COMPUTATIONAL IMAGING

Berthold K.P. Horn

• Computation inherent in image formation

- Computation inherent in image formation
- (1) Computing is getting faster and cheaper
 —precision physical apparatus is not

- Computation inherent in image formation
- (1) Computing is getting faster and cheaper—precision physical apparatus is not
- (2) Can't refract or reflect some radiation

- Computation inherent in image formation
- (1) Computing is getting faster and cheaper—precision physical apparatus is not
- (2) Can't refract or reflect some radiation
- (3) Detection is at times inherently coded

Computational Imaging System

Examples of Computational Imaging:

- (1) Synthetic Aperture Imaging
- (2) Coded Aperture Imaging
- (3) Diaphanography—Diffuse Tomography
- (4) Exact Cone Beam Reconstruction

(1) SYNTHETIC APERTURE IMAGING

Traditional approach:

- Coupling of resolution, DOF, FOV to NA
- Precision imaging "flat" illumination

with: Michael Mermelstein, Jekwan Ryu, Stanley Hong, and Dennis Freeman

Objective Lens Parameter Coupling

Synthetic Aperture Imaging

Traditional approach:

- Coupling of resolution, DOF, FOV to NA
- Precision imaging "flat" illumination

New approach:

- Precision illumination Simple imaging
- Multiple images Textured illumination

Synthetic Aperture Imaging

- Precision illumination Simple imaging
- Multiple images Textured illumination
- Image detail in response to textures
- Non-uniform samples in FT space

SAM M6

Creating Interference Pattern

Creating Interference Pattern

Fourier Transform of Texture Pattern

Interference Pattern Texture

Synthetic Aperture Microscopy

- Interference of many Coherent Beams
- Amplitude and Phase Control of Beams

Amplitude and Phase Control

Amplitude and Phase Control

Synthetic Aperture Microscopy

- Interference of many Coherent Beams
- Amplitude and Phase Control of Beams
- On the fly calibration
- Non-uniform inverse FT Least Squares

Wavenumber Calibration using FT

Hough Transform Calibration

Least Squares Match in FT

Fourier Transform of Texture Pattern

Uneven Fourier Sampling

Polystyrene Micro Beads (1µm)

Resolution Enhancement

• Reflective Optics Illumination

Vaccum UV — Short Wavelength

Reflective Optics M6

Resolution Enhancement

Reflective Optics Illumination

Vaccum UV — Short Wavelength

• Fluorescence Mode

Resolution Determined by Illumination

Synthetic Aperture Lithography

• Create pattern — controlled interference

Example: Two Dots Example: Straight Line

Destructive interference "safe zone"
 Example: Bessel Ring

(2) CODED APERTURE IMAGING

- Can't refract or reflect gamma rays
- Pinhole tradeoff resolution and SNR

with: Richard Lanza, Roberto Accorsi, Klaus Ziock, and Lorenzo Fabris.

Coded Aperture Imaging

- Can't refract or reflect gamma rays
- Pinhole tradeoff resolution and SNR
- Multiple pinholes
- Complex masks can "cast shadows"
Masks — Fresnel Camera

Coded Aperture Principle

Decoding Method Rationale

Coded Aperture Imaging

- Can't refract or reflect gamma rays
- Pinhole tradeoff resolution and SNR
- Complex masks can "cast shadows"
- Decoding by Correlation
- Special Masks with Flat Power Spectrum

Mask Design — Inverse Systems

 $h(x,y) \otimes h'(x,y) = \delta(x,y)$ H(u,v) H'(u,v) = 1

Maximizing SNR

$$\min \sum_{i=1}^{n} w_i^2 \qquad \text{subject to} \qquad \sum_{i=1}^{n} w_i = 1$$

yields
$$w_i = \frac{1}{n}$$

Masks – Legri URA

Masks — XRT Coarse

Mask Design — 1D

Definition: *q* is a quadratic residue (mod *p*) if $\exists n \text{ s.t. } n^2 \equiv q \pmod{p}$

Legendre symbol

 $\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is quadratic residue} \\ -1 & \text{otherwise} \end{cases}$

Correlation with zero shift (p - 1)/2Correlation with non-zero shift (p - 1)/4

Mask Design

Auto Correlation

$$a(i) = \frac{(p-1)}{4}(1 + \delta(i))$$

• Power Spectrum

$$A(j) = \frac{(p-1)}{4} (\delta(j) + 1)$$

Masks — Hexagonal

Coded Aperture Extensions

- Artifacts due to Finite Distance
- Mask / Countermask Combination

Coded Aperture Backprojection

Reconstruction Animation

Coded Aperture Extensions

- Artifacts due to Finite Distance
- Mask / Countermask Combination
- Multiple Detector Array Positions
- "Synthetic Aperture" radiography

Coded Aperture Applications

- Detection of Fissile Material
- Large Area Detector Myth
- Signal and Background Amplified

Spatially Varying Background

Large Area Alone Doesn't Help

Imaging and Large Area Do!

Coded Aperture Example

• Imaging -1/R instead of $1/R^2$

Coded Aperture Detector Array

Computational Imaging System

Coded Aperture Example

Three weak, distant radioactive sources Reconstruction Animation

Coded Aperture Applications

- Detection of Fissile Material
- Imaging -1/R instead of $1/R^2$
- Increasing Gamma Camera Resolution
- Replacing Rats with Mice

(3) DIAPHANOGRAPHY (Diffuse Optical Tomography)

- Highly Scattering Low Absorption
- Many Sources Many Detectors

with: Xiaochun Yang, Richard Lanza, Charles Sodini, and John Wyatt.

• Randomization of Direction

• Scalar Flux Density

• Approximation: Diffusion Equation

$$\Delta v(x, y) + \rho(x, y)c(x, y) = 0$$

v(x, y) flux density $\rho(x, y)$ scattering coefficient c(x, y) absorption coefficient

• Forward: given c(x, y) find v(x, y)

• Approximation: Diffusion Equation

• Leaky Resistive Sheet Analog (2D)

• "Invert" Diffusion Equation

• Regions of Influence

(4) EXACT CONE BEAM ALGORITHM

- Faster Scanning—Fewer Motion Artifacts
- Lower Exposure—Uniform Resolution

with: Xiaochun Yang

Exact Cone Beam Reconstruction

- Faster Scanning—Fewer Motion Artifacts
- Lower Exposure—Uniform Resolution
- Parallel Beam → Fan Beam
- Planar Fan → Cone Beam

Parallel Beam to Fan Beam

Coordinate Transform in 2D Radon Space

Cone Beam Geometry — 3D

Radon's Formula

- In 2D: ~ derivatives of line integrals
- In 3D: derivatives of plane integrals
- Can't get plane integrals from projections

$$\int \left(\int f(r,\theta) dr \right) d\theta$$

$$\int \int \frac{1}{r} f(x, y) \, dx \, dy$$

Radon's Formula in 3D

$$f(\mathbf{x}) = -\frac{1}{8\pi^2} \int_{\mathbf{S}^2} \frac{\partial^2 R f(l, \boldsymbol{\beta})}{\partial l^2} \bigg|_{l=\mathbf{x} \cdot \boldsymbol{\beta}} d\boldsymbol{\beta}$$

where

$$Rf(l,\boldsymbol{\beta}) = \int f(\boldsymbol{x}) \,\,\delta(\boldsymbol{x}\cdot\boldsymbol{\beta}-l)dV$$
Grangeat's Trick

$$\frac{\partial}{\partial z} \iint f(x, y, z) \, dx \, dy = \frac{\partial}{\partial \theta} \iint f(r, \phi, \theta) \, dr \, d\phi$$

Exact Cone Beam Reconstruction

- Data Sufficiency Condition
- Good "Orbit" for Radiation Source

Radon Space — 2D

Circular Orbit is Inadequate (3D)

Data Insufficiency

Good Source Orbit

Exact Cone Beam Reconstruction

- Data Sufficiency Condition
- Good "Orbit" for Radiation Source
- Practical Issue: Spiral CT Scanners
- Practical Issue: "Long Body" Problem

COMPUTATIONAL IMAGING

- (1) Synthetic Aperture Imaging
- (2) Coded Aperture Imaging
- (3) Diaphanography—Diffuse Tomography
- (4) Exact Cone Beam Reconstruction

COMPUTATIONAL IMAGING

