the same velocity.
That is the state that the system converges to. Convergence
clearly does require velocity feedback, and is faster when
kv is higher.

Further, when all the velocities are the same, the con-
tribution to the commanded acceleration from velocity
feedback is zero, leaving only the contribution from po-
sitional feedback. So any remaining acceleration must be
due to differences in spacing of the vehicles. But if the
velocities remain matched, acceleration must be zero, so
the differences in spacing between vehicles must approach
zero also. Hence, not only do the vehicles asymptotically
approach the same common velocity, but the spacing
between them also approaches a common value.
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