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Problem 1: Suppose a synthetic aperture microscope (SAM) hasN beams
which impinge with the same angle of incidence θ on the reference plane
and are equally spaced around a ring. Let the wavelength of the monochro-
matic coherent light be λ. Show that the highest spatial frequency term
in the interference pattern will be

ωhigh =
4π
λ

cosθ

if N is even.

What is the spacing between peaks in this component of the interfer-
ence pattern? Express this spacing in terms of the wavelength λ of the
monochromatic light. What is the highest frequency term when N is odd?

Show that (aside from the zero frequency or “D.C.” term) the lowest
spatial frequency in the interference pattern will be

ωlow = 4π
λ

cosθ sin
π
N

What is the ratio of the wavelength λlow corresponding to this frequency
and the wavelength λ of the monochromatic light? Given this result, com-
ment on the properties of an Computed image derived from data collected
by such a device.

Problem 2: The frequencyω(θ) of the interference pattern between two
beams varies with the angle θ between the beams as described in the previ-
ous problem. Here we consider the variation in sampling of the transform
domain in the limit when there are very many beams.

Express the density of sampling of the frequency domain at radial
frequency ω as a function of the angle θ. Note that density equals num-
ber of samples per unit area, and that the area allocated to a sample is
proportional to rdr/dθ.

Express the density of sampling as a function of radial frequency ω
instead of the angle θ.

Clearly the sampling density is high near the lowest and near the
highest frequencies. Why do we nevertheless consider sampling to be
poor in those areas when compared to the mid frequency range?



2

Problem 3: To get rid of the requirement for a reference image, consider
the following simple method for calibrating a SAM using a microbead:
Arbitrarily treat the zero-th beam as a reference beam that will be on
throughout the calibration. With just one beam, how does the surface
illumination vary with position?

Now add one other beam to create a simple interfenence pattern. Ad-
just the phase of the second beam until the brightness in the pixel con-
taining the image of the microbead is maximum. What is the phase rela-
tionship of the two beams at the microbead? Why might it be better to
adjust the phase so as to minimize the brightness instead?

Repeat for each of the remaining beams. Suppose the phases so re-
covered (for maximum brightness) are φl for l = 1, . . . N−1, with φ0 = 0.

What is the brightness of the interference pattern at (x,y), when we
command the phase of each beam to be φl + δφl Assume the microbead
is at (xb,yb) and that the wave-numbers of the beams are kl.

Now while we know from the image which pixel the microbead is
in, we do not know where in the pixel it lies. What is the effect of this
uncertainty in the compted image recovered from the response to a large
number of finely textured illumination patterns?

Problem 4: Suppose you wish to produce two spots of light at

(x,y) = (±L/2,0)
in a synthetic aperture device by simply adding beam complex amplitudes
computed for producing the two isolated spots separately. Suppose there
are N equally spaced beams and that the wavelength on the reference
plane is λ′ = λ/ cosθ.

First determine what the complex amplitude of the beams should be
as a function of the angle φ that the beam makes with the x-axis in order
to produce a bright spot at (L/2,0). Repeat for the spot at (−L/2,0).

Now combine the two results while shifting the phase of the spot at
(+L/2,0) by+α/2 and shifting the phase of the spot at (−L/2,0) by−α/2.

For what values of α do the beams appear to interfere destructively
at the origin?

(Please see next page for Problem 5)
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Problem 5:

(a) Flip a fair coin 19 times and record the results. Taking “0” to rep-
resent tails and “1” to represent heads, construct a binary vector of
length 19. Now produce a periodic binary pattern by laying copies of
the vector so constructed next to one another. Find the correlation
of this periodic pattern with the original vector for all shifts. (You
may find it useful to write the 19 bits on a strip of paper that can be
moved along another the periodic binary pattern).

Now instead use the quadratic residues for n = 19 to define the “1”s
in a binary array of length 19. Again, produce a periodic pattern from
this vector and find the correlation of this periodic pattern with the
original vector for all shifts. (Refer to the Math World web site for
definition and properties of quadratic residues).

Comment on the differences between the two results and the advan-
tages or disadvantages of one or the other in one-dimensional “coded
aperture” imaging.

(a) Consider now a one dimensional “random binary mask” of length N
where the probability that a particular cell has value “1” is p — and
correspondingly the probability that it has value “0” is (1 − p). The
probabilities of having a “1” at different positions are independent.

Use this binary vector of length N to create a periodic pattern as
above. We’ll now correlate the perdiodic pattern so created with the
original vector of length N . What is the expected value of the corre-
lation for zero shift?

What is the expected value of the correlation with shift by a number
of cells that is not an integer multiple of N?

What is the variance of the value of the correlation in this case? Let
us consider the ratio of the peak response to the standard deviation
of these “side lobes” as the signal-to-noise ratio (SNR). Show that the
SNR so defined is proportional to

√
N . How does the SNR so defined

vary with p?

http://mathworld.wolfram.com

