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Abstract: Under traditional car-following control, i.e., human drivers’ behaviour, the stability
condition of traffic system is not satisfied in general. For safety and reliability of autonomous
vehicles, additional danger warning system must be used in the adaptive cruise control system to
prevent inevitable potential collisions. One reasonable quantity of evaluating potential collisions
is time to contact (TTC): how soon will potential collision occur? In this paper, we provide
TTC feedback control to improve safety and reliability of autonomous vehicles, and show
the effectiveness of TTC feedback. TTC can be estimated by machine vision techniques with
single uncelebrated camera (i.e., passive sensors). We provide detailed mathematical analysis and
algorithmic implementation. The machine vision-based TTC algorithm is pretty fast such that
the whole system can be implemented on Android smart phones running in real-time. Moreover,
it is not trial to estimate relative velocity by differentiating the measured distance between
cars with respect to time, because inevitable measurement noise in the distance measurements
will be amplified by the derivative operation. The time-to-contact-based algorithm provides
an alternative approach to estimating the relative velocity, which can also be fused with
measurements from other active sensors, if desired.
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1 Introduction

Driver assistance systems and autonomous vehicles come
closer and closer to reality with the rapid development
of sensors and wireless communications. Correspondingly,
many interesting questions arise. For instance, how to
control a car based on the information from the sensors?
How much autonomous vehicles can improve the traffic
situation, e.g., reduce the number of collisions, stabilise the
traffic flow, and increase the throughput of a highway?
Note that autonomous driving systems can take into account
more information about the environment of the car than
a human driver can, and thus show promise of yielding
attractive improvements relative to today’s traffic situation.
See Horn (2013), Baran and Horn (2013), Wang et al.
(2017) and Horn and Wang (2018) for more details.
However, at least the early version of autonomous cars are
still supposed and designed to drive like human drivers by
many people. That is, try to following the car ahead based
on local measurements, e.g., space and relative speed.

Even under the same control mode, there is still
significant difference between autonomous vehicles and
human-driving cars. For instance, the response of sensors
is much faster than human drivers. Correspondingly, the
required safe space (which is proportional to reaction time)
between self-driving cars is much smaller than the one for
human-driving cars. The car density in autonomous-vehicle
traffic can be much higher than nowadays traffic. As human
drivers, we are too familiar with the ‘stop-and-go’ traffic
jams. Will such autonomous-vehicle traffic (with smaller
safe space used for each car) be better, or even worse? First,
by input/output stability analysis, we find the answer to this
question:

e  Under car-following control, the stability condition
becomes harder and harder to satisfy as the reaction
time decreasing. Thus, the traffic flow will become
more unstable due to the ‘tailgating ability’ of
autonomous vehicles.

This conclusion provides tow suggestions of designing
adaptive cruise control (ACC) system:

1 stop tailgating, i.e., keeping much larger reaction time
than the response time of the sensors

2 design danger preventing system to avoid the
inevitable potential collisions caused by traffic
system’s instability.

Intuitively, the danger can be predicted depends on the
quantity that how soon the potential collision will occur.
This predicted collision time is called time to contact
(TTC). Then, we provide a TTC control strategy which
evaluates the potential danger of collision by the inverse
of time-to-contact (1/TTC). Emergency brake will be taken
immediately if 1/TTC is larger than a preset threshold.
Numerical simulation shows the effectiveness of TTC
feedback to prevent inevitable potential collisions (see
Figure 3).

It is not trivial to estimate TTC, i.e., the ratio of
space and relative speed, by active sensors. Although
space can be measured by Radar or Lidar effectively,
relative speed can not be estimated directly by taking
the time derivative of the measured space. Any small
noise in the distance measurement will be amplified by
taking the time derivative. Machine vision provides an
effective solution to this problem. As is well known, at
least two calibrated cameras are needed to obtain both depth
and motion information about objects in the scene using
binocular stereo (see, e.g., Horn, 1986). Finding distance
and velocity monocularly is difficult. However, the ratio of
distance to velocity (i.e., time to contact) can be obtained
relatively simply monocularly (see Horn et al.,, 2007).
We provide mathematical analysis TTC estimation and
the corresponding detailed algorithmic implementation. The
estimated TTC is given by analytical close-form solution,
rather than iterative approach. Thus, the algorithm is pretty
fast and can even run on Android smartphones in real time.
We also built a robot-based prototype system to test the
TTC implementation.

The distance between the controlled car and the leading
car are used in the ACC system. However, this information
is not enough to drive a car safely and smoothly. Human
drivers also use information about the relative velocity of
the leading car with respect to their car. We have shown
that the relative-velocity-based control term is important for
stability (see, e.g., Horn, 2013; Wang et al., 2017). Thus,
how to obtain stable and reliable measurements of relative
velocity is an important issue for autonomous vehicles. As
mentioned above, small noise in the distance measurement
will be amplified by taking the time derivative. Thus,
relative velocity estimated by taking the time derivative of
the measured distance to the leading car can not be used
directly by the ACC system. Some other, more reliable,
approach to measuring relative velocity is needed. The
relative speed of the vehicles can also be calculated directly
by multiplication of the distance measurement with the
inverse of the TTC (1/TTC) (note that the natural output
of the TTC algorithm is 1/TTC). The output of this new
method for estimating the relative velocity can then be
fused with the estimate obtained by taking the derivative
of the distance, using e.g., a Kalman filter, obtain an even
more accurate and reliable estimate. Thus, time-to-contact
feedback is very important for autonomous vehicles, not
only for the car’s safety, but also for the reliability of the
ACC system.

2 Car-following control

Human driver’s behaviour can be modelled as following
the leading car (Lighthill and Whitham, 1955; Chandler
et al, 1958; Herman et al., 1959). That is, adjust the
car’s speed according to the distance from the car ahead.
Moreover, relative speed between the current and the
leading car is also used by human drivers to adjust the
car’s speed. We first provide the simplified mathematical
description of such human-driver’s behaviour, which is
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known as car-following control model (CFM). Then, by
input/output analysis, we provide the stability condition
for such CFM-based traffic. Finally, we shows why such
stability condition is difficult to satisfied in real traffic
and thus the ‘phantom traffic jams’ caused by human
drivers appears frequently in nowadays traffic. The traffic
flow instabilities are somehow inevitable in the CFM-based
traffic. Thus, some collision preventing technique and
danger-warning system is somehow necessary for the cars,
especially for the autonomous vehicles (or autonomous
driving system).

2.1 Mathematical model of CFM traffic

In this paper, we only consider the case of single-lane
traffic. That is, a line of cars running on a road (see
Figure 1). Let z, and v, = &,, denote the position and
speed of car n. The adjustment of the car’s (say car n)
speed, i.e., the acceleration command a,, is based only
on its forward measurements, i.e., space d,, = (T,,—1 —
Zp — | (where [ denotes the car length) and relative speed
TnUn—1 — U, between the current car and the leading car.
Mathematically,

an = kq(dn — v, T) + kyry, )

where, T is known as the reaction time, kq > 0 and
k, > 0 are known as the proportional gain and derivative
gain, respectively (Horn, 2013). That is, the current car
is controlled to following the car ahead with enough
safe distance s, =v,T. Thus, equation (1) is called
car-following control model (CFM). Note that CFM (1) is
the simplified lumbarisation of human driver’s behaviour.
In real traffic, speed limitation, acceleration/deceleration
limitation, desired speed, nonlinear reactions and etc also
appears in the drivers’ behaviour. However, the simplified
linear model (1) provides us a good explanation why almost
all the drivers go through the ‘stop-and-go’ pattern, which
is also known as the ‘phantom traffic jams’, again and again
in highway traffic.

Figure 1 Illustration of the car-following control
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Notes: The blocks with ‘L’ and ‘C’ denote the leading
car and current controlled car. Only local
measurements are used in car-following control.

2.2 Stability analysis of CFM traffic

When you are driving on the highway and going through a
traffic jam, you might think there must be some accident far
away from you. However, most of the time, there is actually
no accident. The reason the traffic flow stops for hours,

and consequently you car ‘moving and waiting and moving
and waiting again’ is due to the instability of such CFM
traffic. Suppose in the beginning, the traffic condition is
perfect. All cars are equally spaced and move and move at
the same speed. The basic question is what is the influence
of the actions first car (say car 0), e.g., emergency brake
or small perturbation in its speed, to the whole traffic. Will
the perturbation caused by the first car be amplified again
and again by the following cars? Or Will such perturbation
be suppressed by the following cars and disappear finally?
The answer to this question can be found by input/output
stability analysis of the traffic system.

Note that a, = %, and v, = &,. Thus, equation (1)
leads to the following ordinary differential equation (ODE)

:.L;n + (kv + T)xn + kd(xn + l) = kvi'n—l + kdxn—l (2)

Taking Laplace transform of both sides in equation (2), we

find:
Xn(s) kys + kg
H(s) = - 3
)= % () = ok b+ T)s + Fa ®)

H(s) is called the transfer function. We then find

X, () = H(8)Xno1(s) = --- = H" () Xo(s) )

Xo(jw) is the magnitude of sinusoid component e/** in
the perturbation of the first car. The (string) stability of the
system implies that

lim X, (jw) =0 (5)

n—oo

for all w # 0. Thus, for stability, we must have
[H(Gw)ll <1 (6)

for sinusoidal excitation of any frequency w # 0.
Note that

k3 + k2w?
(kg — w?)2 + (ky + T)%w?

|H (jw)||” = (7)

The stability condition (6) corresponds then to

k3 4+ k2w? < (kg — w®)? + (ky + T)%w? 8)
for all w? # 0. That is,

kaT? + 2k, T > 2 ©)

Equation (9) is difficult to be satisfied in general. Thus,
we are too familiar with the ‘phantom traffic jams’ in
nowadays highway traffic. In summary, the ‘stop-and-go’
pattern is actually generated by ‘tailgating’ behaviours, i.e.,
using small 7', of human drivers.

2.3 Control system design

For human drivers, the ‘reaction time’ T is usually taken to
be about 1 second (Horn, 2013). For autonomous vehicles,
the reaction time 7" could be much smaller, e.g., 0.1 sec.
Thus, we can predict the traffic under autonomous cars
will be come even worse if CFM is used to build the
adaptive cruise control (ACC) system of the autonomous
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vehicles, because the autonomous vehicles have the ability
to tailgate even more. The above stability analysis provides
two suggestions of designing ACC system for autonomous
vehicles:

1 Stop tailgating: choosing larger T', e.g., greater than
1 sec. even if the sensors’ reaction time is much
smaller than that.

2 Collision alert system is necessary: system’s instability
implies that the potential collision between successive
cars is somehow inevitable for the simplified linear
control strategy (1). Thus, some additional collision
alert and preventing technique must be used for the
safety and reliability of autonomous vehicles.

In real application, the reaction time 7 can not be set
as an arbitrary large number. If T is too larger, other
cars from neighbouring lanes may merge in. Some new
control strategy tailoring autonomous vehicles may relax
system’s instabilities. However, at least in the beginning of
the age of autonomous vehicles, we can imagine that most
autonomous vehicles might be built to drive like human
drivers. Thus, the above two suggestions are important to
take into account for ACC system design at least in the
early version of future autonomous vehicles.

3 Time-to-contact control

By stability analysis, we predict the inevitable of collision
between successive vehicles under simplified linear control
strategy (1), and show the necessary of additional collision
alert and preventing system for ACC design. The next
question is how to design such alert system to prevent
car-collisions. Note that relative position, i.e., space d,
and speed difference r, are used by human drivers in
CFM (1). If the space d,, is small, there might be potential
danger of collision. Also, if the relative velocity —r,, is
large, there might be potential danger of collision. However,
these two conditions are not sufficient to indicate potential
danger. The potential danger should be evaluated by both
space d,, and relative velocity —r,, between the successive
two vehicles. A more reasonable quantity to evaluate the
potential danger is their ratio, i.e.,

rre = 4 Tno1Z T (10)

Tn Up — Un—1

That is, ‘how soon will the potential collision happen?’ This
quantity is called time to contact (TTC). Intuitively, if TTC
is a small positive number, then the car should break hardly
to prevent the potential collision.

3.1 TTC-based emergency brake

First, we can try to add an additional TTC-based feedback
control component to the ACC system. Emergency brake
should be taken when TTC is small (and positive)
rather than when TTC is larger. Thus, the inverse of

time-to-contact (1/TTC) should be used as a feedback to the
control system. Moreover, a threshold of 1/TTC should also
be used. That is

[ 1/TTC,if 1/TTC >0
[L/TTC = {0, otherwise. an
Now, the control strategy becomes:
ka(dn — v T) + kyrp, if [1/TTC|+ <7
Gn = . (12)
Qmin otherwise.

where 7 is a positive threshold and an;, is the largest
deceleration for the car. (In general apiy, = —5 m/s?.)

3.2 Simulation

Now, the control system (12) is nonlinear. The input/output
analysis for the linear CFM (1) can not be used directly
here. We build a Java-based simulation platform to
demonstrate the effectiveness of TTC emergency brake.
Figure 2 shows the interface of the simulator. Suppose there
are totally n cars running on a circle (with total length as
L = 500 metres). Users can easily specify the environment
of the simulation, e.g., the car number n, the desired speed,
speed limitation, acceleration/deceleration limitation, and
the parameters used in ACC system, e.g., feedback gains
kq and k,, reaction time 7', threshold 7 in (12) for TTC
control.

Figure 2 The interface of the simulation platform (see online
version for colours)

car_number |22
kd(double) 0.1
kv(double) o2
kc(double) [0.01

v_des(double)m/s |30

min_v(double)m/s |0

reaction_time(int)s |1

max_a(double)m/s*2 |5

min_a(double)m/s*2 |5
Threshold: 1/TTC [10

|
|
|
|
|
max_v(double)m/s |44 |
|
|
|
|
|

Stop ‘

Run ‘ |
leader_stopButton ‘ | leader_runBuiton ‘

Note: Users can specify the environment of the simulation
and set the parameters used in ACC system easily.

The numerical approach used for simulation is as following:

e The time-step is set as At = 0.1 sec. In each
iteration, first, calculating the acceleration a,, by
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equation (12). Then calculate the new position % Figure 3 The simulation results, (a) in the beginning, the

and speed vp*" of car n by traffic is almost perfect (b) traffic flow instability
will cause car collision (¢) TTC emergency brake

2" = :)Z(;le + vald At + = ap( At)2 (13) prevent car collisions effectively

O™V = 0 g, At (14)

Then, calculating the new acceleration a,, by
equation (12) again, and then renew the position and
speed of car n.

e If car collision happen, i.e., x,_1 — =, <[, then let
the following car stop suddenly and start moving
again, i.e., setting z,, = x,,—1 — [ and v, = 0.

e  Circular modulo: if ,, > L (with L = 500 m), then
set x,, = x, — L. (Note that d,,;; should be adjusted
by adding L.)

Figure 3 shows some simulation results. The curves in — — e o Fam o0 B0
Figure 3 correspond to the ‘trajectories’ of the (totally 22) (a)

cars in the space-time domain. The horizontal axis is the
space (with total range as 500 m), and the vertical axis is
the time (with total range as 25 sec.) . The speed of the car
is the inverse of the slop of the corresponding curve. When
car collisions occur, the slop of the corresponding cure
changes suddenly. The parameters are the ones in Figure 2,
except the ‘rhreshold: 1/TTC’, i.e., n, is adjusted to show
the effect of TTC emergency brake.

In the beginning, the traffic is almost perfect. Very
small perturbations are introduced in the cars’ state [see
Figure 3(a)]. Traffic flow under CFM is unstable. Thus,
the tinny perturbation is amplified to cause traffic jams.
Without TTC control, i.e., setting large ‘threshold: 1/TTC’
as n = 10, car collision is inventible due to the instability
of the traffic system [see Figure 4(b)] We then set
‘threshold: 1/TTC’ as n = 0.5, i.e., breaking hard 2 sec.
before potential collision, the TTC emergency brake control
prevents car collisions effectively [see Figure 3(c)].

Note that the traffic flow is still not smooth by
adding TTC emergency brake, because the traffic system is
unstable. TTC feed back can prevent potential car collisions
and improve the vehicles’ safety and reliability. However,
‘phantom traffic jams’ are not suppressed effectively by
TTC emergency brake, and the cars still move in the
‘stop-and-go’ pattern. Actually, Figure 3(c) is closer to our
experiences of highway traffic. That is, follow the leading
car and break hard when potential danger might occur.
Consequently, drive in the periodic pattern of ‘speed up,
slow down and speed up again’.

Time (25 sec)

Time (25 sec.)

o e

Space (metery: from 010 500 m

3.3 TTC feedback control (©

Notes: The curves correspond to the ‘trajectories’ of the
(totally 22) cars in the space-time domain.
a In the beginning, very small perturbations

Human drivers are actually estimating TTC (or 1/TTC)
all the time during their driving. Another control

strategy is to adjust the wvehicle’s state using TTC are introduced in the cars’ state.

estimation through feedback control. For instance, another b Without TTC control, car collision is inventible
feedback gain krrc > 0 is used also to determine the due to the instability of the traffic system.
acceleration/deceleration, i.e., ¢ By adding TTC emergency brake, i.e., setting

small ‘Threshold: 1/TTC’ as = 0.5, potential
car collisions are prevented effectively.

Ay = k‘d<dn — ’UnT) + kyrn — krTC |_1/TTCJ+ (15)
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Different from the simplified car-following control in (1),
equation (15) is nonlinear. Thus, we can not provide the
above Laplace-transform-based analysis. Here, we used
algorithm in Section 3.2 to simulate the corresponding
traffic flow. Figure 4 shows some simulation results.

Figure 4 The simulation results, (a) in the beginning, the
traffic is almost perfect (b) traffic flow instability

will cause car collision

Time (25 ser.)
e

Space (meter): from 010 500 m

@

Time (25 gec.)

Space (meter): from 0 to 500 m

(b)

Notes: The curves correspond to the ‘trajectories’ of the
(totally 22) cars in the space-time domain. TTC
feedback in (15), with krrc = 0.3, is used to prevent
potential car collision.

Similar to the results in Figure 3, the traffic system is not
stable. In the beginning, the traffic flow is almost smooth.
However, small perturbations are amplified continuously to
generate traffic jams. TTC feedback control (15) prevents
the potential car collisions. More complicated models can
also be built. For instance, both TTC feedback control and
TTC emergency brake can be implemented simultaneously.

The left problem is how to estimate TTC effectively.
Although the space d,, can be obtained reliably using
some other sensor like Radar or Lidar. However, if the
relative velocity 7, = v,_1 — v, is estimated by taking the

derivative of d,, directly, i.e.,r, = d/dt(d,,), then the noise
in d,, will be amplified. If, for example, we model small
components of perturbations in the measurements as waves
of the form esin(wt), then the derivative will be corrupted
by wecos(wt), and so higher frequency components of
measurement noise will be amplified a lot. (We could
attempt to limit this effect by approximate low pass filtering
the result, but that would introduce latency or time delays,
which are, of course, not good for stability of control
systems.)

Note that human drivers do not estimate TTC by
the above approach. Space and speed difference are not
estimated separately or independently. Actually, human
drivers estimate TTC somehow directly through vision (i.e.,
a passive sensor rather active sensor as Radar or Lidar). We
need explore the vision-based direct approach to estimate
TTC (or 1/TTC) effectively.

4 Vision-based time-to-contact estimation

As an object approaches you, its image on your retina will
expand; conversely, as it moves further away, the image
will become smaller and smaller. This observation gives us
some intuition into how one might estimate the motion of
an object from its time-varying image. As is well known, at
least two calibrated cameras are needed to obtain the depth
of objects in the scene. Thus, the absolute motion of the
object, i.e., the speed, can not be estimated using just a
single camera. However, the ratio of the object’s depth and
its speed, which is known as time to contact (TTC), can be
estimated using a single camera. See Horn et al. (2007) for
more details.

4.1 Passive navigation

We chose to use the camera coordinate system shown in
Figure 5. The origin is at the pin-hole of the camera, and
the Z axis is along the optical axis of the camera. The
X and Y directions in 3-D are aligned with the z and y
axes of the image sensor (Horn, 1986). Suppose there is
a planar surface perpendicular to the Z axis, and moving
at the speed (U,V,W). The position of the image (z,y)
of the point (X,Y,Z) is determined by the perspective
projection equation (see e.g., Horn, 1986), i.e.,
X Y
x—fZ and y—fZ (16)
The motion (U,V,W) and the depth Z will generate
movements of the image pattern, which is called the optical
flow (u,v) (see e.g., Horn, 1981). The relationship between
motion in the world and motion of corresponding image
points is given by (see Bruss and Horn, 1983):
Uf —axW Vf—yW
u = ~ and v = 7 (17)
The problem of estimating motion (U,V,W) and depth
Z(z,y) from (u,v) is known as passive navigation in the
machine vision field. See e.g., Bruss and Horn (1983), Horn
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and Weldon (1988) andShahriar and Horn (1987) for more
details. Even for the very simple case shown in Figure 5,
there is no unique solution. See e.g., Horn (1986) and Bruss
and Horn (1983) for more detailed analysis.

Figure 5 We use the camera coordinate system, in which the
Z axis is along the optical axis of the camera
(see online version for colours)

Tv
|
|
(UV,W) :
\ I
(X,Y,Z)J_ ]
s 0 X
Ve
/ /
Z/

Notes: A planner surface is perpendicular to the Z axis,
and moving at the speed (U, V, W). The TTC
is Z/(=W).

Note that the time to contact (TTC) is Z/(—W). Also, the
Jocus of expansion (FOE), denoted by (xg,yo) is (McQuirk
et al., 1998):

Vv

U
T :fW and Yo :fW (18)

Thus, equation (17) can be written as:

v=(y—yo)C (19)

where C = 1/TTC. The three parameters (z¢,yo) and C
can be estimated from the given optical flow (u,v).

u=(x—x9)C and

4.2 Optical flow

The problem of estimating (u,v) from the changes in the
image pattern — which is described by spatial variation
(E, Ey) and temporal variation E; of an image sequence
E(x,y,t) — is known as the optical flow problem (see,
e.g., Horn, 1981). Here, we face a very special case in
which (u,v) is determined by only 3 parameters. Thus, it is
more efficient to solve this problem using the optical flow
constraint directly, i.e.,

ub, +vEy + E; =0 (20)
Substituting (19), we find
E,A+E,B+GCH+E =0 (21)

where G = zE, + yE,, A = xoC and B = y,C. Note that
here E,, E,, E; and G are calculated from the image
sequence, while the parameters A, B, C' are the unknowns
to be determined.

4.3 Least-square solution

We can solve for A, B and C in (21) by a least squares
method. That is, we minimise the following objective
function

AmBinC// (E,A+ E,B+ GC + E;)* dz dy (22)

That coincides with solving a 3 x 3 linear system [see, e.g.,
Strang (2003)]:

a b c A P
b d e Bl=-|g¢ (23)
c e g C r
where
a= / / F2dxdy (24)
b= / E,E,dzdy (25)
c:/ E.Gdzxdy (26)
d= / / Edxdy (27)
e:/ E,Gdzxdy (28)
g= / G?dxdy (29)

p= // E.Edxdy (30)
q= // EyEdxdy (31)

r:/ GEdzdy (32)

Note that only multiplication and accumulation operations
are involved in generating the nine quantities that appear
in equation (23), and that we can solve for (A, B,C)
analytically. Thus, not surprisingly, this least-square
approach is much faster than e.g., some method based on
feature-detection and matching. If desired, the FOE can be
calculated using (zo,yo) = (4/C, B/C).

As we conclude above that it is non-trivial to obtain
a reliable measurement of relative velocity r, for use in
control of autonomous vehicles. However, by such machine
vision-based approach, C'=1/TTC can be estimated
efficiently. Thus, the relative velocity can be calculated by
rn, = d,C directly. The remaining work is to implement
the algorithm outlined above. Such estimated r, can be
used to fuse with the relative velocity estimated from
active sensors (with amplified noise) to generate a more
reliable speed-difference estimation. Thus, TTC (or 1/TTC)
estimation is not only important for the safety of the
autonomous vehicles but also significant for the reliability
of the corresponding ACC system implementation.
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5 Implement TTC algorithm

We implement the TTC algorithm (in JAVA) on Android
smartphones. We describe the implementation in detail
below. Moreover, In order to stabilise the estimation of
TTC and FOE, a recursive filter is also used.

5.1 Smart-phone system specification
The Android TTC code contains three JAVA classes:

1  TTCCalculator: it extends the class ‘Activity’, and
calculate TTC using image frame data

2 CameraPreview: it extends the class ‘SurfaceView’,
and displays the previewed image from the camera

3 DrawOnTop: it extends the class ‘View’, and shows
the intermediate result for TTC calculation.

Let E,(i,j: k), E,(i,j; k) and E,(i,j; k) be the values of
E., E,, E; at pixel (¢,7) in the image frame k. In the
algorithm, these values are estimated (using image frame
k — 1 and frame k) by following:

Ba(i,jik) = § (Bali = 1,5 k)
~ Bali—1,j - 1K)
43 (Belisjih) + Buinj — 15))
+i(Ex(i—1,j;k—1) (33)
Y E(i—1,j-1k—1))
b5 (Bl gik—1)
+ Ey(i,j — Lk — 1))
ByfisjiK) = § (Balivj = 151)
~ Bali=1,j - 1K)
4 (Bl i) + Bali = 1,55K)
+3(Ex(i,jfl;k71) (34)
B~ 1,5~ 1k~ 1))
45 (Bl gik—1)
+ E,(i—1,5;k—=1))
B ) = § (Bl k) — Balisj:k — 1))
(Bl L5iE)
~ Bali=1gik = 1)
+i(Em(i71,jf 1;k) (35)

*Ez(zflajflakfl))

1
+ 5 (Bl = 1:k)

- El(lhj - 17k - 1))

Then, G(i,j; k) is calculated by:
G(i,jik) = jE. (i, j; k) + 1By (i, ji k) (36)

And the coefficients a to r in the linear equation (23)
can then be calculated accordingly by replacing the
double integral by double sum of the calculated values
of Ex(i,5;k), Ey(i,j;k), Ev(i,4;k) and G(i,5; k). The
closed form solution of the 3 x 3 linear equation (23) is
well-known (see, e.g., Strang, 2003). Thus, the solution
A, B and C can be calculated directly by (only) several
multiplication and addition operations. Thus the TTC
algorithm is pretty fast.

The sampling rate is set at 10 frames per second (fps).
Thus the time interval is At = 0.1 sec. The resolution of the
image frame is set to 720 x 1080 pixels. The image frame
is down-sampled by 4, i.e., to a 180 x 270 matrix, as the
input data E.

Figure 6 shows some testing results running on Huawei
Nexus 6P. The first four sub-images in the top-left corner
of Figure 6(b) are the down-sampled F, F;, F,, E,, while
the last two show the pixels’ motion (in = and y direction,
respectively) due to the phone’s angular velocity — which
is measured by the phone’s gyroscope. The three ‘bars’ in
Figure 6 show the computed parameters A, B, C, which
indicate the motion (of the camera) in the X, Y and Z
directions. Red means positive, while green means negative.

5.2 Two-registers recursive filtering

Note that the speed of both the current controlled car
and the leading car are continuous (velocity cannot change
instantaneously; in fact, its rate of change is limited by the
maximum accelerations and decelerations possible for the
vehicle). Thus, we expect the TTC (1/C) to also change
smoothly. Due to noise in the image measurements, the
estimates of C' may be somewhat noisy also. In order
to suppress noise we can use an approximate low-pass
filter, e.g., Cx = aCy + (1 — a)Cr_1 (with 0 < a < 1), to
smooth the TTC output. One more register is needed to
save the previous output Cj_;. The above is a simple finite
impulse response (FIR) smoothing filter. To obtain better
filtering we would have to remember additional old values.
A more efficient approach is to use:

6k = aCy + (1 — Oé)ék,1 (37)

Only two registers are used. However, all previous outputs
are used recursively. That is, equation (37) can be rewritten
as:

k—1
Cr=(1-0a)"Co+> a(l-a)Ciy (38)

=0

This implements an infinite impulse response (IIR)
smoothing filter. Here, the weights decay exponentially
with time. This approach emphasises new points over old
ones, and does not require keeping a complete history of
old values.
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Figure 6 Some results on Nexus 6P, (a) one frame of the Figure 7 The experimental environment (see online version
results on the Android phone (b) the third red ‘bar’ for colours)
indicates that the camera is approaching (c) the third
green ‘bar’ indicates that the camera is leaving
(see online version for colours)

Notes: A smart phone is mounted on a controllable robot.
The result on the screen is recorded on a laptop computer.

Figure 8 The result on Nexus 6P, (a) one frame in the
recorded result (b) the car is approaching the boxes
(c) the car is leaving the boxes (see online version
for colours)

(b)

Notes: The top-left corner shows intermediate computational
results. The three ‘bars’ indicates the motions.

6 Experiments

We use a controllable robot car to test the TTC algorithm.
Figure 7 shows the experimental environment.

The robot is control by Arduino micro-controller. One
smartphone is mounted on the robot to test TTC algorithm.
Another smartphone is used to control the motion of the
robot, e.g., moving forward and backward, via Wifi. The
robot car is controlled to move at about 40 cm/sec. The
screen of the smart phone is recorded by Android Studio
IDE. The image frames are recorded by the smartphone’s
camera.
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Figure 8 shows some experimental results. Figure 8(a) is
one frame from the video of recorded results. Figure 8(b)
[2 sec. after Figure 8(a)] is a frame when the robot was
approaching the boxes. The upright bar on the right is
colored red to indicate a dangerous condition (small positive
TTC). Figure 8(c) [4 sec. after Figure 8(b)] is a frame when
the robot was moving away from the boxes. The downward
bar on the right is colored green to indicate a safe situation
(negative TTC).

Figure 9 The image frames can be recorded by an independent
camera, and then be sent to smartphones for further
process (see online version for colours)

The image frames used to calculated TTC can be recorded
by the camera on smartphone (as shown in Figure 7), or
from an independent camera. Figure 9 shows such robot.
Basically, the robot contains three modules:

1  an independent camera is used to recorded the image
frames

2 a Wifi chip is used to send the recorded data to
smartphone

3 an micro-controller, e.g., Arduino, is used to control
the robot.

Figure 10 shows the system structure. The recorded image
frames (as binary data) are sent to the smartphone using
Socket communication (via Wifi). The image recorded by
the independent camera is down-sampled before sent to
the smartphone in order to not cause noticeable delay. The
smartphone can also send simple command to the Arduino
micro-controller via Wifi.

The computational cost of TTC algorithm is
almost negligible comparing the time used for Socket
communication. In this experiment, we sent the sampling
rate is set at 5 frames per second (fps), because more time
is caused to send image data via Wifi than read image
frames from the smartphone itself.

7 Conclusions

The ‘stop-and-go’ traffic jams on the highway are actually
caused by the ‘tailgating behaviour’ of human drivers. We
can imagine such problem can be worse when autonomous
vehicles (which are designed to implement car-following
control) are widely used. For safety and reliability of
autonomous vehicles, the ACC system should be designed
such that:

1 using larger reaction time 7' (much larger than the
sensors’ response time)

2 adding collision preventing system to avoid the
inevitable potential collisions due to the traffic
system’s instability.

In this paper, we provide time-to-contact control to prevent
the potential collisions. Simulation shows the effectiveness
of TTC feedback to improve the safety of autonomous
vehicles (see Figure 3).

For the reliability of ACC system of autonomous
vehicles, it is important to estimate the relative velocity
between successive cars. We could estimate the relative
velocity by differentiating the distance. However, any
noise in the distance measurement will be amplified by
taking time derivative. Thus, relative velocity estimates
by other approaches are need to generate more reliable
and accurate measurements. Note that the relative speed
can also be calculated by distance times 1/TTC. Thus,
TTC can provide effective information to fuse with the
taking-derivative-based estimate of the relative velocity,
if TTC is used by another method, e.g., passive-sensor
approach. Machine vision techniques provide us an
effective approach to estimate the time to contact. The
estimated 1/TTC can be used both as TTC feedback to
fuse with the relative velocity calculated by time derivative
of space measurement. Thus, the TTC control can be
implemented effectively. We provide both mathematical
analysis of machine vision-based TTC estimation and
the detailed algorithmic implementation. The estimated
TTC is given by analytical solution rather than iterative
process. Thus, the algorithm is pretty fast and can even be
implemented to run on Android smart phones in real time.

The 1/TTC estimated from a time-varying image is not
very accurate unless considerable filtering is used (see Horn
et al., 2007). However, it provides valuable information to
fuse with other relative velocity measurements. Moreover,
TTC provides an important criterion for the safety of cars
(and robots). If the 1/TTC is large, then a potentially
dangerous situation may be developing and the system
may need to enter an alarm state. Vibration of the camera
mounted in the car may cause the images to be smeared,
which will adversely affect the quality of the estimated
TTC. The gyroscope sensor in the smartphone provides a
measure of the camera’s rotational speed, which can be used
to compensate for the image motion in the TTC calculation.
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Figure 10 The system implementation in which an independent camera is used to recorded the image frames (see online version

for colours)
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Note: The recorded image frames (as binary data) are sent to the

Note that autonomous driving systems can take into account
more information about the environment of the car than a
human driver can. Thus, new control strategy can also be
designed for autonomous vehicles by using these additional
measurements ‘smartly’. Horn (2013), Baran and Horn
(2013), Wang et al. (2017) and Horn and Wang (2018)
provide some attempts on this topic. These new designs of
ACC system for self-driving cars can be optimised from
two aspects:

1 yielding attractive improvements relative to today’s
traffic situation

2 improving the safety and performance of autonomous
vehicles themselves.

TTC feedback focuses on the second objective. How to
implement TTC control with the new ACC system focusing
on the first objective? Will TTC feedback improve the
stability of the new ACC system-based traffic, or make it
worse? How to improve it? These will be our future work.
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