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FIG. 21B 
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2170 

2172 

2160 

SEARCH RESULTS FOR A RESULT OBJECT 
PREVRESUL T THAT IS A "PREVIOUS NEIGHBOR" OF r 

SEARCH RESULTS FOR A RESULT OBJECT 
NEXTRESUL T THAT IS A "NEXT NEIGHBOR" OF r 

NO 

YES 

INTERPOLATE FIRST ELEMENT OF 
2178 R. DOFPARAMETERS BASED ON RAND 

NEIGHBORS PREVRESUL T AND NEXTRESUL T 

IF BOTH NEIGHBORS WERE FOUND, INTERPOLATE 
2180 R.SCORE BASED ON r AND NEIGHBORS 

PREVRESUL T AND NEXTRESUL T 

2182 CONTINUE LOOP 

COARSE SCAN GENERALIZED-DOF CONTINUED 

FIG. 21C 
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FUNCTION: COARSESCANXY RETURNS LIST OF RESULT OBJECTS 

I INPUTS 

22 02---

2210 

2212 

2214 

2216 

NAME TYPE NOTES 

MAP 20 COORDINATE TRANSFORM POSE FOR NON-TRANSLATION 
DEGREES OF FREEDOM 

SET LIST OF RESULT OBJECTS RESULTS TO EMPTY LIST 

ALLOCATE RECTANGLE MER AND SET LIST OF 
COMPILED-PROBES CPLIST TO COMPILEPROBES(MAP, MER) 

FOR EACH GRADIENT DIRECTION IMAGE OFFSET a SELECTED BY 
THE CHOSEN SCAN PATIERN, AND SUCH THAT THE IMAGE 

CONTAINS ALL THE MAPPED PROBES AT THAT OFFSET, 
EVALUATE FIRST MATCH FUNCTION S1(a) 

2200 

FOR EACH VALUE OF 
s~(a) SCORE EVALUATED 

I IN STEP 2214 

IS SCORE ABOVE THE 
NOISE THRESHOLD AND A 

•PEAK" IN RELATION TO 
NEIGHBORING SCORES? 

YES 

· 2220 CONTINUE LOOP 

2240 

RETURN RESULTS 2222 

COARSE SCAN X -Y POSITION 

FIG. 22A 
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2240 

ALLOCATE NEW RESULT OBJECT RESULT 

SET RESULT.POSITION TO INTERPOLATED POSITION 
SET RESULT.SCORE TO INTERPOLATED SCORE 

SET RESULT.PROBEMERTO MER OFFSET BY INTERPOLATED POSITION 
SET RESULT.DOFPARAMETERS AND RESULT.DOFINDICES TO EMPTY LISTS 

2252 

SEARCH RESULTS FOR RESULT OBJECT r 
THAT IS A "DUPLICATE" OF RESULT 

2256 

ADD RESULT TO 
END OF RESULTS REPLACE r WITH RESULT DISCARD RESULT 

CONTINUE LOOP 2258 

COARSE SCAN X • Y POSITION CONTINUED 

FIG. 22B 
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2500 

DO TWICE 

2510 FOR EACH DOF IN DOFLIST .>-------. 

2520 DIVIDE DOF.STEPSIZE BY 2 

2530 FOR EACH RESULT IN RESULTS 

2540 FINESCANDOF (DOFLIST, I, RESULT) 

FINE SCAN STEP 1940 

FIG. 25 
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PROCEDURE: FINESCANDOF 

I 

26 

26 

26 

INPUTS 

NAME TYPE NOTES 

02- DOFLIST LIST OF GENERALIZED-DOF OBJECTS PARTIAL LIST STARTING WITH 
CURRENT GENERALIZED-DOF 

04- MAP 

06- RESULT 

2700 

2620 

2630 

2D COORDINATE TRANSFORM PARTIAL POSE FROM OUTER 
LOOP GENERALIZED-DOFS 

RESULT OBJECT RESULT TO REFINE 

SET DOF TO FIRST ELEMENT OF DOFLIST, 
AND SET INNERDOFS TO THE REST OF DOFLIST 

SET V TO ELEMENT OF RESULT. DOFPARAMETERS 
CORRESPONDING TO DOF 

2600 

2640 FINESCANDOF(INNERDOFS, DOF.MAPPER(v) •MAP, RESULT) 

NO 

YES 2900 

2660 RETURN 

FINE SCAN GENERALIZED-DOF 

FIG.26 
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~b~~ 2700 

ALLOCATE RECTANGLE MER AND SET LIST OF 
COMPILED-PROBES CPLIST TO COMPILEPROBES (MAP, MER) 

FOR EACH GRADIENT DIRECTION IMAGE OFFSET a SELECTED BY 
THE CHOSEN SCAN PATTERN, EVALUATE SECOND MATCH FUNCTION 

s2(a) 

SET RESULT.SCORE TO HIGHEST VALUE OF SECOND MATCH 
FUNCTION s2 

SET RESULT.POSITION TO INTERPOLATED POSITION OF HIGHEST 
VALUE OF SECOND MATCH FUNCTION s2 

RETURN 2750 

FINE SCAN x-y 

FIG.27 
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SET RESULT RN TO RESULT 
SET RESULT RP TO RESULT 
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2910 

FINESCANDOF (INNERDOFS, DOF.MAPPER(V + DOF.STEPSIZE)• MAP, RP) 
2920 FINESCANDOF (INNERDOFS, DOF.MAPPER(V- DOF.STEPSIZE) *MAP, RN) 

IS RESULT.SCORE 
< RP.SCORE OR 

IS RESULT.SCORE 
<RN.SCORE? 

~.:.------. 

MINUS 2990 
DIRECTION 

INTERPOLATE ELEMENT OF RESUL T.DOFPARAMETERS 
CORRESPONDING TO DOF 

RETURN 

FINE SCAN HILL CLIMBING 

FIG. 29 
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3020 

3030 

3000 PLUS 
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ADD DOF.STEPSIZE TO V 

SET RN TO RESULT 
SET RESULT TO RP 
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YES 

FINESCANDOF(INNERDOFS, DOF.MAPPER(V + DOF.STEPSIZE) *MAP, RP) 

NO 

3060 GO TO STEP 2950 

FINE SCAN HILL CLIMBING, PLUS DIRECTION 

FIG. 30 
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SET q TO 0 SET g TO %est 3110 

NO 
3125 

YES SET q TO 01 SET g TO 1.4 

log(n/(n-1 )) k= --"'-'---'--~ 
log((n+1)/n) 

a=(On-°n-1)-k2(°'1-°n+1l 

~=Z[(On-0n-1)+k(On-On+1)l 3145 
SET q TO On + a2 

2k(k+1)~ 
a 

SET g TO n((n+1 )/n)~ 

NO 
SET Qbest TO q 
SET 9best TO g 3155 

3160 CONTINUE LOOP 
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METHOD FOR FAST, ROBUST, 
MULTI-DIMENSIONAL PATTERN 

RECOGNITION 

BACKGROUND OF THE INVENTION 

Digital images are formed by many devices and used for 
many practical purposes. Devices include TV cameras oper­
ating on visible or infrared light, line-scan sensors, flying 
spot scanners, electron microscopes, X-ray devices includ­
ing CT scanners, magnetic resonance imagers, and other 
devices known to those skilled in the art. Practical applica­
tions are found in industrial automation, medical diagnosis, 
satellite imaging for a variety of military, civilian, and 
scientific purposes, photographic processing, surveillance 
and traffic monitoring, document processing, and many 
others. 

To serve these applications the images formed by the 
various devices are analyzed by digital devices to extract 
appropriate information. One form of analysis that is of 
considerable practical importance is determining the posi­
tion, orientation, and size of patterns in an image that 
correspond to objects in the field of view of the imaging 
device. Pattern location methods are of particular impor­
tance in industrial automation, where they are used to guide 
robots and other automation equipment in semiconductor 
manufacturing, electronics assembly, pharmaceuticals, food 
processing, consumer goods manufacturing, and many oth­
ers. 

Another form of digital image analysis of practical impor­
tance is identifying differences between an image of an 
object and a stored pattern that represents the "ideal" appear­
ance of the object. Methods for identifying these differences 
are generally referred to as pattern inspection methods, and 
are used in industrial automation for assembly, packaging, 
quality control, and many other purposes. 

One early, widely-used method for pattern location and 
inspection is known as blob analysis. In this method, the 
pixels of a digital image are classified as "object" or "back­
ground" by some means, typically by comparing pixel 
gray-levels to a threshold. Pixels classified as object are 
grouped into blobs using the rule that two object pixels are 
part of the same blob if they are neighbors; this is known as 
connectivity analysis. For each such blob one determines 
properties such as area, perimeter, center of mass, principal 
moments of inertia, and principal axes of inertia. The 
position, orientation, and size of a blob is taken to be its 
center of mass, angle of first principal axis of inertia, and 
area, respectively. These and the other blob properties can be 
compared against a known ideal for proposes of inspection. 

Blob analysis is relatively inexpensive to compute, allow­
ing for fast operation on inexpensive hardware. It is reason­
ably accurate under ideal conditions, and well-suited to 
objects whose orientation and size are subject to change. 
One limitation is that accuracy can be severely degraded if 
some of the object is missing or occluded, or if unexpected 
extra features are present. 

Another limitation is that the values available for inspec­
tion purposes represent coarse features of the object, and 
cannot be used to detect fine variations. The most severe 
limitation, however, is that except under limited and well­
controlled conditions there is in general no reliable method 
for classifying pixels as object or background. These limi­
tations forced developers to seek other methods for pattern 
location and inspection. 

2 
Another method that achieved early widespread use is 

binary template matching. In this method a training image is 
used that contains an example of the pattern to be located. 
The subset of the training image containing the example is 

5 thresholded to produce a binary pattern and then stored in a 
memory. At run-time, images are presented that contain the 
object to be found. The stored pattern is compared with 
like-sized subsets of the run-time image at all or selected 
positions, and the position that best matches the stored 

10 pattern is considered the position of the object. Degree of 
match at a given position of the pattern is simply the fraction 
of pattern pixels that match their corresponding image pixel. 

Binary template matching does not depend on classifying 
image pixels as object or background, and so it can be 

15 applied to a much wider variety of problems than blob 
analysis. It also is much better able to tolerate missing or 
extra pattern features without severe loss of accuracy, and it 
is able to detect finer differences between the pattern and the 
object. One limitation, however, is that a binarization thresh-

20 old is needed, which can be difficult to choose reliably in 
practice, particularly under conditions of poor signal-to­
noise ratio or when illumination intensity or object contrast 
is subject to variation. Accuracy is typically limited to about 
one whole pixel due to the substantial loss of information 

25 associated with thresholding. Even more serious, however, 
is that binary template matching cannot measure object 
orientation and size. Furthermore, accuracy degrades rapidly 
with small variations in orientation and/or size, and if larger 
variations are expected the method cannot be used at all. 

30 A significant improvement over binary template matching 
came with the advent of relatively inexpensive methods for 
the use of gray-level normalized correlation for pattern 
location and inspection. These methods are similar to binary 
template matching, except that no threshold is used so that 

35 the full range of image gray-levels are considered, and the 
degree of match becomes the correlation coefficient between 
the stored pattern and the image subset at a given position. 

Since no binarization threshold is needed, and given the 
fundamental noise immunity of correlation, performance is 

40 not significantly compromised under conditions of poor 
signal-to-noise ratio or when illumination intensity or object 
contrast is subject to variation. Furthermore, since there is 
no loss of information due to thresholding, position accuracy 
down to about 1/4 pixel is practical using well-known inter-

45 polation methods. The situation regarding orientation and 
size, however, is not much improved. 

Another limitation of correlation methods is that in many 
applications object shading can vary locally and non-linearly 
across an object, resulting in poor correlation with the stored 

50 pattern and therefore failure to locate it. For example, in 
semiconductor fabrication the process step known as chemi­
cal mechanical planarization (CMP) results in radical, non­
linear changes in pattern shading, which makes alignment 
using correlation impossible. As another example, in almost 

55 any application involving 3-dimensional objects, such as 
robot pick-and-place applications, shading will vary as a 
result of variations in angles of illumination incidence and 
reflection, and from shadows and mutual illumination. The 
effects are more severe for objects that exhibit significant 

60 specular reflection, particularly metals and plastics. 
More recently, improvements to gray-level correlation 

have been developed that allow it to be used in applications 
where significant variation in orientation and/or size is 
expected. In these methods, the stored pattern is rotated 

65 and/or scaled by digital image re-sampling methods before 
being matched against the image. By matching over a range 
of angles, sizes, and x-y positions, one can locate an object 
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in the corresponding multidimensional space. Note that such 
methods would not work well with binary template match­
ing, due to the much more severe pixel quantization errors 
associated with binary images. 

4 
brightness (radiant energy, reflected or otherwise), color, 
temperature, height above a reference plane, etc., and mea­
sured by any image-forming device, or whose values cor­
respond to simulated characteristics of an object, and gen-

One problem with these methods is the severe computa­
tional cost, both of digital re-sampling and of searching a 
space with more than 2 dimensions. To manage this cost, the 
search methods break up the problem into two or more 
phases. The earliest phase uses a coarse, subsampled version 
of the pattern to cover the entire search space quickly and 
identify possible object locations. Subsequent phases use 
finer versions of the pattern to refine the positions deter­
mined at earlier phases, and eliminate positions that the finer 
resolution reveals are not well correlated with the pattern. 
Note that variations of these coarse-fine methods have also 
been used with binary template matching and the original 
two-dimensional correlation, but are even more important 
with the higher-dimensional search space. 

s erated by any data processing device. 
Brightness-The physical or simulated quantity repre­

sented by the values of an image, regardless of source. 
Granularity-A selectable size (in units of distance) 

below which spatial variations in image brightness are 
10 increasingly attenuated, and below which therefore image 

features increasingly cannot be resolved. Granularity can be 
thought of as being related to resolution. 

Boundary-An imaginary contour, open-ended or closed, 
straight or curved, smooth or sharp, along which a discon-

15 tinuity of image brightness occurs at a specified granularity, 
the direction of said discontinuity being normal to the 
boundary at each point. 

Even with these techniques, however, the computational 
cost is still high, and the problems associated with non-linear 
variation in shading remain. 

Gradient-A vector at a given point in an image giving 
the direction and magnitude of greatest change in brightness 

20 at a specified granularity at said point. 

Another pattern location method in common use is known 
as the Generalized Hough Transform (GHT). This method 
traces its origins to U.S. Pat. No. 3,069,654 [Hough, P.V.C., 
1962], which described a method for locating parameterized 25 

curves such as lines or conic sections. Subsequently the 
method was generalized to be able to locate essentially 
arbitrary patterns. As with the above template matching and 
correlation methods, the method is based on a trained 
pattern. Instead of using gray levels directly, however, the 30 

GHT method identifies points along object boundaries using 
well-known methods of edge detection. A large array of 
accumulators, called Hough space, is constructed, with one 
such accumulator for each position in the multidimensional 
space to be searched. Each edge point in the image corre- 35 

sponds to a surface of possible pattern positions in Hough 
space. For each such edge point, the accumulators along the 
corresponding surface are incremented. After all image edge 
points have been processed, the accumulator with the high-
est count is considered to be the multidimensional location 40 

of the pattern. 
The general performance characteristics of GHT are very 

similar to correlation. Computational cost rises very rapidly 
with number of dimensions, and although coarse-fine meth­
ods have been developed to improve performance, practical 45 

applications beyond 2 dimensions are almost nonexistent. 
The edge detection step of GHT generally reduces prob­

lems due to non-linear variations in object contrast, but 
introduces new problems. Use of edge detectors generally 
increases susceptibility to noise and defocus. For many so 
objects the edges are not sharply defined enough for the edge 
detection step to yield reliable results. Furthermore, edge 
detection fundamentally requires a binarization step, where 
pixels are classified as "edge" or "not edge", usually by a 
combination of thresholding and peak detection. Binariza- ss 
tion, no matter what method is used, is always subject to 
uncertainty and misclassification, and will contribute failure 
modes to any method that requires it. 

Terminology 
The following terminology is used throughout the speci- 60 

fication: 

Pattern-A specific geometric arrangement of contours 
lying in a bounded subset of the plane of the contours, said 
contours representing the boundaries of an idealized image 
of an object to be located and/or inspected. 

Model-A set of data encoding characteristics of a pattern 
to be found for use by a pattern finding method. 

Training-The act of creating a model from an image of 
an example object or from a geometric description of an 
object or a pattern. 

Pose-A mapping from pattern to image coordinates and 
representing a specific transformation and superposition of a 
pattern onto an image. 

SUMMARY OF THE INVENTION 

In one aspect the invention is a general-purpose method 
for determining the absence or presence of one or more 
instances of a predetermined pattern in an image, and 
determining the location of each found instance. The process 
of locating patterns occurs within a multidimensional space 
that can include, but is not limited to, x-y position (also 
called translation), orientation, and size. In another aspect 
the invention is a method for identifying differences between 
a predetermined pattern and a matching image subset. The 
process of identifying differences is called inspection. 

To avoid ambiguity we will call the location of a pattern 
in a multidimensional space its pose. More precisely, a pose 
is a coordinate transform that maps points in a pattern to 
corresponding points in an image. In a preferred embodi­
ment, a pose is a general 6 degree of freedom linear 
coordinate transform. The 6 degrees of freedom can be 
represented by the 4 elements of a 2x2 matrix, plus the 2 
elements of a vector corresponding to the 2 translation 
degrees of freedom. Alternatively and equivalently, the 4 
non-translation degrees of freedom can be represented in 
other ways, such as orientation, size, aspect ratio, and shear, 
or x-size, y-size, x-axis-angle, and y-axis-angle. 

The results produced by the invention can be used 
directly, or can be further refined by multidimensional 
localization methods such as described in U.S. Pat. No. 
6,658,145 entitled "Fast High-Accuracy Multi-Dimensional 
Pattern Inspection". Object-Any physical or simulated object, or portion 

thereof, having characteristics that can be measured by an 
image forming device or simulated by a data processing 
device. 

Image-A 2-dimensional function whose values corre­
spond to physical characteristics of an object, such as 

The invention uses a model that represents the pattern to 
be found. The model can be created from a training image 

65 or synthesized from a geometric description. The invention 
is a template matching method-the model is compared to an 
image at each of an appropriate set of poses, a match score 
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is computed at each pose, and those poses that correspond to 
a local maximum in match score, and whose match scores 
are above a suitable accept threshold, are considered 
instances of the pattern in the image. 

According to the invention, a model includes a set of data 
elements called probes. Each probe represents a relative 
position at which certain measurements and tests are to be 
made in an image at a given pose, each such test contributing 
evidence that the pattern exists at said pose. In one embodi­
ment of the invention, each probe represents a measurement 
and test of gradient direction. In another embodiment, each 
probe represents a measurement and test of both gradient 
direction and magnitude. In a preferred embodiment, the 
probes represent different tests at different steps of the 
method. The gradient magnitude or direction to be tested by 
a probe is referred to as the gradient magnitude or direction 
under the probe. 

6 
For an image sensor producing a digital image, granular­

ity is limited by pixel size and sharpness of focus. Granu­
larity may be increased above this limit (i.e. made coarser) 
by suitable image processing operations, and thus effectively 

5 controlled over a wide range. In a pattern locating system, 
choice of granularity affects speed, accuracy, and reliability. 
When suitable methods are used, pattern locating speed can 
be made to increase rapidly as granularity increases, which 
can be crucial for high speed applications where the pat-

10 tern's pose can vary in more than 2 degrees of freedom. 
Pattern location accuracy, however, decreases as granularity 
increases. Pattern locating reliability, the ability to correctly 
identify patterns when they exist and to avoid misidentifying 
image subsets that are not instances of the pattern, may fall 

15 off if the granularity is too coarse to resolve key pattern 
features, and may fall off if the granularity is so fine that 
details are resolved that are inconsistent from instance to 
instance, such as surface texture or other random micro­
structure. 

In a preferred embodiment, a probe is defined by its 
position, direction, and weight. Each of these quantities are 
conceptually real numbers, although of course in any actual 20 

embodiment they would be represented as floating or fixed 
point approximations. Probe position is a point in a pattern 
coordinate system at which, after transforming to a image 
coordinate system using a given pose, a measurement and 
test is to be made. Probe direction is the expected gradient 
direction in pattern coordinates at the indicated position, 
which also must be transformed to image coordinates prior 

In a preferred embodiment of the invention, granularity is 
selectable over a wide range down to the limit imposed by 
the image sensor. In another preferred embodiment, a suit­
able granularity is automatically chosen during model train­
ing. In another preferred embodiment, at least two granu-

25 larities are used, so that the speed advantages of the coarsest 
granularity and the accuracy advantages of the finest granu­
larity can be obtained. In the preferred embodiment wherein 
at least two granularities are used, the model includes a to use. Probe weight gives the relative importance of the 

probe in determining the presence and location of the 
pattern. 

In a preferred embodiment, probe weights can be positive 
or negative. A negative weight indicates that a test showing 
similar gradient direction and sufficient gradient magnitude 
should count as evidence against the existence of the pattern 
at the specified pose. 

Most points in an image contain little useful information 
about pattern position. Uniform regions, for example, con­
tain no information about position, since brightness is 
locally independent of position. Generally the second or 
higher derivative of brightness must be non-zero in some 
direction for there to be useful information, and it has long 
been recognized in the art that the best information occurs 
along boundaries. Thus examining an image at every point 
for the purpose of pattern location is unnecessary as well as 
wasteful of memory and processing time. 

In a preferred embodiment, a model includes a small set 
of probes placed at selected points along the boundaries 
represented by the corresponding pattern. The probes are 
uniformly spaced along segments of the boundaries charac­
terized by a small curvature. The spacing between the probes 
is chosen so that a predetermined number of probes is used, 
except that fewer probes can be used to prevent the spacing 
from being set below some predetermined minimum value, 
and more probes can be used to prevent the spacing from 
being set above some predetermined maximum value. In a 
preferred embodiment, the said predetermined number of 
probes is 64. 

The boundaries that appear in a given image are not 
absolute but depend on the granularity at which the image is 
interpreted. Consider for example a newspaper photograph. 
Over some range of very fine granularities, one perceives 
nothing but a pattern of dots of various sizes and separations. 
Over some range of coarser granularity, the dots cannot be 
resolved and one may perceive human facial features such as 
eyes, noses, and mouths. At even coarser granularity, one 
may perceive only human heads. 

30 

separate set of probes for each granularity. 
Granularity can be increased above the image sensor limit 

by a low-pass filtering operation, optionally followed by a 
sub-sampling operation. Methods for low-pass filtering and 
subsampling of digital images are well known in the art. 
Until recently, however, inexpensive, high speed methods 

35 that could be tuned over a wide range with no significant loss 
in performance were not available. In a preferred embodi­
ment, the invention makes use of a constant-time second­
order approximately parabolic filter, as described in U.S. 
Pat. No. 6,4570,032, entitled "Efficient, Flexible Digital 

40 Filtering", followed by a non-integer sub-sampling step 
wherein brightness values spaced g pixels apart, horizontally 
and vertically, are linearly interpolated between the filtered 
pixel values for some value of g chosen at training time. 

Methods for estimating image gradient magnitude and 
45 direction are well known in the art, but most methods in 

common use are either too slow or of insufficient accuracy 
to be suitable for the practice of the invention. For example, 
most commercially available gradient estimation methods 
can only resolve direction to within 45°, and only provide a 

50 crude estimate of magnitude. One notable exception is 
described in U.S. Pat. No. 5,657,403, herein incorporated by 
reference, although at the time of that patent specialized 
hardware was required for high speed operation. Recent 
advances in computer architecture and performance have 

55 made high speed, accurate gradient estimation practical on 
inexpensive hardware. In a preferred embodiment, the 
invention uses the well-known Sobel kernels to estimate the 
horizontal and vertical components of gradient, and the 
well-known CORDIC algorithm, as described, for example, 

60 in U.S. Pat. No. 6,408,109, entitled "Apparatus and Method 
for Detecting and Sub-Pixel Location of Edges in a Digital 
Image", herein incorporated by reference, for example, to 
compute gradient magnitude and direction. The Sobel ker­
nels are applied either to the input image or to a filtered, 

65 sub-sampled image, as described above, so that the result is 
a gradient magnitude image and a gradient direction image 
that together provide image gradient information at uni-
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formly spaced points, which mayor may not correspond to 
the pixels of the input image, and at a selectable granularity. 
In a preferred embodiment, the gradient magnitude and 
direction images are stored in a random access memory of 
a computer or other data processing device, in such a manner 5 

that the address difference between pixels in the horizontal 
direction is a first constant, and the address difference 
between pixels in the vertical direction is a second constant. 

The method of the invention, which tests gradient direc­
tion at each of a small set (e.g. 64) of positions, offers many 10 

advantages over prior art methods of template matching. 
Since neither probe position nor direction are restricted to a 
discrete pixel grid, and since probes represent purely geo­
metric information and not image brightness, they can be 
translated, rotated, and scaled much faster than digital image 15 

re-sampling methods and with less pixel grid quantization 
error. Furthermore, since probes are spaced along contours 
where a maximum amount of position information occurs, a 
small set of probes can be used so that processing time can 

8 
below a first predetermined value are given a rating of 1.0, 
above a second predetermined value are given a rating of 0, 
and errors that fall between the said first and second values 
are given a rating proportionally between 0 and 1.0. The 
weighted sum of probe ratings, divided by the total weight 
of all probes, is the match score. With said first match 
function all probe weights are positive, since a negative 
weight probe cannot be considered to provide evidence 
against a pose unless the gradient magnitude is tested and 
found to be sufficiently strong. The first match function 
results in the highest possible speed, for two primary rea-
sons. First, gradient magnitude is not used, which reduces 
both the calculations needed and the number of accesses to 
memory wherein gradient magnitude information would be 
stored. Second, due to the general consistency of gradient 
direction surrounding a boundary, the first match function 
tends to produce broad peaks in match score, which allows 
a relatively sparse set of poses to be evaluated. 

In a first variation on said first match function probe 
be minimized. 

Gradient direction is a much more reliable basis for 
pattern location than image brightness. Brightness may vary 

20 weights are not used (i.e. probe weights are effectively all 
1.0), which further increases the speed of operation. In a 
second variation on said first match function, the expected 
value of the weighted sum of the probe ratings on random 
gradient directions is subtracted from the actual weighted 

as a result of object surface reflectance, intensity of illumi­
nation, angles of illumination incidence and reflection, 
mutual illumination and shadows, sensor gain, and other 
factors. Gradient direction at boundaries is generally unaf­
fected by these factors as long as the overall shape of the 
object is reasonably consistent. Furthermore, each indi­
vidual test of gradient direction provides direct evidence of 
the presence or absence of a pattern at a given pose, and this 30 

evidence has absolute meaning that is independent of the 
conditions under which a given image was obtained. For 
example, one generally can conclude that a direction error of 

25 sum, with the total weight adjusted accordingly, so that a 
perfect match still gets a score of 1.0 but the expected value 
of the score on random noise is 0. 

3 degrees is a good match, and of 30 degrees is a poor match, 
without knowing anything about the pattern to be located or 35 

any of the above listed factors affecting the individual 
brightness values in any given image. By contrast, a test of 
image brightness is meaningless in itself-whether 3 bright­
ness units of difference or 30 units of difference is good or 
bad can only be assessed in relation to the statistics of a large 40 

set of brightness values. 
The method of the invention also offers many advantages 

over prior art methods based on the Hough transform. The 
high quality of the information provided by tests of gradient 
direction allows fewer points to be processed, resulting in 45 

higher speed. Sets of probes can be rotated and scaled more 
quickly and accurately than the edge point sets used by GHT 
methods. Hough methods including the GHT tend to be 
adversely affected by small variations in pattern shape, or 
edge position quantization error, where a shift in edge 50 

position by even one pixel will cause an undesirable spread­
ing of the peak in Hough space. By contrast, gradient 
direction is generally consistent within a couple of pixels of 
a boundary, so that the effects of small variations in shape or 
quantization errors are generally insignificant. Loss of sharp 55 

focus can degrade the edge detection step required for 
Hough methods, whereas defocus has no effect on gradient 
direction. Hough transform methods, and all methods based 
on edge detection, fundamentally require a binarization step, 
where pixels are classified as "edge" or "not edge", and all 60 

such methods are subject to uncertainty and misclassifica­
tion. The use of gradient direction by the invention requires 
no binarization or other classification to be applied. 

A variety of match functions based on gradient direction, 
and optionally gradient magnitude and probe weight, can be 65 

used within the scope of the invention. In a first match 
function, probe positions having gradient direction errors 

In a second match function, a direction rating factor is 
computed for each probe that is the same as the probe rating 
used by the first match function, and probes receive a rating 
that is the product of the direction rating factor and the 
gradient magnitude under the probe. The match score is the 
weighted sum of the probe ratings. With the second match 
function, probe weights can be positive or negative. The 
second match function produces sharper peaks in match 
score than the first, since gradient magnitude is at a maxi-
mum at a boundary and falls off sharply on either side. As 
a result pattern position can be determined more accurately 
with the second match function, but at a cost of lower speed 
since more calculations and memory accesses are needed 
and since a denser set of poses must be evaluated. Unlike the 
first match function which produces a score between 0 and 
1.0, the second match function's score is essentially open­
ended and dependent on boundary contrast. Thus while the 
score can be used to compare a pose to a neighboring pose 
to determine a peak in match score, it cannot in general be 
used to compare a pose to a distant pose or to provide a value 
that can be used reliably to judge whether or not an instance 
of the pattern is present in the image at a given pose. 

In a third match function, a direction rating factor is 
computed for each probe identical to that of the second 
match function, and a magnitude rating factor is computed 
that is 1.0 for gradient magnitudes above a certain first value, 
0 for magnitudes below a certain second value, and propor­
tionally between 0 and 1.0 for values between said first and 
second values. Each probe receives a rating that is the 
product of the direction rating factor and the magnitude 
rating factor, and the match score is the weighted sum of the 
probe ratings divided by the total weight of all the probes. 
Probe weights can be positive or negative. In a preferred 
embodiment, the said first value is computed based on image 
characteristics at any pose for which the third match func­
tion is to be evaluated, so the third match function takes the 
longest to compute. Furthermore, peaks in match score are 
generally less sharp than for the second match function, so 
position is less accurate. The primary advantage of the third 
match function is that it produces a score that falls between 
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0 and 1.0 that can be used for comparison and to judge 
whether or not an instance of the pattern is present in the 
image at a given pose, and that said score takes into account 
gradient magnitude and allows negative probe weights. 

In the aspect of the invention where inspection is to be 5 

performed, the score produced by the third match function 
is used to provide an overall measure of the quality of a 
specific instance of the pattern found in an image, and the 
individual probe ratings computed during evaluation of the 
third match function are used to provide more detailed 10 

information about differences between the found instance 
and the pattern. 

In a preferred embodiment, the first match function, and 
using both the first and second variation, is used during a 
coarse scan step during which the entire multidimensional 15 

search space is evaluated with a relatively sparse set of 
poses. Poses that are coarse peaks, specifically those at 
which the first match score is a local maximum and above 

10 
translation that is a local maximum in first match score, and 
where said score is above a suitable accept threshold, a set 
of data called a result is allocated and added to a list of 
results. A translation is interpolated between the local maxi­
mum and its neighbors and stored in the newly-allocated 
result, along with an interpolated score. According to this 
preferred embodiment of the invention, a hexagonal tessel­
lation is used along with methods for determining a local 
maximum and for interpolation on such a tessellation. In a 
less preferred variation on this embodiment, a conventional 
square tessellation is used, including well-known methods 
for determining the presence of a local maximum and for 
interpolating between said maximum and its neighbors. 

According to this preferred embodiment of the invention, 
each non-translation degree of freedom is defined and 
described by a set of data and functions called a generalized­
DOF. Each generalized-DOF includes a single real-valued 
(or floating point approximation) parameter that specifies its 
value, for example an orientation degree of freedom would a predetermined accept threshold, are refined during a fine 

scan step that evaluates a small, dense set of poses surround­
ing each coarse peak. The fine scan step uses the second 
match function to achieve a precise position and to consider 
the evidence of negative weight probes. An interpolation 
between the pose resulting in the highest value of the second 
match function and its neighbors is considered the location 

20 have an angle parameter and a size degree of freedom would 
have a scale factor parameter. Each generalized-DOF 
includes a function that maps the parameter value to a 
corresponding 2-dimensional coordinate transform. For 
example, for an orientation generalized-DOF this function 

25 might include the matrix 
of one potential instance of the pattern in the image. A 
scoring step evaluates the third match function at this final, 
interpolated pose to judge whether or not an instance of the 
pattern is actually present in the image at said pose by 
comparing the value of the third match function to an accept 30 

threshold. 
In any specific embodiment of the invention the search 

space is defined by certain degrees of freedom that include 
the two translation degrees of freedom and some number, 
possibly zero, of non-translation degrees of freedom such as 35 

orientation and size. Many methods can be devised within 
the scope of the invention to generate the set of poses to be 
evaluated for purposes of pattern location. In a preferred 
embodiment, any specific pose is the result of specifying 
values for each degree of freedom. The set of poses to be 40 

evaluated during the coarse scan step is the result of gen­
erating all combinations of selected values for each degree 
of freedom. For this preferred embodiment, two distinct 
methods are used in combination to generate the set of 
poses, one for translation and one for non-translation 45 

degrees of freedom. 
According to this preferred embodiment of the invention, 

for each combination of values of the non-translation 

( 
cos(x) -sin(x)) 

sin(x) cos(x) 

(1) 

where "x" is the parameter. Each generalized-DOF includes 
a low and high limit value that specifies the range of 
parameter values within which the pattern should be located 
for the degree of freedom, and which are set based on the 
requirements of the application to which the invention is 
being used. Each generalized-DOF includes a value that if 
non-zero specifies the period of cyclic degrees of freedom 
such as orientation (e.g., 360 if the parameter is in degrees). 
Each generalized-DOF includes a maximum step size value 
that specifies the maximum allowable separation between 
parameter values used to generate poses for the degree of 
freedom for the coarse scan step. In the preferred embodi­
ment, the maximum step size for each generalized-DOF is 
determined from an analysis of the magnitude of motion of 
the probes in the expected gradient direction as the gener-
alized-DOF parameter is varied. In a less preferred embodi­
ment, the maximum step size is a fixed, predetermined 
value. 

According to this preferred embodiment of the invention, 
for a given generalized-DOF if the difference between the 
high and low limit values, which is referred to as the 
parameter range, is not greater than the maximum step size, 
then the generalized-DOF parameter is not varied during the 

degrees of freedom the probe positions and directions are 
transformed according to the said combination of values 50 

from pattern coordinates to an image coordinate system 
associated with the gradient magnitude and direction 
images. The resulting positions, which are relative positions 
since the translation degrees of freedom have not yet been 
included, are rounded to relative integer pixel coordinates 
and, using the horizontal and vertical address difference 
constants, converted to a single integer offset value that 
gives the relative position of the probe in either the gradient 
magnitude or direction image at poses corresponding to the 
said combination of non-translation degrees of freedom. The 
result is a new set of data elements called compiled probes 
that include relative image offset, transformed expected 
gradient direction, and weight. 

55 coarse step, but is instead set to the halfway point between 
the limits. If the parameter range is greater than the maxi­
mum step size, then an actual step size is computed such that 
the actual step size is not greater than the maximum and the 
range is an integer multiple of the actual step size. For the 

According to this preferred embodiment of the invention, 
during the coarse step the compiled probes are used to 
evaluate the first match function at a set of translations 
corresponding to some regular tessellation. For any such 

60 given generalized-DOF, the set of parameter values gener­
ated for the coarse scan step range from one-half of the 
actual step size below the low limit to one-half of the actual 
step size above the high limit, in increments of the actual 
step size. It can be seen that a minimum of three distinct 

65 parameter values are generated in this case. 
The invention uses a set of nested loops during the coarse 

scan step to generate all combinations of parameter values of 
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the generalized-DOFs in use, where each such loop corre­
sponds to one generalized-DOE Each loop steps the param­
eter value of the corresponding generalized-DOF over the 
range and using the actual step size as described above, 
generating a coordinate transform corresponding to each 
parameter value. In the innermost loop, the coordinate 
transforms corresponding to the current parameter values of 
all of the generalized-DOFs are composed to produce a 
single overall transform specifying all of the non-translation 
degrees of freedom as needed for the translation degrees of 
freedom as described above. Data specifying the values of 
the generalized-DOF parameters are added to the results lists 
produced during scanning of the translation degrees of 
freedom. At the end of each of the nested loops, the results 
lists are scanned to identify sets of results that correspond to 
the same instance of the pattern in the image at a consecutive 
sequence of parameter values of the generalized-DOF cor­
responding to the given nested loop. For each such set found, 
all but the peak result (the one with the highest score) are 
deleted, and the parameter value and score are interpolated 
between the peak result and its neighbors. All of the remain­
ing (i.e. peak) results are concatenated to produce a single 
master results list representing the results of the coarse scan 
step. 

During the fine scan step the pose of each result produced 
by the coarse scan step is refined one or more times. For each 
such refinement, all of the translation and non-translation 
degrees of freedom are analyzed and updated, using a 
revised actual step size for the generalized-DOFs that is 
one-half that of the previous refinement step. For the first 
refinement step, the revised actual step size for the gener­
alized-DOFs is one-half that of the coarse scan step. As for 
the coarse scan step, two distinct methods are used in 
combination to generate a set of poses, one for translation 
and one for non-translation degrees of freedom. 

For the translation degrees of freedom, compiled probes 
are generated as before using the composed coordinate 
transform that specifies the value all of the non-translation 
degrees of freedom. The second match function is evaluated 

12 
Sometimes two or more results produced by the coarse 

scan step are duplicates that correspond to the same instance 
of the pattern in the image, differing only slightly in pose ill 
a preferred embodiment of the invention, when results are 

5 found that overlap by more than some predetermined 
amount in each degree of freedom, the result with the 
highest score is kept and the other duplicates are deleted. 

The steps associated with the generalized-DOFs for the 
coarse and fine scan steps can be realized by means of a 

10 computer program. Following conventional practice the 
nested loops described above can be coded directly based on 
the attributes of a predetermined set of generalized-DOFs. 
Such a conventional method of coding, however, results in 
duplication for each generalized-DOF of substantially simi-

15 lar code for both the coarse and fine scan steps, as well as 
other steps such as the determining of the maximum and 
actual step sizes, since the steps required for each general­
ized-DOF are basically the same with only minor differences 
in how the parameter value is used to produce a coordinate 

20 transform and whether or not the generalized-DOF is cyclic. 
Duplication with minor modifications of a significant 
amount of complex code for each generalized-DOF results 
in a computer program where debugging, modification, and 
maintenance are difficult and error-prone. Adding or remov-

25 ing specific generalized-DOFs, or changing the nesting 
order, would be particularly difficult and error-prone and 
could only be done at compile time. 

One aspect of the invention is a solution to the problem of 
coding a method for scanning non-translation degrees of 

30 freedom for the purpose of pattern locating. The coding 
method requires no duplication of code, and allows non­
translation degrees of freedom to be added and removed, and 
to have the nesting order changed, at run time. The invention 
is based on the so-called object oriented programming 

35 methodology that has recently become generally available in 
the form of programming languages such as C++ and Java, 
although the invention could be practiced using many con­
ventional languages such as C and assembly language by 
simulating the appropriate object oriented features. 

at every pixel offset within a small, approximately circular 40 

region centered on the translation stored in the result being 
refined. A new translation is stored that is interpolated 
between the maximum value of the second match function 
and its neighbors. 

In a preferred embodiment, each generalized-DOF is 
represented by a C++ class that is derived from an abstract 
base class that specifies a fixed interface to any generalized­
DOF and implements all functionality that is common to all 
generalized-DOFs. Any functionality that is specific to a 

45 generalized-DOF, including the function that maps the 
parameter value to a coordinate transform, is specified as a 
virtual function in the base class and overridden in each 
derived class for the specific generalized-DOE Data that is 
specific to a generalized-DOF, such as the parameter limits, 

The invention uses a set of nested loops during the fine 
scan step to generate certain combinations of parameter 
values of the generalized-DOFs in use, where each such loop 
corresponds to one generalized-DOE For each such loop 
three parameter values are chosen to start-the current value 
stored in the result, a value lower by the current revised 
actual step size, and a value higher by the current revised 
actual step size. If the lower parameter value results in a 
second match score that is higher than the match scores 
resulting from the other two parameter values, further lower 
parameter values are generated in steps of the current 55 

revised actual step size, until either a parameter value is 
found that does not result in a higher second match score 
than the other parameter values, or the lower limit for this 
generalized-DOF is reached. If the lower limit is reached, 
the final parameter value is stored in the result for this 60 

generalized-DOE If instead a peak second match value was 
found, the parameter value is interpolated between said peak 
and its neighbors and stored in the result. Similar steps are 
followed if at the start of the nested loop the higher param­
eter value results in a second match score that is higher than 65 

the match scores resulting from the other two parameter 
values. 

50 maximum and actual step sizes, and cyclic period value, can 
be held in data members of the base class. Data specifying 
fixed attributes of the generalized-DOF, such as the cyclic 
period value, can be initialized by the constructor of the 
derived class. 

According to this preferred embodiment, a list of gener­
alized-DOFs (instances of the derived classes) is used to 
specify the non-translation degrees of freedom to be scanned 
and the nesting order. The list can be constructed from 
available generalized-DOF classes at runtime. The nested 
loops of the coarse scan step are implemented by a single 
non-virtual member function of the base class, which is 
given a list of generalized-DOFs as one argument. The 
coarse scan function processes the generalized-DOF at the 
head of the list by generating the appropriate sequence of 
parameter values as described above, generating the corre­
sponding coordinate transform, and then calling itself recur-
sively on the remainder of the list of generalized-DOFs to 
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implement loops nested within the current one. When the 
coarse scan function is finally passed a null list of general­
ized-DOFs, it calls another function to do the translation 
degrees of freedom. The nested loops of the fine scan step 
are handled similarly by another non-virtual member func- 5 

tion of the base class. 
The pattern location method of the invention is truly 

general purpose, because it has the following characteristics: 
Essentially arbitrary patterns can be trained by example; 
Variations in pattern location, orientation, and size can be 10 

tolerated and measured; 
Pattern defects such as missing or unexpected features can 

be tolerated with no significant loss in accuracy; 
Non-linear variations in shading can be tolerated; 
Real-world imaging conditions such as defocus, video 15 

noise, and illumination variation can be tolerated; and 
Price/performance ratio is low enough for widespread 

use. 

14 
FIG. 17 is an illustration of a data set that represents a 

result corresponding to an instance of a pattern in a run-time 
image; 

FIG. 18a, 18b and 18c show an illustration of how 
position overlap is calculated for a pair of results to deter­
mine if they might be neighbors or duplicates; 

FIG. 19 is a top-level flow chart of a preferred embodi­
ment of run-time; 

FIG. 20 is a flow chart of setting generalized-DOF ele­
ments; 

FIG. 2la, 2lb and 2lc show a flow chart of a function that 
scans all of the generalized-DOFs on an input list, and 
returns a list of results describing poses representing pos­
sible instance of a pattern in a run-time image; 

FIG. 22a and 22b show a flow chart of a function used to 
scan the translation degrees of freedom; 

FIG. 23 is an illustration of four different preferred coarse 
scan patterns; 

Prior to the present invention, there were no practical, 
truly general-purpose pattern location methods available. 

FIG. 24a shows peak detection rules used by a preferred 
20 embodiment of the invention; 

BRIEF DESCRIPTION OF IBE DRAWING 

The invention will be more fully understood from the 
following detailed description, in conjunction with the 25 

accompanying figures, wherein: 
FIG. 1 is a high-level block diagram of one embodiment 

of the invention; 
FIG. 2 is a is block diagram of the steps for granularity 

control, gradient estimation, and boundary detection; 
FIG. 3 is a flow chart of a preferred embodiment of the 

model training step of FIG. 1; 

30 

FIG. 4 is an illustration of an example of a portion of a 
boundary point list for a small subset of a training image; 

FIG. Sa, Sb, and Sc show an illustration of portion of FIG. 35 

4, showing the details of the connect step of the model 
training step of FIG. 3; 

FIG. 6 is an illustration of the portion of FIG. 4, showing 
the details of the segment step of FIG. 3; 

FIG. 7 is an illustration of a set of probes according to the 40 

invention to be included in a model resulting from the 
training step of FIG. 1; 

FIG. 24b shows symbols to be used for interpolation on 
hexagonal scan patterns; 

FIG. 2S is a flow chart illustrating the fine scan step of 
FIG. 19; 

FIG. 26 is a flow chart illustrating the procedure for 
performing fine scans; 

FIG. 27 is a flow chart illustrating the procedure of FIG. 
26 for performing fine scans in the x-y degrees of freedom; 

FIG. 28 is an illustration of a fine x-y scan pattern; 
FIG. 29 is a flow chart of the hill climbing step of FIG. 26; 
FIG. 30 is a flow chart of the plus direction step of FIG. 

29; and 
FIG. 31 is a flow chart illustrating how model granularity 

is selected based on ratings Qg. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

FIG. 1 is a high-level block diagram of one embodiment 
of the invention. A training image 100 containing an 
example of a pattern lOS to be located and/or inspected is 
presented. A training step 110 analyzes the training image 
and produces a model 120 for subsequent use. At least one 
runtime image 130 is presented, each such image containing 

FIG. 8 is an illustration of a synthetic model according to 
the invention for locating or inspecting a rounded rectangle 
pattern; 

FIG. 9 is an illustration of various typographic and 
symbolic convention used in the specification; 

45 zero or more instances of patterns 13S similar in shape to the 
training pattern lOS. 

FIG. 10 is an illustration of a data set that represents a 
model of FIG. 1; 

FIG. lla is an illustration of a data set that represents a 
probe of FIG. 10; 

FIG. llb is an illustration of a data set that represents a 
compiled probe generated from the probe of FIG. 11 a; 

For each run-time image a run-time step 140 analyzes the 
image 130, using the model 120, and the list of generalized­
DOFs lSO. As a result of the analysis, the run-time step 

50 produces a list 160 of zero or more results, each result 
corresponding to an instance of the trained pattern lOS in 
image 130 and containing a pose that maps pattern points to 
corresponding image points, and individual probe rating 

FIGS. 12a and 12b are flow charts illustrating the steps for 
converting a list of probe objects into a list of compiled- 55 

probe objects; 

information for inspection purposes. 
FIG. 2 shows a preferred embodiment of image process-

ing steps used by the invention during training step 110 and 
run-time step 140 for granularity control, gradient estima­
tion, and boundary detection. These steps process a source 
image 200, which can be either a training image or a 

FIGS. 13a and 13b are illustrations of direction rating 
factor functions; 

FIG. 13c is an illustration of a magnitude rating factor 
function; 60 run-time image. 

FIG. 14 is an illustration of a data set that represents a 
generalized-DOF; 

FIG. lS is a table that details specific generalized-DOFs 
of FIG. 14 that can be used with the invention; 

FIG. 16 is an illustration of the details of a list of 65 

generalized-DOFs used in a preferred embodiment of the 
invention; 

A low-pass filter 210 and image sub-sampler 220 are used 
to control granularity by attenuating fine detail, such as noise 
or texture, in the source image that for a variety of reasons 
we wish to ignore. Methods for low-pass filtering and 
sub-sampling of digital images are well known in the art. In 
a preferred embodiment, a constant-time second-order 
approximately parabolic filter is used, as described in detail 



US 7,016,539 Bl 
15 16 

that lies in approximately the gradient direction, and pro­
duces a list of the grid coordinates (row and column num­
ber), gradient magnitude, and gradient direction for each 
such point. A sub-pixel interpolation step 260 interpolates 

in U.S. Pat. No. 6,457,032, entitled "Efficient, Flexible 
Digital Filtering". The parabolic filter 210 has a single 
parameter s, not shown in the figure, that controls the 
response of the filter in both dimensions. In a preferred 
embodiment, a sub-sampler is used that can produce output 
pixels corresponding to non-integer positions of the input 
image by means of the well-known method of bilinear 
interpolation. The sub-sampler 220 is controlled by a single 
parameter g corresponding to the distance in pixels in both 
dimensions between the points of the input image to which 
the pixels of the output image should correspond. For 
example if g is 2.5 then output pixels correspond to input 
points (0,0), (2.5,0), (5,0), (0,2.5), (2.5,2.5), (2.5,5), (5,0), 
(5,2.5), (5,5), etc. Input points with non-integer coordinates 
are interpolated between the four surrounding pixels using 
bilinear interpolation. 

5 the position of maximum gradient magnitude along said 
1-dimensional profile to determine real-valued (to some 
precision) coordinates (x;, y;) of the point. The result is a 
boundary point list 270 of points that lie along boundaries in 
the image, which includes the coordinates, direction, and 

10 magnitude of each point. 
FIG. 3 shows a flow chart of a preferred embodiment of 

the model training step 110. A training image 100 containing 
an example of a pattern to be located and/or inspected is 
analyzed by a series of steps resulting in a model 120 

For a preferred embodiment, the filter parameter s is tied 
to the sub-sample parameter g by the following formula: 

15 containing a list of probes. Additional results of the training 
step are that a granularity value g is determined that is used 
both during the training step 110 and run-time step 140. 
Also, the pattern contrast is determined and stored in the 

s=round(2.15 (g-1)) (2) 20 

Thus there is a single independent parameter g for control 

model. 
In the preferred embodiment shown in FIG. 3, a step 300 

selects an appropriate value for the granularity control g and 
stores the value in the model 120. Generally lower values of 
g result in higher accuracy and higher values of g result in 
higher speed, so the tradeoff is application dependent. For 

of the filter 210 and sub-sampler 220, which together 
constitute the steps used for granularity control, and there­
fore granularity is defined to be the value g, which is in units 
of source image pixels. Note that the minimum value of g is 
1 pixel, which setting effectively disables the filter (since s 
is 0) and sub-sampler (since the spacing of output pixels is 
the same as input pixels), and which corresponds to the 
granularity limit imposed by the sensor. 

25 any given pattern, there are limits beyond which the granu­
larity may be too large (coarse) to resolve key pattern 
features or too small (fine) to attenuate inconsistent detail 
such as surface texture. In a preferred embodiment a user 
can enter a suitable granularity manually by viewing a 

The filtered, sub-sampled image is processed by a gradi­
ent estimation step 230 to produce an estimate of the x 
(horizontal) and y (vertical) components of image gradient 

30 display of boundary point list 270 superimposed on training 
image 100. In another preferred embodiment, the value g is 
set automatically based on an analysis of the training image 
100 as described below. at each pixel. A Cartesian-to-polar conversion step 240 

converts the x and y components of gradient to magnitude 
and direction. Methods for gradient estimation and Carte- 35 

sian-to-polar conversion are well-known in the art. In a 
preferred embodiment, the methods described in U.S. Pat. 
No. 6,408,109, entitled "Apparatus and Method for Detect­
ing and Sub-Pixel Location of Edges in a Digital Image", 
herein incorporated by reference, are used. In a preferred 40 

embodiment, the source image 200 has 8 bits of gray-scale 
per pixel. The low-pass filter 210 produces a 16-bit image, 
taking advantage of the inherent noise-reduction properties 
of a low-pass filter. The gradient estimation step 230 uses the 
well-known Sobel kernels and operates on either a 16-bit 45 

filtered image, if the parameter s is set greater than 0 so as 
to enable the filter, or an 8-bit unfiltered image if the 
parameter s is set to 0 so as to disable the filter. The x and 
y components of gradient are always calculated to 16 bits to 
avoid loss of precision, and the gradient magnitude and 50 

direction are calculated to at least 6 bits using the well­
known CORDIC algorithm. 

The output of Cartesian-to-polar conversion step 240 is a 
gradient magnitude image 242 and a gradient direction 
image 244. These images are suitable for use by the run-time 55 

step 140, but further processing is required to identify 
boundary points for the training step 110. Methods for 
identifying points along image boundaries are well-known 
in the art. Any such method can be used for practice of the 
invention, whether based on gradient estimation or other 60 

techniques. In a preferred embodiment shown in FIG. 2, the 
methods described in detail in U.S. Pat. No. 6,408,109, 
entitled "Apparatus and Method for Detecting and Sub-Pixel 
Location of Edges in a Digital Image", herein incorporated 
by reference, are used. A peak detection step 250 identifies 65 

points where the gradient magnitude exceeds a noise thresh­
old and is a local maximum along a 1-dimensional profile 

As shown in FIG. 3 a boundary point detection step 310 
processes the training image 100 to produce a list of points 
270 that lie along boundaries in the training image. This step 
is shown in detail in FIG. 2 and described above. A connect 
step 320 connects boundary points to neighboring boundary 
points that have consistent directions, using rules further 
described below, to form chains by associating with each 
boundary point links to left and right neighbors along the 
boundaries, if any. A chain step 330 scans the connected 
boundary points to identify and catalog discrete chains. For 
each chain, the starting and ending points, length, total 
gradient magnitude, and whether the chain is open or closed 
is determined and stored. 

A filter step 340 deletes weak chains. A variety of criteria 
can be used to identify weak chains. In a preferred embodi­
ment, chains whose total gradient magnitude or average 
gradient magnitude are below some specified parameter are 
considered weak. 

A segment step 350 divides chains into zones of low 
curvature called segments, separated by zones of high cur­
vature called corners. Each boundary point is marked as a 
part of a segment or corner. Curvature can be determined by 
a variety of methods; in a preferred embodiment, a boundary 
point is considered a corner if its direction differs from that 
of either neighbor by more than 22.5 degrees. 

A probe spacing step 360 analyzes the segments found by 
step 350 and determines a probe spacing that would result in 
all of the segments being covered by a predetermined target 
number of probes that are distributed evenly along the 
segments. The probe spacing is not allowed to fall beyond 
certain predetermined limits. In a preferred embodiment, the 
target number of probes is 64, the lower limit of probe 
spacing is 0.5 pixels, and the upper limit of probe spacing is 
4.0 pixels. 
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A probe generation step 370 creates probes evenly spaced 
along the segments found by step 3SO, and stores them in the 
model 120. 

18 

A contrast step 380 determines the contrast of the pattern 
lOS in the training image 100 by using the run-time step 140 5 

to obtain a result corresponding to the pattern lOS, and 
extracting the contrast value from said result. Contrast is 
defined below. 

to a boundary tangent that falls between dotted lines S64 and 
S66. The sequences of neighbors are as shown. The 
sequences for all other gradient directions are simply rota­
tions of the two cases of FIGS. Sb and Sc. 

Note that the sequences given in FIGS. Sb and Sc show a 
preference for orthogonal neighbors over diagonal neigh­
bors, even when diagonal neighbors are "closer" to the 
direction of the boundary tangent. This preference insures FIG. 4 shows an example of a portion of a boundary point 

list 270 for a small subset of a training image 100 as might 10 
that the chains will properly follow a stair-step pattern for 
boundaries not aligned with the grid axes. Clearly this 
preference is somewhat dependent on the specific details of 
how the boundary point detection step 310 chooses points 

be produced by step 310. The boundary points are shown 
superimposed on a grid 410, which is a portion of the pixel 
grid of the image input to gradient estimation step 230 from 
which the boundary points were extracted. In a preferred 
embodiment using the steps of FIG. 2, as further described 15 

in U.S. Pat. No. 6,408,109, entitled "Apparatus and Method 
for Detecting and Sub-Pixel Location of Edges in a Digital 
Image", herein incorporated by reference, no more than one 
boundary point will fall within any given grid element, and 
there will be no gaps in the boundary due to grid quantiza- 20 

tion effects. For example, the boundary point 400 falls 
within grid element 420, shaded gray in FIG. 4. The bound­
ary point 400 has gradient direction and magnitude shown 

along the boundary. 

Once left and right links have been associated with all 
boundary points (some of said links may be null), a consis­
tency check is performed. Specifically, the right neighbor of 
a boundary point's left neighbor should be the boundary 
point itself, and the left neighbor of a boundary point's right 
neighbor should also be the boundary point itself. If any 
links are found for which these conditions do not hold, those 
links are broken by replacing them with a null link. At the 
end of the connect step 320, only consistent links remain. 

Many alternate methods can be used to establish bound­
aries within the spirit of the invention. 

FIG. 6 shows details of the segment step 3SO, the probe 
spacing step 360, and the probe generation step 370. In the 
figure, boundary points 600, drawn as diamonds within 

by vector 440. Also shown is a small straight-line section of 
pattern boundary 460 corresponding to the example bound- 25 

ary point 400 and normal to the gradient direction 440. This 
section of boundary is shown primarily to aid in understand­
ing the figure. Its orientation and position along the gradient 
direction are significant, but its length is essentially arbi­
trary. 30 shaded grid elements, have been marked by segment step 

3SO as belonging to corners, and boundary points 620, 622, 
624, 626, and 640, drawn as circles within unshaded grid 
elements, have been marked as belonging to segments. The 
boundary points 620, 622, 624, and 626 belong to one 

FIG. S shows details of the connect step 320 of the 
training step 110. FIG. Sa shows the same grid 410, the same 
example boundary points including example 400 with gra­
dient 440, and the same example grid element 420, shaded 
light gray, as was shown in FIG. 4. 35 segment to be explained in more detail, and the boundary 

points 640 belong to another segment and are shown for 
illustration and not further discussed. All of the boundary 
points of FIG. 6 are connected by left and right links as 

For every boundary point, the grid 410 is examined to 
identify neighboring grid elements that contain boundary 
points to which the boundary point should be connected. For 
the example boundary point 400 in grid element 420, the 
neighboring grid elements SOO are shown, shaded medium 40 

gray. The neighboring grid elements SOO are examined in 
two steps of four neighboring grid elements each, each step 

shown, for example 660, and form a portion of one chain. 

Segment step 3SO also determines an arc position for each 
boundary point along a segment, starting with 0 at the left 
end of the segment and increasing to the right by an amount 
equal to the distance between the boundary points along the 

in a particular order, determined by the gradient direction 
440 of the boundary point 400 corresponding to grid element 
420. 

In one step a left neighbor grid element SlO is identified, 
and a left link SlS is associated with the boundary point 400 
identifying the boundary point Sl 7 contained by grid ele­
ment SlO as its left neighbor. In the other step a right 
neighbor grid element S20 is identified, and a right link S2S 
is associated with the boundary point 400 identifying the 
boundary point S27 contained by grid element S20 as its 
right neighbor. If a given neighbor cannot be found, a null 
link is associated. Note that "left" and "right" are defined 
arbitrarily but consistently by an imaginary observer looking 
along the gradient direction. 

FIG. Sb shows the order in which neighboring grid 
elements are examined for a boundary point whose gradient 
direction falls between arrows S40 and S42, corresponding 
to a boundary tangent that falls between dotted lines S44 and 
S46. The sequence for identifying the left neighbor is+ 1, +2, 
+3, and +4. The first neighbor in said sequence that contains 
a boundary point, if any, is the left neighbor. Similarly, the 
sequence for identifying the right neighbor is -1, -2, -3, and 
-4. 

FIG. Sc shows another example, where the gradient 
direction falls between arrows S60 and S62, corresponding 

45 segment. For example, boundary point 620 is at the left end 
of a segment and is at arc position 0.00 as shown. The right 
neighbor 622 of boundary point 620 is 1.10 pixels distant 
and is therefore at arc position 1.10. Similarly the right 
neighbor 624 of boundary point 622 is 1.15 pixels distant 

50 and is therefore at arc position 2.25. Finally, the right-most 
boundary point 626 along this segment is at arc position 
3.20. The total arc length of a segment is defined to be the 
arc position of the right-most boundary point, in this 

55 
example 3.20 pixels. Note that the distance between bound­
ary points along a chain can be substantially larger or 
smaller than 1 pixel, particularly along diagonal boundaries 
where the boundary points tend to follow a stair-step pattern. 
By approximating true arc distance along the chain as 

60 described above, instead of considering the boundary points 
to be evenly spaced, grid quantization effects are substan­
tially reduced. 

Probe spacing step 360 determines a spacing value that 
would result in a predetermined target number of probes 

65 evenly distributed among the segments. The number of 
probes n that can be fit along a segment of arc length 1 at a 
probe spacing of s is given by the formula: 
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In the example of FIG. 6 where the arc length is 3.2, one 
probe can fit if the spacing is greater than 3.2, two probes can 
fit if the spacing is greater than 1.6 but not greater than 3.2, 
and so on. Fewer than the target number of probes will be 
used to keep the spacing from falling below a predetermined 
lower limit, and more than the target number of probes will 
be used to keep the spacing from exceeding a predetermined 
upper limit. 

Once a probe spacing value has been chosen by probe 
spacing step 360, the set of probes to be included in the 
model 120 are generated by probe generation step 370. In 
the example of FIG. 6, a probe spacing of 2.5 has been 
chosen, and applying equation 3 shows that two probes will 

20 
the probes, including use of variable weights and negative 
weights, to achieve higher detection reliability. 

FIG. 8 shows a human-designed model for locating or 
inspecting a rounded rectangle pattern using the invention. 

5 An ideal rounded rectangle 800 to be synthetically trained 
has boundary 805. 36 probes are placed along the boundary 
805 as shown. 12 probes including examples 812 and 816 
are placed along the top of the boundary 805, and 12 probes 
including examples 810 and 814 are placed along the bottom 

10 of the boundary 805. Each of these 24 probes placed along 
the top and bottom have weight 1.0, shown by the relative 
lengths of the probes. 20 of these 24 probes, including 
examples 810 and 812, point straight up or down, and the 
other 4, including examples 814 and 816, are rotated slightly 

15 due to the expected rounding of the corners. 
6 probes including examples 822 and 826 are placed 

along the left of the boundary 805, and 6 probes including 
examples 820 and 824 are placed along the right of the 
boundary 805. Each of these 12 probes placed along the left 

20 and right have weight 2.0, shown by the relative lengths of 
the probes. 8 of these 12 probes, including examples 820 and 
822, point straight left or right, and the other 4, including 
examples 824 and 826, are rotated slightly due to the 

fit along the example segment. The two probes are centered 
along the segment, so that the first probe location 680 is at 
arc position 0.35, and the second probe location 685 is at arc 
position 2.85. The position and direction of each probe are 
interpolated between the surrounding boundary points. In 25 

the example of FIG. 6, the first probe at arc position 0.35 is 
placed along the line segment connecting boundary points 
620 and 622 and at a distance of 0.35 pixels from boundary 
point 620. The gradient direction of the first probe is 
proportionally 0.35/1.10 between the directions of boundary 
points 620 and 622. Similarly, the second probe at arc 
position 2.85 is placed along the line segment connecting 
boundary points 624 and 626 and at a distance of 0.60 pixels 
from boundary point 624. The gradient direction of the 
second probe is proportionally 0.60/0.95 between the direc­
tions of boundary points 624 and 626. 

expected rounding of the corners. 
The use of weight 1.0 for the top and bottom, and weight 

2.0 for the left and right, makes the total influence of each 
edge the same. The same effect could be achieved by adding 
6 more probes each to the left and right sides, packing them 
together more densely, but this would result in 33% more 

30 probes to be processed for what may be little or no improve­
ment in the quality of information extracted from the image. 
The use of variable positive weights allows the designer the 
flexibility to make that tradeoff. 

35 
It can be seen that any sufficiently long straight boundary 

in the run-time image will match almost perfectly any of the 
four sides of the model, even though such a straight bound­
ary is not part of a rectangle. Similarly, any sufficiently long 
right-angle boundary in the run-time image will match 

Probe positions and directions may be represented in any 
convenient coordinate system, which is referred to in this 
specification as pattern coordinates. 

FIG. 7 shows the set of probes to be included in model 
120, resulting from training step 110 shown in FIG. 1 and 
detailed in FIG. 3, for the pattern 105 of FIG. 1. The pattern 
105 consists of 2 boundaries, the outside circular boundary 
700 and the inside cross-shaped boundary 720. The bound­
ary 700 results in one closed chain of boundary points 
containing one segment and no corners, since the curvature 
of the boundary at each point is sufficiently low 32 probes, 

40 
almost perfectly fully one-half of the model, even though 
such a boundary is not part of a rectangle. This matching 
between the model and image features that are not part of the 
pattern to be located, which is substantial in this case due to 
the geometric simplicity of the pattern, significantly reduces 

45 
the ability of the model to discriminate between true 
instances of the pattern and other image features. The 
problem is made more severe if the application calls for the 
model to be used over a wide range of angles. The problem 

for example 710, are distributed evenly along boundary 700. 
The boundary 720 results in one closed chain of boundary 50 
points containing 12 segments and 12 corners 32 probes, for 
example 730, are distributed evenly among the 12 segments 

can be mitigated by the use of negative weight probes. 

In FIG. 8 imaginary lines 830, 832, 834, and 836 are 
drawn extending from the edges of the rounded rectangle 
800. Probes with weights of -2.0, drawn with dashed lines 
and open arrow heads, and including examples 840, 842, 
844, and 846, are placed along the imaginary lines as shown. 

of boundary 720. All probes in FIG. 7 have weight 1.0. 

In some applications it is desirable to create a model 120 
based on a geometric description of a known shape, rather 
than by example from a training image 100. This is referred 

55 Example negative weight probes 840, 842, 844, and 846 are 
placed along imaginary line 830, 832, 834, and 836 respec­
tively. With this arrangement, any match function used by 
the invention that considers negative weight probes, such as 
the second and third match functions described in the 

to as synthetic training, and can be performed by a human 
designer or suitable software working from a geometric 
description such as CAD data. One advantage of synthetic 
training is that the model can be made essentially perfect, 
whereas any specific example of an object appearing in a 
training image may have defects and since the process of 
extracting boundary information, even from a high quality 
example, is subject to noise, grid quantization effects, and 
other undesirable artifacts. Another advantage of synthetic 65 

training by human designers is that the model designer can 
use application-specific knowledge and judgment to design 

60 summary section, will score approximately 0 against a 
sufficiently long straight boundary, and approximately 0.25 
instead of 0.5 against a sufficiently long right-angle bound-
ary. 

Generalizing this example, one can see that a suitable 
arrangement of positive probes surrounded by negative 
probes along a line can be used to discriminate line segments 
from lines and rays. Furthermore, a suitable arrangement of 
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positive probes bounded by negative probes on one side, 
along a line, can be used to discriminate rays from lines. 

In the following paragraphs and associated figures 
describing in detail run-time step 140, certain typographic 
and symbolic conventions are used that are set forth in FIG. 5 

9. Descriptions of named sets of data are presented in tabular 
format 900. A named set of data is analogous to a record, 
structure, or class as used by many conventional program­
ming languages familiar to those skilled in the art. Such a set 
consists of a collection of named elements of various types. 10 

One or more instances of any given set may be used in a 
specific embodiment of the invention, as appropriate. A 
specific instance of a named set is called an object, in accord 
with the conventions of object-oriented programming, 
which usage can be distinguished by context from physical 15 

or simulated objects to be located by the invention. In the 
example table 900, the name of the set is given in box 905 
as shown, and each element of the set occupies a row of the 
table 900. In each row the name of the element is given in 
column 910, the type of the element in column 915, and a 20 

descriptive summary of the element in column 920. Element 
names generally follow the conventions of common high­
level programming languages for lexical program elements 
commonly referred to as identifiers. When an element's type 
is given as a real number, or as containing real numbers, the 25 

element is assumed to take on non-integral values and be 
represented in any specific embodiment by a fixed or float­
ing point number of suitable but unspecified precision. 
When an element's type is given as a function of certain 
argument types and producing a certain value type, the 30 

element is assumed to be a function pointer or virtual 
member function as defined by common programming lan­
guages such as C and C++. The reader should understand 
that these descriptions of implementation are intended to be 
descriptive and not limiting, and that many suitable alter- 35 

native implementations can be found within the spirit of the 
invention. 

22 
English descriptions will be used instead of pseudo-code, for 
example as shown in diamond 940. In such cases imple­
mentation details can be filled in by those skilled in the art. 
In still other cases, particularly for vector and matrix opera­
tions, greatest clarity can be achieved using standard math­
ematical notation, which can represent compactly many 
arithmetic operations; the use of detailed pseudo-code or 
English would only obscure the intent. 

FIG. 10 shows a data set that represents a model 120. 
Element probes 1000 is a list of probes created by training 
step 370. Element granularity 1010 is the granularity value 
g chosen during training step 300 and used during training 
step 310 to obtain the boundary points. Element contrast 
1020 is the pattern contrast measured during training step 
380. 

FIG. lla shows a data set 1190 that represents a probe. 
Element position 1100 is a 2-vector that specifies the posi­
tion of the probe in pattern coordinates. Element direction 
1110 specifies the gradient direction expected by the probe, 
again relative to the probe coordinate system. In a preferred 
embodiment, a binary angle is used to represent direction to 
simplify angle arithmetic using well-known methods. Ele­
ment weight 1120 specifies the weight assigned to the probe, 
which can be positive or negative. In a preferred embodi­
ment, zero weight probes are not used. 

FIG. llb shows a data set 1195 that represents a compiled 
probe. A list of compiled probes is generated from the probe 
list 1000 stored in model 120 based on a specific combina­
tion of generalized-DOF parameters that specify an overall 
coordinate transform representing the non-translation 
degrees of freedom. Element offset 1130 is the pixel address 
offset of the probe in the gradient magnitude image 242 and 
the gradient direction image 244 (i.e. the same offset applies 
to both images). Element direction 1140 is the expected 
gradient direction, mapped to image coordinates. Element 
weight 1150 is the probe weight, copied from the corre­
sponding probe object and in some embodiments converted 
from a real to a scaled integer to take advantage of integer 

When flowcharts are used to express a sequence of steps, 
certain conventions are followed. A rectangle, for example 
930, indicates an action be performed. A diamond, for 
example 940, indicates a decision to be made and will have 
two labeled arrows to be followed depending on the out­
come of the decision. 

40 
multiply hardware. 

A right-pointing pentagon, for example 950, indicates a 
that a sequence of loop steps are to be executed for each of 45 

a sequence of values of some variable. The loop steps are 
found by following an arrow, e.g. 952, extending from the 
point of the pentagon, and when the loop steps have been 
executed for the entire sequence of values, flow is to 
continue by following an arrow, e.g. 954, extending from the 50 

bottom of the pentagon. 

FIGS. 12a and 12b gives details of a function compileP­
robes 1200 that converts the list of probe objects 1000 stored 
in model 120 to a list of compiled-probe objects 1195. 
Starting on FIG. 12a, function compileProbes 1200 takes 
map input 1202 and probeMER input 1204 as shown, and 
returns a list of compiled-probe objects. Note that probe-
MER input 1204 is a reference to a rectangle to be set by 
compileProbes, and so may be considered an output or 
side-effect, but is listed as an input following the usual 
programming convention that a function can return only one 
value or object. 

Step 1205 and step 1210 perform initialization as shown. 
Loop step 1215 specifies a sequence of steps for each probe 
object in the list of probe objects 1000 stored in model 120. 

An oval, for example 960, indicates a termination of a 
sequence of loop steps or a termination of a procedure. A 
down-pointing pentagon, for example 970, indicates a con­
nection to a like-named pentagon on another figure. 

At times a description in a flow chart or other text can be 
made more clearly and concisely in a form similar to that 
used in conventional programming languages. In these cases 

55 Step 1220 sets up a new compiled-probe object. Step 1225 
copies the weight 1150 from the corresponding probe object, 
and in some embodiments may convert it to a format more 
suited to efficient processing on the available hardware. 

a pseudo-code will be used, which while not following 
precisely the syntax of any specific language will neverthe- 60 

less be easily understood by anyone skilled in the art. 
Pseudo-code is always written in the bold, fixed-spaced font 
illustrated in rectangle 930. Pseudo-code is generally used 
for variables, references to elements of objects, simple 
arithmetic expressions, and procedure calls. Often the syn- 65 

tactic detail of programming languages obscures rather than 
reveals the workings of the invention, and in these cases 

Continuing to FIG. 12b, in step 1230, some definitions are 
made for the subsequent math. In step 1235, the probe 
position 1100 is mapped to image coordinates using the 
input coordinate transform 1202 and rounded to an integer 
image pixel offset in x (e.g., horizontal) and y (e.g., vertical), 
from which is computed an offset 1130 based on the address 
difference of pixels in the gradient magnitude image 242 and 
the gradient direction image 244. The use of a single offset 
value 1130, instead of the (x, y) pair, allows higher speed 
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access to gradient magnitude or direction as the set of 
compiled probes are translated around the images. 

In step 1240 the expected gradient direction 1110 is 
mapped to an image coordinate relative value 1140. The 
formula for the mapped direction 1140 effectively does the 
following, reading the vector and matrix operations 1242 
right to left: 

Construct a unit vector 1270 in the gradient direction, 
with respect to pattern coordinates, by computing the 
cosine and sine of the angle. 

Rotate the unit vector 90° 1272 to get a direction along the 
boundary that contains the probe. 

Map the rotated unit vector to image coordinates 1274 to 
get a boundary direction in image coordinates. 

Rotate the mapped rotated unit vector -90° 1276 to get a 
direction normal to the boundary in image coordinates. 

If the determinant of the transform matrix is negative, the 
transform changes the left-handedness or right-hand­
edness of the coordinate system, so rotate the vector 
180° 1278 because the -90° of the previous step should 
have been +90°. 

Compute the angle of the resulting vector 1280 using the 
well-known version of the arctangent function of two 
arguments whose result is in the range 0° to 360°. 

Note that in computing mapped expected gradient direc­
tion 1140 the boundary direction is mapped instead of the 
gradient direction. This is necessary to handle the general 
case where the transform matrix C is not orthonormal. If C 
is orthonormal, i.e. if C11 =C22 and C12=-C21 , then step 1240 
can be replaced with a step that simply adds the constant 
arctan(C21/C11) to the probe direction 1110. 

Note as shown in step 1240 that these calculations can be 
simplified considerably 1290. In a preferred embodiment the 
arctangent function is computed using the well-known 
CORDIC method. 

Step 1245 keeps track of the minimum enclosing rect­
angle in integer pixels of the mapped probes, for subsequent 
use by the invention to detect duplicate results by determin­
ing the extent to which pairs of results overlap. Note that the 
size and shape of the minimum enclosing rectangle will vary 
depending on the settings of the generalized-DOF param­
eters, and so must be recomputed for each such setting. 

Step 1250 marks the end of the loop steps; control flows 
back to step 1215 on FIG. 12a to continue with the next 
probe. If there are no more probes, control flows to step 
1255, which returns the list of compiled-probe objects to the 
caller of the compileProbes function 1200. 

FIG. 13 gives details for the match functions used by the 
invention. FIGS. 13a and 13b show examples of direction 
rating factor functions. A direction rating factor is value 
between 0 and 1 that indicates degree of match between a 
probe's expected gradient direction 1140 and the actual 
gradient direction found in a gradient direction image 244 
under the probe. A direction rating factor function produces 
a direction rating factor as a function of direction error, 
defined as an angle measured from the expected gradient 
direction to the actual gradient direction. Any of a variety of 
direction rating factor functions could in principal be used to 
practice the invention. 

24 
expected. The "consider polarity" functions return 0 at and 
around 180°, so that polarity reversals do not match the 
pattern, while the ignore polarity functions rreturn 1 at and 
around 180°, so that polarity reversals do match the pattern. 

5 Choice between "consider polarity" and "ignore polarity" is 
application dependent, and so in a preferred embodiment, 
the user can select either type. 

In a preferred embodiment the consider polarity direction 
rating factor function of FIG. 13a is used. The function is at 

10 1 from 0° 1300 to 11.25° 1302, then falls in a straight line 
to 0 at 22.5° 1304, remains at 0 until 337.5° 1306, rises in 
a straight line to 1 at 348.75° 1308, and remains at 1 until 
360° 1310 (which is the same as the 0° point 1300). In a 
preferred embodiment the corresponding ignore polarity 

15 direction rating factor function of FIG. 13b is used. The 
points 1320, 1322, 1324, 1326, 1328, and 1330 correspond 
exactly to the points 1300, 1302, 1304, 1306, 1308, and 
1310, respectively, of FIG. 13a. The points 1332, 1334, 
1336, and 1338 correspond to points 1328, 1322, 1324, and 

20 1326, respectively, but shifted 180°. Note that the points 
1320 and 1330 have no corresponding points shifted 180°, 
since these points are an artifact of the decision to start the 
drawing at 0°. 

FIG. 13c shows an example of a magnitude rating factor 
25 function. A magnitude rating factor is a value between 0 and 

1 that indicates a degree of confidence that a particular pixel 
position lies along a boundary and therefore that a probe test 
made at said position would result in reliable evidence for, 
in the case of positive weight probes, or against, in the case 

30 of negative weight probes, the existence of an instance of the 
trained pattern 105 at the pose under test. A magnitude rating 
factor function produces a magnitude rating factor as a 
function of gradient magnitude. Any of a variety of magni­
tude rating factor functions could in principal be used to 

35 practice the invention. 
In a preferred embodiment the magnitude rating factor 

function of FIG. 13c is used. The function is 0 at magnitude 
0 1350, rises in a straight line to 1 at a point 1352 corre­
sponding to a certain target magnitude further described 

40 below, and continues at 1 until the maximum magnitude 
1354, which in the illustrated embodiment is 255. 

The goal in the design of the example magnitude rating 
factor function of FIG. 13c is primarily to distinguish 
between noise and true boundaries. The intention is that an 

45 embodiment of the invention using this magnitude rating 
factor function be sensitive to the shape of boundaries but 
not overly sensitive to the contrast and sharpness of the 
boundaries. A separate target magnitude point 1352 is com­
puted for each distinct pose (placement of probes), since 

50 global decisions about what is noise and what is signal are 
notoriously unreliable. If we consider only the set B of 
positive weight probes with a high direction rating factor, it 
is reasonable to assume that a majority of probes in B lie 
along a true boundary and not noise. The median gradient 

55 magnitude mmedian under the probes in B is a good guess as 
to a representative gradient magnitude value corresponding 
to the boundary. In a preferred embodiment we choose target 
point 1352 to have the value 0.7. mmedian· 

There are two general types of direction rating factor 60 

functions, called consider polarity and ignore polarity func­
tions. The difference between the two types is in how they 
handle direction errors at and around 180°, which corre­
sponds to a gradient direction opposite from what was 
expected, implying that the boundary is in the expected 65 

orientation but the dark-to-light transition of image bright­
ness across the boundary is opposite in polarity from 

In the following let: 
P; be the offset 1130 of the i'h compiled probe 1195; 
d; be the direction 1140 of the i'h compiled probe 1195; 
W; be the weight 1150 of the i'h compiled probe 1195; 
M(a) be the gradient magnitude at offset a in gradient 

magnitude image 242; 
D( a) be the gradient direction at offset a in gradient 

magnitude image 244; 
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Ra;r( ) be a direction rating factor function, for example 
the one in FIG. 13a or FIG. 13b; and 

Rmai) be a magnitude rating factor function, for example 
the one in FIG. 13c. 

With these definitions, it can be seen that for a set of 5 

compiled probes placed at offset a in gradient magnitude 
image 242 or gradient direction image 244, 

M(a+p;) is the gradient magnitude under compiled probe 
1 

D(a+p;) is the gradient direction under compiled probe i 10 

D(a+p;)-d; is the direction error at compiled probe i 
In the following equations, a term of the form "x=y" or 

"x>y" is 1 if the expression is true and 0 otherwise, 
following the conventions of the C programming language. 
This is not standard algebraic notation, but tends to simplify 15 

and clarify the formulas. 
To avoid having to set a threshold to decide whether or not 

a probe is a member of B, a probe's direction rating factor 
is used to specify a weighted membership value. For a 
specific set of compiled probes (i.e. corresponding to spe- 20 

cific settings of the generalized-DOF parameters) a weighted 
histogram Ha(m) of gradient magnitude for complied probes 
placed at image offset a is computed as follows: 

25 

H0 (m) = L max(w;, 0 )(M(a + p;) = m)Rd;r(ID(a + p;)- d;I) (4a) 

Equation 4a states that each bin m of the histogram H is 30 

the sum of direction rating factors, weighted by probe 
weight W;, for all positive weight probes where the gradient 
magnitude under the probe is m. From histogram H can be 
computed the median gradient magnitude by finding the 
value Mmedian such that: 35 

mmedian 255 

L Ha(iJ= L H0 (i) 

(4b) 

i=O i=m median 

The first match function S 1 a, used in the coarse scan step 
1925 of FIG. 19, can now be defined as follows: 

40 

26 

L(w; > 0 )[Rd;r(ID(a + p;)-d;I )-N] 

Si(a) = -------------
(1-N)l:(w;>O) 

; 

where noise term N is given by: 

1 [60 
N=- Rd;,(8)di8 

360 0 

(Sc) 

(6) 

Using the noise term in the first match function is impor­
tant because, due to the higher computational cost, gradient 
magnitude is not used to filter out noise. Note that the 
computation of S1 as specified by equation Sc can be 
arranged so that the use of N adds no per-probe cost. For the 
preferred "consider polarity" direction rating factor function 
of FIG. 13a, N=3!32. For the preferred "ignore polarity" 
direction rating factor function of FIG. 13b, N=3.lt6. 

The second match function S2 used in the fine scan step 
1940 of FIG. 19 is: 

S2(a) = Lw;M(a + p;)Rd;r(ID(a + p;)- d;I) (7) 

The third match function S3 used in the scoring steps 1930 
1945 1930 and 1945 is: 

Lw;Rmag(M(a+ p;))Rd;r(ID(a+ p;)-d;I) 

S3(a)= --------------
l:w; 

(8) 

FIG. 14 shows a data set 1490, that represents a gener­
alized-DOE In a preferred embodiment using the C++ 
programming language, FIG. 14 describes an abstract base 
class that specifies the interface for any generalized-DOE 

L max(w;, 0 )Rd;r(ID(a + p;)-d;I) 
; 

S1a(a) = ------------
2.: max(w;, 0) 

(Sa) 

45 Specific generalized-DOFs, corresponding in a preferred 
embodiment to concrete derived classes, will be described 
below. In FIG. 14, elements low 1400 and high 1405 specify 
the range of parameter values to be searched, as appropriate 
for the application. If low= high, the parameter value is fixed 

50 for this generalized-DOF-no searching is done, but the 
fixed parameter value contributes to all poses considered by 
run-time step 140 and returned in list of results 160. In a 
preferred embodiment the invention requires low~high 

This gives the first match score at any offset a of the 
compiled probes. As can be seen from equation Sa, only 
positive weight probes are used. The first variation S 1b, 

which, to achieve higher execution speed doesn't use probe 
55 

weight (except to select positive weight probes) is: 

(Sb) 

except for cyclic generalized-DOFs. 
Element maxStepSize 1410 specifies the maximum 

allowable increment in parameter value for the coarse scan 
step 1925 or fine scan step 1940. In a preferred embodiment 
maxStepSize 1410 is chosen automatically for each gener­
alized-DOF based on the geometry of the probes, as 

S1b(a) = -----------
2.: (w;> 0) 

60 described below. Element maxStepSize 1410 should be set 
so that the pattern 105 will match sufficiently well against an 
instance in the run-time image 130 even if the pose is off by 
up to one-half maxStepSize 1410 in every generalized-DOF 

The first match function using the first and second varia­
tions S1 , which subtracts the expected value of the direction 65 

rating factor on random noise, and is used in a preferred 
embodiment, is: 

that does not have a fixed parameter value. 
Element dupRange 1415 specifies a range of parameter 

values within which distinct results may be considered 
duplicates. Two results are duplicates if they overlap suffi-
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ciently in position (i.e. the translation degrees of freedom) 
and if for each generalized-DOF their respective parameter 
values are within the dupRange 1415 of that generalized­
DOF. 

28 
1545, and 1 otherwise. Function element scaleFactor 1460 
returns the scale factor at the geometric midpoint of the 
search range for uniform size-related generalized-DOFs, e.g. 
1550 and 1570, the square root of the scale factor at the 

Element start 1420 specifies the actual start of the range 
of parameter values to be searched, which extends half 
stepSize 1435 beyond the requested range given by low 
1400 and high 1405 so that interpolation can be performed 
up to the limit of the requested range. 

5 geometric midpoint of the search range for non-uniform 
size-related generalized-DOFs, e.g. 1555, 1560, 1575, and 
1580, and 1 for non-size related generalized-DOFs. For 
non-uniform size-related generalized-DOFs, the square 
root-is a reasonable estimate of the overall effect when size 

Element numCoarseSteps 1430 gives the number of steps 10 

in stepSize 1435 increments to be used during coarse scan 
step 1925. Element stepSize 1435 is derived from maxStep­
Size 1410 and the requested range from low 1400 to high 
1405 such that stepSize 1435 is not greater than maxStep­
Size 1410 and there are an integral number of steps to cover 15 

a range that extends one-half step beyond low 1400 and high 
1405. Note that if a generalized-DOF is cyclic and the range 
covers the entire cycle, then 2 fewer steps are needed 
because the ends of the range are coincident. 

Element cycle 1440 specifies one cycle for cyclic gener- 20 

alized-DOFs (e.g., 360°), or 0 for non-cyclic generalized­
DOFs. Adding or subtracting cycle 1440 to any parameter 
value has no effect on the pose. The element cycle 1440 
allows cyclic and non-cyclic generalized-DOFs, which are 
much more similar than different, to share a large body of 25 

code with only minor special case handling in several places. 
Element mapper 1445 is a function that converts a param­

eter value to an equivalent coordinate transform. In a pre­
ferred embodiment, mapper 1445 is a virtual function. 
Element mapper 1445 is the key to the generalized-DOF 30 

method, because the resulting coordinate transforms can be 
composed to produce a pose regardless of the type, number, 
and order of generalized-DOFs used by the invention in any 
given embodiment. In a preferred embodiment the coordi­
nate transform produced by mapper 1445 includes a trans- 35 

lation vector, but it is always 0. 
Elements stepSizeMatrix 1450 and stepSizeFactor 1455 

are used to compute maxStepSize 1410 based on the geom­
etry of the probes and the nature of the generalized-DOF, as 
further described below. Element scaleFactor 1460, a virtual 40 

function in a preferred embodiment, computes the factor by 
which the pattern is scaled by this generalized-DOF 
(changed in size) at the middle of the search range between 
low 1400 and high 1405. This is used as a rough estimate of 
the change in scale from the training image 100 to the 45 

run-time image 130, so that certain parameters, such as 
granularity 1010, can be adjusted. 

FIG. 15 is a table that details specific generalized-DOFs 
that can be used with the invention. Many other variations 
not shown can be devised based on the teachings disclosed 50 

herein. Each row of the table describes a specific general­
ized-DOF, while the columns generally specify values for 
specific elements. 

Column 1500 describes the parameter used by the gen­
eralized-DOE In a preferred embodiment, rotational gener- 55 

alized-DOFs, e.g. 1540 and 1545, use an angle parameter in 
degrees. Radians are not used because one cycle (i.e. 2it) 
cannot be represented exactly in any practical device. Size­
related generalized-DOFs use either a scale factor param­
eter, e.g. 1570, 1575, and 1580, or a logarithmic scale factor 60 

parameter, e.g. 1550, 1555, and 1560. Aspect ratio general­
ized-DOFs use either a ratio parameter, e.g. 1585, or a 
logarithmic ratio parameter, e.g. 1565. 

Element cycle 1440 is set to 360° for rotational general­
ized-DOFs, e.g. 1540 and 1545, and 0 otherwise. Element 65 

stepSizeFactor 1455 is set to 180/it to convert radians to 
degrees for rotational generalized-DOFs, e.g. 1540 and 

is varying in one dimension but not the other. 
For function element mapper 1445, only the 2x2 matrix 

component of the coordinate transform is shown; the vector 
translation component is 0. Element stepSizeMatrix 1450 is 
determined by taking the derivative 

di mapper (x) 

dix 

and evaluating the resulting matrix at parameter value x such 
that mapper(x) is the identity transform. 

FIG. 16 shows details of the list of generalized-DOFs 150 
used in a preferred embodiment of the invention. As 
described in the summary section, the list 150 specifies 
nested loops for the coarse scan step 1925 and fine scan step 
1940. The list 150 specifies both the nesting order for 
scanning the search space and the order in which the 
coordinate transforms produced by the mapper functions 
1445 are composed to get the overall pose for the non­
translation degrees of freedom. For the preferred embodi­
ment shown in FIG. 16, a logy size generalized-DOF 1560 
is the first element of list 150, is the outermost loop in the 
scanning sequence, and its transform is applied first in 
mapping from pattern to image coordinates. Next is log x 
size generalized-DOF 1555, followed by log size 1550, and 
finally rotation 1540, which is the innermost loop in the 
scanning sequence, and its transform is applied last in 
mapping from pattern to image coordinates. Other orders are 
possible, and are chosen to suit the particular application. 

There is a redundant degree of freedom among list 150 
elements logy size 1560, log x size 1555, and log size 1550. 
These three generalized-DOFs cover only a two degree of 
freedom search space, which any of the three possible pairs 
are sufficient to cover. The use of these three, however, gives 
the user of the invention much greater flexibility in speci­
fying the search space than if only two non-redundant 
generalized-DOFs were used. Specifically, the user has 7 
sensible choices-holding all three fixed, allowing anyone to 
vary, and allowing any pair to vary. 

FIG. 17 shows a data set that represents a result corre­
sponding to an instance of a pattern 105 in a run-time image 
130. A list of results 160 is the primary output of the 
invention. Element position 1700 specifies the position in 
image coordinates of the origin of the pattern coordinate 
system at the match pose, i.e. the pose corresponding to the 
instance of pattern 105 in run-time image 130 represented by 
the result. Element probeMER 1710 specifies the minimum 
enclosing rectangle in image coordinates of the probes at the 
match pose, and is used to determine whether or not two 
results overlap sufficiently in position to be considered 
possible duplicates. 

Element score 1720 is the match score, which is refined 
and updated as run-time step 140 progresses. During coarse 
scan step 1925 it is set to a value interpolated among a set 
of values of first match function S1(a) of Equation Sc, 
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evaluated at a corresponding set of offsets a in gradient 
direction image 244 that includes a local maximum of S1 and 
its neighbors. Subsequently during the coarse scan step 
1925, element score 1720 is refined by interpolating among 
neighboring results in each non-fixed generalized-DOE 5 

During fine scan step 1940 it is set to second match function 
S2 of Equation 7. During steps 1930 and 1945, score 1720 
is set to the value of third match function S3 of Equation 8. 

Element contrast 1730 is set to the median gradient 
magnitude value Mmediam as defined by equations 4a and 4b, 10 

and computed as part of determining target gradient mag­
nitude point 1352 needed for third match function S3 . 

Element DOFParameters 1740 is a list of generalized­
DOF parameters corresponding to generalized-DOF list 150 15 
and specifying the non-translation degrees of freedom of the 
pose represented by the result. Element DOFindices 1750 is 
a list of step indices corresponding to generalized-DOF list 
150. A step index for a generalized-DOF is an integer 
between 0 and numCoarseSteps-1 that indicates a specific 

20 
step during the coarse scan step 1925 for said generalized­
DOF. Element DOFindices 1750 is used to identify results 
that are neighbors along a generalized-DOF, as further 
described below. 

FIG. 18 shows how position overlap is calculated for a 25 

pair of results to determine if they might be neighbors or 
duplicates. Overlap is a value between 0 and 1 inclusive that 
indicates degree of position overlap (i.e. overlap in the 
translation degrees of freedom) between two results. 

30 
Step 1910 computes run-time granularity grun as the 

product of training granularity model.granularity 1010 and 
s =m;=' but not less than 1.0. Step 1915 processes run-time 
image 130 to obtain gradient magnitude image 242 and 
gradient direction image 244, following the steps of FIG. 2, 
and using run-time granularity grun· 

Step 1920 determines, for each generalized-DOF element 
1490 of dofList 150, settings for maxStepSize 1410, start 
1420, numCoarseSteps 1430, and stepSize 1435. 

In a preferred embodiment, maxStepSize 1410 is com­
puted from the geometry of the probes and the number of 
non-fixed generalized-DOFs. In the following, let: 

P; be the position vector 1100 of the i'h probe 1190; 
(x;, y;) be the components of the position vector 1100 of 

the i'h probe 1190; 
8; be the direction 1110 of the i'h probe 1190; 
U; be a unit vector in direction 1110 of the i'h probe 1190; 
wi be the weight 1120 of the i'h probe 1190; 
n be the number of generalized-DOFs on dofList 150 that 

are not fixed, i.e. where low 1400 does not equal high 
1405; 

M be a stepSizeMatrix 1450 of a generalized-DOF 1490; 
and 

f be a stepSizeFactor 1455 of a generalized-DOF 1490. 
Define the center of projection c=( ex, cy) of a list of probes 

1000 as the point that minimizes the sum of squared distance 
between lines, passing through the probes positions normal 
to the gradient direction, and said point. The center of 

In FIG. 18a, rectangle 1800 is the element probeMER 
1710 of a first result, with center point 1802 at distance w 1 

1804 from the left and right edge and distance h1 1806 from 
the top and bottom edge. Similarly, rectangle 1810 is the 
element probeMER 1710 of a second result, with center 
point 1812 at distance w2 1814 from the left and right edge 
and distance h2 1816 from the top and bottom edge. 

30 projection is similar to center of mass of a set of points, 
except that center of projection considers the probes to 
provide information in only one degree of freedom, the 
gradient direction, instead of 2 degrees of freedom as for a 
normal point. Center of projection can be computed as 

35 follows: 

Since in general the minimum enclosing rectangles are of 
different shapes, the relative positions dx 1818 and dY 1808 
of the center points 1802 and 1812 as shown in FIG. 18b are 
used instead of area of intersection to determine overlap. 40 

The formula for overlap is the product of an x overlap term 
and ay overlap term, as follows: 

~ ( dx I~ ~ ( dy I~ 
!max; 1 - ---, 01: ·!max; 1 - --, 01: 
~ ~ WI + W2 ) ~ ~ ~ h 1 + h1 ) J 

(9) 45 

FIG. 18c shows examples of overlap 1.0 1820, overlap 0.5 
50 

1825 and 1835, overlap 0.25 1840, and overlap 0.0 1830 and 
1845. 

FIG. 19 is a top-level flow chart of a preferred embodi­
ment of run-time step 140. Step 1900 sets pseudo-code 
identifiers model and dofList to model 120 and list of 55 
generalized-DOFs 150, respectively, for reference by sub­
sequent pseudo-code. 

Step 1905 determines the "nominal" scale factor snominaz 

r;=X; cos(8;)+y; sin(8;) 

Lr;cos(B;) ~ sin
2
(8;)-

; ' 

Lr;sin(B;) ~ cos(B; )sin(B;) 

; ' 
Cx = --------------L cos 2 ( e, )~sin 2 ( e, )- (~cos( e, )sin( e,) t 

L r;sin( 8;) ~ cos 2 
(8; )-

; ' 

Lr;cos(B;) ~ cos(B; )sin(B;) 

; ' 
Cy= --------------L cos 2 ( e, )~sin 2 ( e, )- (~cos( e, )sin( e,) t 

(10) 

of the set of ranges of parameters of all the generalized­
DOFs. This is a crude estimate of the typical scale factor of 
the non-translation poses generated by list of generalized­
DOFs 150, and is most useful when the range of scale factors 

For each generalized-DOF element 1490 of dofList 150, 
60 maxStepSize 1410 is computed as follows: 

is small and significantly different from 1.0, i.e. the patterns 
are expected to be significantly larger or smaller in run-time 
image 130 than training image 100. The value snominaz is the 65 

product, over generalized-DOF elements 1490 of dofList 
150, of all values scaleFactor 1460 of FIG. 14. 

b= ~
------------------------------

2.: w;· [u;· (M(p;- c))]2 
; 

l:w; 
; 

( 11) 
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-continued 
( 1.5 I 

f·min; -, 0.2 I 
~ b ) 

maxStepSize = -----

(12) 

Equation 11 computes a baseline b in units of distance that 

32 
fine scan step 1940. Step 1945 establishes the final score 
1720 and contrast 1730 for each result 1790. Step 1945 also 
stores individual probe ratings, which are the product of 
magnitude rating factor Rmag and direction rating factor Ra;r 

5 from equation 8, in result element 1760. 
Step 1950 repeats step 1935 to discard weak and duplicate 

results. For step 1950, however, weak results are defined to 
be those whose score 1720 is below 0.9 of the global accept 
threshold. 

is a measure of the sensitivity of the probes to motion 10 

induced by the generalized-DOFs parameter. For example, a 
circular boundary would have probes pointing radially that 
would be very sensitive to size changes but insensitive to 
rotation. In the equation, probe position vectors p 1100, 
relative to center of projection c, are adjusted depending on 15 

the specific generalized-DOF by matrix M 1450, and then 
the dot product with unit vector u in the probe direction 1110 

FIG. 20 provides more details on the setting of general­
ized-DOF elements start 1420, numCoarseSteps 1430, and 
stepSize 1435 in step 1920. Step 2000 determines if the 
requested range of parameter values between low 1400 and 
high 1405 is sufficiently large to require coarse scanning. If 
the range from low 1400 to high 1405 is not greater than 
maxStepSize 1410, then no coarse scanning is required and 
so numCoarseSteps 1430 is set to 1 in step 2005, and start 
1420 is set to the midpoint of the range in step 2010. is taken. In the example of a circular boundary, for a size 

generalized-DOF, e.g. 1550 or 1570, M is such that the said 
dot product gives the radius of the circle, and baseline b also 20 

becomes the radius of the circle. For a rotation generalized­
DOF such as 1540, M is such that the said dot product gives 

If coarse scanning is required, numCoarseSteps 1430 is 
set in step 2020 to be the range divided by maxStepSize 
1410, but rounded up to the nearest integer. Note that this is 
not yet the final value for numCoarseSteps, because bound­
ary conditions must be considered. The actual step size 
stepSize 1435 is then set in step 2025 to be the range divided 

0. In equation 12, the bigger the baseline b, the more 
sensitive is the pattern to changes in the parameter of the 
generalized-DOF, and so the smaller the step size should be. 25 

The constants 1.5 and 0.2 are used in a preferred embodi­
ment, although other constants can be used to obtain similar 
performance in other applications. The step size is further 
reduced by the square root of the number of generalized­
DOFs that can vary, since if the pose can be off in more 30 

degrees of freedom simultaneously then the step sizes must 

by numCoarseSteps. The result of steps 2020 and 2025 is 
that stepSize 1435 is the smallest value that can cover the 
range in the same integral number of steps as can be done by 
maxStepSize 1410. 

Step 2030 tests to see if the generalized-DOF is cyclic and 
if the requested range covers the full cycle. If so, start 1420 
is set to low 1400 in step 2040-in this case it doesn't really 
matter where the scan starts. The value of numCoarseSteps 
1430 computed in step 2020 is correct, because the range has 
no end points. If the requested range is not a full cycle 

be smaller. 
Once maxStepSize 1410 is set, elements start 1420, 

numCoarseSteps 1430, and stepSize 1435 are set as shown 
in FIG. 20 and described below. 35 (including non-cyclic generalized-DOFs), start 1420 is set 

one-half step below low 1400 in step 2050, and numCoars-
Step 1925 does the coarse scan of the entire search space, 

producing a preliminary list of results 160 for further 
processing. Note that the second argument I is the identity 
transform. Coarse scan step 1925 is described in more detail 
below. 

Step 1930 evaluates the third match function S3 (equation 
8) for each element of results 160, at the pose determined by 
coarse scan step 1925. The purpose of step 1930 is to qualify 
each result as being sufficiently high in score to be worth 
running the fine scan step 1940. Step 1930 is reasonably fast 
since only one pose is evaluated for each result. 

Step 1935 discards both weak results and duplicate 
results. In a preferred embodiment, a weak result is one 
whose score 1720 is below some fraction of a global accept 
threshold chosen to be suitable for the application. For step 
1935, said fraction is 0.75-only results substantially 
weaker than the accept threshold are discarded, since the fine 
scan step 1940 might improve the score. In a preferred 
embodiment a pair of results are considered duplicates if 
their overlap value, as described in FIG. 18, is at least 0.8, 
and if their lists of generalized-DOF parameters DOFPa­
rameters 1740 agree to within dupRange 1415 for all gen­
eralized-DOFs on dofiist 150. For all duplicate pairs in 
results 160, the member of the pair with the lower score 
1720 is discarded. 

Step 1940 does the fine scan on each remaining result in 
results 160, as further described below. Step 1940 estab­
lishes the final position 1700, probeMER 1710, and DOF­
Parameters 1740 for each result 1790. 

Step 1945 evaluates the third match function S3 (equation 
8) for each element of results 160, at the pose determined by 

eSteps 1430 is increased by two in step 2060 to cover the end 
points. 

FIG. 2la is a flow chart of a function coarseScanDOF 
40 2100 that scans all of the generalizedDOFs on input list 

dofiist 2102, and returns a list of results 1790 describing 
poses representing possible instances of pattern 105 in 
run-time image 130. Function coarseScanDOF 2100 is a 
recursive function-it operates on an outermost generalized-

45 DOF which is the first element of input list 2102, and calls 
itself to operate on the inner generalized-DOFs represented 
by the rest of the list. At each level of the recursion a partial 
pose is constructed by composing a current mapper 1445 
transform with the input map 2104 constructed by recursion 

50 levels representing outer generalized-DOFs, and passing 
said partial pose along to recursion levels representing inner 
generalized-DOFs. At the outermost level in step 1925 the 
identity transform is provided for input map 2104. At the 
innermost level, when step 2110 determines that input 

55 dofList 2102 is null, the non-translation portion of the pose 
is complete and the procedure coarseScanXY 2200 of FIG. 
22a is called in step 2112 to scan the translation degrees of 
freedom. 

If input dofiist 2102 is not null, step 2114 extracts the first 
60 element representing the current generalized-DOF, and the 

rest of the list representing inner generalized-DOFs. An 
empty results list is allocated in step 2116. Loop step 2118 
executes search loop 2130 for a sequence of values of a step 
index. Each iteration of loop search 2130 scans one param-

65 eter value of the current generalized-DOE When the scan­
ning is complete, loop step 2120 executes peak loop 2160 
for every result found by scan loop 2118. Each iteration of 
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peak loop 2160 determines whether a result is a peak-a 
local maximum in the current generalized-DOF-and if so, 
interpolates it, otherwise marks it for deletion. Step 2122 
actually deletes all results marked for deletion, and finally 
step 2124 returns the list of remaining results. 

34 
1200 resulting in a list of compiled probes 1195 and a 
minimum enclosing rectangle of the probes. Step 2214 
evaluates first match function S1(a) at a subset of possible 
offsets a in gradient magnitude image 244, as selected by a 

5 scan pattern described below. Only image offsets a such that 
all of the compiled probes, each placed at its offset 1130 
relative to a, contained in said image 244, are evaluated by 
step 2214. 

FIG. 2lb is a flow chart of search loop 2130. Step 2140 
computes the parameter value corresponding to the current 
step index. Step 2142 is the recursive call to coarseScanDOF 
2100 that scans the inner generalized-DOFs. Note the sec­
ond argument, which composes the current mapper trans- 10 

form with map input 2104. Loop steps 2144, 2146, 2148, 
and 2150 add the current step index and parameter value to 
the beginning of elements DOFindices 1750 and DOFPa­
rameters 17 40 in every result 1790 returned by recursive 
step 2142. Finally, in step 2151 the list of results returned by 15 

recursive step 2142 is added to the end of results and in step 
2154 the search loop continues to the next index at step 2118 

Loop step 2216 iterates over the scores evaluated in step 
2214, and step 2218 examines the scores and looks for local 
maxima above a noise threshold. In a preferred embodiment, 
the noise threshold is set to 0.66 of the global accept 
threshold. Detection of local maxima is described below. 
When a local maximum above the noise threshold is found, 
new result loop 2240 is executed; otherwise, control flows to 
step 2220 and then back to 2216. When all the scores have 
been examined by step 2218, control passes to step 2222 
which returns any results found. of FIG. 2la. 

FIG. 2lc is a flow chart of peak loop 2160, which operates 
on an specific result r. Steps 2170 and 2172 search results for 
a previous and next neighbor of r, respectively. A neighbor 
of r is a result whose step index for the current generalized­
DOF, which is the first element of DOFindices 1750, differs 
by exactly 1 from that of r, whose step indices for all inner 
generalized-DOFs, which are the second and subsequent 
elements if any of DOFindices 1750, differs by no more than 
1 from that of r, and whose overlap value with r (equation 
9) is at least 0.8. For cyclic generalized-DOFs where the 
scan range covers the full cycle, step index differences are 
considered modulo numCoarseSteps 1430. A previous 
neighbor is a neighbor where the current step index differ­
ence is -1, and a next neighbor is a neighbor where the 
current step index difference is + 1. 

Step 2174 determines if result r is a peak (local maximum 
in score) compared to its neighbors. Note that if a previous 
or next neighbor was not found, its score is assumed to be 
0. If not, r is marked for deletion in step 2176. If so, the 
parameter value is interpolated in step 2178, and, if both a 
previous and next neighbor were found, the score is inter­
polated in step 2180, and then the loop is continued in step 
2182. 

The following 3-point parabolic interpolation functions 
are used: 

r-l 
lnterpPos (l, c, r) = ----

4c - 2(l + r) 

(r - l J2 
lnterpPos (l, c, r) = c + -----

16 c - 8(1 + r) 

(13) 

The interpolated parameter value is obtained by adding: 

stepSize *InterpPos(prev Result.score, r.score, nextRe­
sul t.score to the current value. The interpolated 
score is: 

InterpScore(prev Result.score, r.score, nextRe­
sul t.score) 

FIG. 22b is a flow chart of new result loop 2240, which 
20 is executed whenever a local maximum in score above the 

noise threshold is found by step 2218. Step 2242 allocates a 
new result 1790. Step 2244 initializes the values by setting 
position 1700 to an interpolated position of the maximum 
score, score 1720 to an interpolated score, probeMER 1710 

25 to the minimum enclosing rectangle computed by compileP­
robes 1200, offset by the interpolated position of the maxi­
mum score, and lists DOFParameters 1740 and DOFindices 
1750 to empty lists. 

Step 2246 searches the results found so far for a duplicate 
30 of the new result. In a preferred embodiment, a duplicate is 

a result with overlap value (equation 9) of at least 0.8. Steps 
2248 and 2250 select among three cases. If no duplicate was 
found, step 2252 adds the new result to the list. If a duplicate 
was found with a score lower than the new result, step 2254 

35 replaces the duplicate with the new result. If a duplicate was 
found with a score not lower than the new result, step 2256 
discards the new result. Finally, step 2258 transfers control 
back to step 2216 to continue looking for local maxima. 

FIG. 23 shows coarse x-y scan patterns used by step 2214 
40 in a preferred embodiment. In each example the dots indi­

cate relative positions to be evaluated. Traditionally tem­
plate matching systems have evaluated a match score at 
every position, or in a square pattern of sub-sampled posi­
tions, and the same may be done in a less preferred embodi-

45 ment of the invention. The patterns shown in FIG. 23, called 
hexagonal scan patterns due to the shape of the neighbor­
hoods, e.g. 2304, 2314, 2324, and 2334, are both more 
efficient and more flexible than a square or any other pattern 
method. With hexagonal patterns it is possible to evaluate a 

50 fraction of possible positions, i.e. 1h for example 2300, 114 for 
example 2310, 116 for example 2320, and 119 for example 
2330, that is not restricted to reciprocals of perfect squares, 
as for square subsampling patterns, and not significantly 
anisotropic, as for rectangular sub-sampling patterns. For a 

55 given fraction of positions, the worst case distance from any 
point in the plane to the nearest evaluated point is less for the 
hexagonal pattern than for any other pattern. Since the grid 
itself is square it is only possible to approximate a hexagonal 

FIG. 22a is a flow chart of a function coarseScanXY 2200 60 

pattern, but the worst case distance is still very close to 
optimum. In a preferred embodiment, the 114 pattern 2310 is 
used. used by coarseScanDOF 2100 to scan the translation degrees 

of freedom. In takes one input map 2202 that specifies the 
non-translation portion of the pose, and returns a list of 
results 1790 representing potential instances of pattern 105 
in run-time image 130 at poses corresponding to map 2202. 

Step 2210 allocates an empty list of results. Step 2212 
compiles list of probes 1000 using function compileProbes 

FIG. 23 shows example evaluated points 2302, 2312, 
2322, and 2332, and corresponding neighborhoods 2304, 
2314, 2324, and 2334 for use by peak detection step 2218 

65 and interpolation step 2244. 
FIG. 24a shows peak detection rules used by a preferred 

embodiment for step 2218. Evaluated point 2400, with 
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neighborhood 2405 corresponding schematically to any hex­
agonal neighborhood, e.g., 2304, 2314, 2324, and 2334, is 
considered a local maximum if its score is greater than or 
equal to the scores of neighbors 2410, 2415, and 2420, and 
greater than the scores of neighbors 2425, 2430, and 2435. 5 

two iterations are done. Loop steps 2510 and 2520 halve the 
step size for each generalized-DOF on dofList 150. Loop 
steps 2530 and 2540 call procedure fineScanDOF 2600 for 
each result. Note that the second argument I to fineScanDOF 
2600 is the identity transform. 

FIG. 24b gives symbols to be used for interpolation on 
hexagonal scan patterns, as is used in step 2244. Evaluated 
score at local maximum z 2440, with neighborhood 2445 
corresponding schematically to any hexagonal neighbor­
hood, e.g., 2304, 2314, 2324, and 2334, has neighboring 10 

scores in a first grid direction xP 2450 and Xn 2465, in a 
second grid direction up 2455 and Un 2470, and a third grid 
direction vP 2460 and vn 2475. For each grid direction a 
three-point parabolic interpolation is computed as follows: 

FIG. 26 is a flow chart of procedure fineScanDOF 2600, 
with inputs doflist 2602, map 2604, and result 2606. Func­
tion fineScanDOF 2600 is a recursive function-it operates 
on an outermost generalized-DOF which is the first element 
of input list 2602, and calls itself to operate on the inner 
generalized-DOFs represented by the rest of the list. At each 
level of the recursion a partial pose is constructed by 
composing a current mapper 1445 transform with the input 
map 2604 constructed by recursion levels representing outer 

(14) 

Construct lines 2480, 2482, and 2484 normal to grid 
directions x, u, and v respectively, and at a distance rx, ru, 
and rY, respectively from local maximum 2440 in the direc­
tion of xP 2450, up 2455, and vP 2460 respectively. The 
interpolated position 2490 is the point that minimizes the 
sum squared distance between lines 2480, 2482, and 2484 
and point 2490. In the example, rx and ru are negative and rv 
is positive. The offset (llx, lly) of interpolated point 2490 
from the local maximum point 2440 is given by: 

where 2x3 matrix J is: 

Pattern 

V2 2300 
~(2 -:) 2 0 

V4 2310 __'.__( 50 25 -25) 
35 0 42 42 

V6 2320 1 ( 39 24 -15) 
22 -3 32 35 

V9 2330 1 ( 207 117 -90) 
96 -21 169 190 

The interpolated score is: 

max(InterpScore (xm z, xp), InterpScore (um z, up), 
lnterpScore (vm z, vp)). 

( 15) 

In a less preferred embodiment using a hexagonal scan 
pattern, interpolation is accomplished by fitting an elliptical 
paraboloid to scores 2440, 2450, 2455, 2460, 2465, 2470, 
2475, and defining the position and height of the extremum 
of said elliptical paraboloid to be the interpolated position 
and score. 

FIG. 25 is a top level flow chart of fine scan step 1940. 

15 generalized-DOFs, and passing said partial pose along to 
recursion levels representing inner generalized-DOFs. At the 
outermost level in step 2540 the identity transform is pro­
vided for input map 2604. At the innermost level, when step 
2610 determines that input dofList 2602 is null, the non-

20 translation portion of the pose is complete and control flows 
to fine scan x-y step 2700 to scan the translation degrees of 
freedom. 

If input doflist 2602 is not null, step 2620 extracts the first 
element representing the current generalized-DOF, and the 

25 rest of the list representing inner generalized-DOFs. Step 
2630 fetches the current value of the parameter correspond­
ing to the current generalized-DOF from list DOFParam­
eters 1740 in the result 2606 being refined. Step 2640 calls 
fineScanDOF 2600 recursively to scan the inner general-

30 ized-DOFs for poses corresponding to the current parameter 
setting of the current generalized-DOE Step 2650 tests to 
determine if the current generalizedDOF is fixed, and if so 
step 2660 returns, otherwise control flows to hill climb step 
2900. 

35 FIG. 27 is a flow chart of the translation portion of the fine 
scan step 1940. Step 2710 makes a list of compiled probes 
based on the non-translation degrees of freedom specified by 
input map 2604. Step 2720 evaluates second match function 
S2 at a set of offsets surrounding the current position 1700 

40 of result, determined by fine scan pattern 2800. Step 2730 
stores the highest match score found in step 2720 in element 
score 1720 of result. Step 2740 sets position 1700 of result 
to the position of the highest match score, interpolated 
between north-south neighbors (y) (v) neighbors, and east-

45 west (x) neighbors, using InterpPos (equation 13). Step 2750 
returns from procedure fineScanDOF 2600. 

FIG. 28 shows the fine scan pattern 2800 used in a 
preferred embodiment 32 offsets are evaluated surrounding 

50 
the current best position 1700. 

FIG. 29 is a flow chart of hill climb step 2900, used for 
non-fixed generalized-DOFs. In step 2910 two temporary 
results rp (plus direction) and rn (minus direction) are 
allocated and initialized to input result 2606. Step 2920 

55 evaluates poses at plus and minus one step size from the 
current parameter value. Step 2930 tests to see if the score 
improves in either the plus or minus direction. If not, control 
flows to interpolate step 2950. If so, step 2940 tests to see 
which direction is better, plus or minus. If the plus direction 

60 is better (has higher score), control flows to plus direction 
step 3000. If the minus direction is better, control flows to 
minus direction step 2990. Once plus direction step 3000 or 
minus direction step 2990 finishes, step 2950 interpolates 
the parameter value by adding 

Loop step 2500 does some number of iterations of refine- 65 

ment, where each iteration refines all of the results and the 
step size is halved each time. In a preferred embodiment, 

stepSize*InterpPos(rn.score, result. score, rp.score) 
to the appropriate parameter value in list DOF­
Parameters 1740 of result 1790. 
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FIG. 30 is a flow chart of plus direction step 3000. Step 
3010 tests to see if stepping in the plus direction would 
exceed the high limit 1405 of the search range. If so, control 
flows to ending step 3060. If not, step 3020 steps the 
generalized-DOF parameter in the plus direction. Step 3030 5 

shifts the temporary results over by one step, and step 3040 
evaluates a new set of poses in the plus direction. Step 3050 
tests to see if the score at the new parameter value is greater 
than the previous best score, and if so control flows back to 
step 3010 to continue scanning in the plus direction. If not, 10 

scanning terminates at step 3060, and control flows back to 
step 2950. 

Minus direction step 2990 is identical in form to plus 
direction step 3000, with obvious modifications to scan in 
the other direction. Details are not shown. 15 

In a preferred embodiment, granularity 1010 is chosen 
automatically during training step 300 based on an analysis 
of pattern 105. The portion of training image 100 corre­
sponding to pattern 105 is processed to extract boundary 
points 270 at a set of granularities according to FIG. 2, and 20 

each resulting boundary point list 270 is processed accord­
ing to FIGS. 4, 5, and 6, corresponding to steps 320, 330, 
340, and 350, to produce, for each boundary point, a left and 
right neighbor, to produce chains, to discard weak chains, 
and to determine the total arc length of each chain. 25 

In the following, for any given boundary point list 270 
and associated chains at some granularity g, let: 

P, be the position vector of the r'h boundary point. 
x" x, be the components of p,. 
d, be the gradient direction of the r'h boundary point. 
M, be the gradient magnitude of the r'h boundary point. 
u, be the unit vector in the gradient direction d,. 
a be the area of pattern 105 in pixels. 

30 

I, be the arc length of the chain, which is the sum of the 35 

arc lengths of all the chain segments, containing the r'h 
boundary point. 

38 

~max(ld,- d11 360 - 16.875 °, 0 J (18 J 
C(r, jJ = 1 - min:----------

l 11.25 ° 

In this formula, the absolute difference of the two gradient 
directions is taken module 360°, so that the result is positive 
and in the range 0-180°. The curvature rating is 1 for 
direction differences less than 16.875°, 0 for direction dif­
ferences above 28.125°, and proportionally between 0 and 1 
for differences between 16.875° and 28.125°. 

Define a parallel magnitude value e, whose purpose is to 
estimate the gradient magnitude of boundaries close to and 
parallel to the r'h boundary point. Let G, be a set of boundary 
points found approximately along a line passing through 
boundary point r and in gradient direction d,. Define 

e, = ~ Mi" P(r, j)-D(r, jJ 
JEGr 

(19 J 

so that e, is the sum over all boundary points j in G, of the 
product of gradient magnitude Mj, a parallel rating 
P(r,j) and a distance rating D(r,j), where 

. _ . [max( Id, - d1I 180 - 11.25°, OJ l 
P(r, 1J _ 1-rnm ll.

25
" , 1 

(20J 

. __ . [max(lu,·(p,-pJJl-1.0, OJ l 
D(r, 1J - 1 mm 

4
.0 , 1 

(21J 

An estimate of a suitable granularity gest is made using the 
formula: 

Parallel rating P(r,j) is similar to curvature rating C(r,j), 
40 except that the absolute difference of gradient direction is 

taken module 180°, and ranges from 0° to 90°. 

- ~)~~-
( 16 J Distance rating D(r,j) is based on the distance between 

gest - --

8 

A set of integer granularities m the range 1 to gmax' 
inclusive, is analyzed, where 

boundary points r and j in gradient direction d,. This is the 

45 
effect of the dot product shown. Distances smaller than 1 
pixel get a rating of 1.0, greater than 5 pixels get a rating of 
0, and proportionally in between. 

Define a weight W, for the r'h boundary point. 

(17) 50 
W,=Z,0

·
25.C(r, left)·C(r, right)·rnax(m,-e,,O) 

For each granularity g in the above range, an overall 
rating Qg is computed. The formulas for the rating Qg have 
the following goals: 

To prefer granularities closer to gesr 

To prefer that boundary points be spread out, covering 
more area. 

To prefer longer chains. 
To prefer smaller curvature along the chains. 
To prefer stronger gradient magnitudes. 
To prefer that boundary points not be near other parallel 

boundaries. 
To normalize the rating so that ratings at different granu­

larities can be compared. 
Define a curvature rating function of neighboring bound­

ary points r and j as follows: 

55 

60 

65 

where "left" and "right" identify the left and right neigh­
bors of the r'h boundary point along the chain, respec­
tively. The weight W, is the gradient magnitude m" but 
discounted for near by parallel magnitudes e" further 
discounted for excessive left or right curvature ratings, 
and enhanced based on chain length according to a 
power law. In a preferred embodiment the power is 
0.25. 

Now define the overall rating 

(22J 

where I is boundary point moment of inertia: 
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(23) 

I= 5 

The moment of inertia factor takes into account the spread 

40 
representing a relative position at which at least one test 
is performed in an image at a given pose, each such test 
contributing evidence that the pattern exists at the pose; 

providing the run-time image; 
comparing the model with the run-time image at each of 

a plurality of poses; 
computing a match score at each pose to provide a match 

score surface; 
of the boundary points and their weights, which in turn take 
into account chain length, curvature, gradient magnitude, 10 

and parallel boundaries. The factor 

locating local maxima in the match score surface; 
comparing the magnitude of each local maxima with an 

accept threshold; and 

-l1og(-1-ll 
e gest 

(24) 

discounts (or attenuates) the moment of inertia based on the 
ratio of g to the estimated granularity gesr The factor 

15 

gl.625 (25) 20 

compensates for the fact that all distances scale by g so that 
number of boundary points scales by g, moment of inertia by 

returning the location of each local maxima with magni­
tude that exceeds the accept threshold so as to provide 
the location any instances of the pattern in the image. 

2. The method of claim 1, wherein the model is created 
from a training image. 

3. The method of claim 1, wherein the model is synthe­
sized from a geometric description. 

4. The method of claim 1, wherein each probe provides a 
measurement of gradient direction. 

5. The method of claim 1, wherein each probe provides a 
measurement of both gradient direction and magnitude. 

g2
, and arc length 10 .25 scales by g0

.2
5

, for total scale by g3
·
25

. 

The square root in the formula for I makes the scale factor 25 
gl.625. 

6. The method of claim 1, wherein each probes represent 
different tests at different steps of the method. 

7. The method of claim 1, wherein a probe is character­
ized by a position, a direction, and a weight. 

FIG. 31 is a flow chart showing how model granularity 
1010 is selected based on ratings Qg. In step 3100 a 
granularity gbest and rating Qbest are initialized. Loop step 
3105 scans all integer values of granularity n in the range 1 
to gmax' inclusive. For each loop interaction, variables q and 
g are initialized in step 3110. The loop looks for maxima of 
Q, interpolates both rating and granularity at the maxima, 
and then chooses the interpolated granularity at the maxi­
mum with the highest interpolated rating. 

Steps 3115, 3120, and 3125 handle the case where n is 1, 
the smallest granularity considered. Step 3120 tests to see if 
n=l is a maximum, and if so step 3125 is the "interpolation" 
for this case. 

Steps 3130, 3135, and 3140 handle the case where n is the 
largest granularity considered. Step 3135 tests for a maxi­
mum, and step 3140 is the "interpolation". 

Steps 3143 and 3145 handle the case where n is neither 
the smallest nor largest granularity considered, and so a 
3-point interpolation can be done. Step 3143 tests for a 
maximum. The formulas shown for step 3145 implement a 
3-point parabolic interpolation similar to InterpPos and 
InterpScore, except that the domain of the parabola is log 
granularity instead of the usual linear scale. 

Steps 3150 and 3155 replace Qbest and gbest with q and g 
if a better rating q has been found, and step 3160 continues 
the loop at step 3105. 

When the loop is finished, step 3170 sets model granu­
larity 1010 to the interpolated granularity gbest at the maxi­
mum with highest rating Qbesr 

Other modifications and implementations will occur to 
those skilled in the art without departing from the spirit and 
the scope of the invention as claimed. Accordingly, the 
above description is not intended to limit the invention 
except as indicated in the following claims. 

What is claimed is: 
1. A method for determining the presence or absence of at 

least one instance of a predetermined pattern in a run-time 
image, and for determining the multidimensional location 
(pose) of each present instance, the method comprising: 

providing a model that represents the pattern to be found, 
the model including a plurality of probes, each probe 

8. The method of claim 1, wherein probe position is a 
point in a pattern coordinate system at which, aft transform­
ing to a image coordinate system using a given pose, a 

30 measurement and test is to be made. 

35 

9. The method of claim 1, wherein probe direction is the 
expected gradient direction in pattern coordinates at the 
indicated position, which also must be transformed to image 
coordinates prior to use. 

10. The method of claim 1, wherein probe weight gives 
the relative importance of the probe in determining the 
presence and location of the pattern. 

11. The method of claim 1, wherein probe weights can be 
positive or negative, a negative weight indicating that a test 

40 showing similar gradient direction and sufficient gradient 
magnitude counts as evidence against the existence of the 
pattern at the specified pose. 

12. The method of claim 1, wherein the model includes a 
plurality of probes placed at selected points along bound-

45 aries represented by the corresponding pattern. 
13. The method of claim 12, wherein the probes are 

uniformly spaced along segments of the boundaries charac­
terized by a small curvature. 

14. The method of claim 12, wherein the spacing between 
50 the probes is chosen so that a predetermined number of 

probes is used. 
15. The method of claim 14, wherein fewer probes can be 

used to prevent the spacing from being set below some 
predetermined minimum value, and more probes can be 

55 used to prevent the spacing from being set above some 
predetermined maximum value. 

16. The method of claim 15, wherein the predetermined 
number of probes is 64. 

17. The method of claim 1, wherein model granularity is 
60 selectable over a wide range down to the limit imposed by 

an sensor that provides the image to be searched. 
18. The method of claim 1, wherein providing a model 

includes automatically choosing a suitable granularity. 
19. The method of claim 1, wherein providing a model 

65 includes using at least two granularities are used, so that the 
speed advantages of the coarsest granularity and the accu­
racy advantages of the finest granularity can be obtained. 
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20. The method of claim 19, wherein The model includes 
a separate set of probes for each granularity. 

21. The method of claim 1 wherein the horizontal and 
vertical components of gradient are measured using a Sobel 
kernel. 5 

22. The method of claim 21, wherein a CORDIC algo­
rithm is used to compute gradient magnitude and direction. 

23. The method of claim 1, wherein providing the run­
time image includes: 

applying Sobel kernels to a filtered, sub-sampled acquired 10 

image so as to provide a gradient magnitude image and 
a gradient direction image that together provide image 
gradient information at uniformly spaced points. 

24. The method of claim 1, wherein computing a match 
score includes computing gradient direction. 15 

25. The method of claim 24, further including computing 
gradient magnitude. 

26. The method of claim 24, further including computing 
probe weight. 

27. The method of claim 24, wherein computing a match 20 

score includes: 
assigning a rating of 0 to probe positions having a gradient 

direction error below a first predetermined value; 
assigning a rating of 1 to probe positions having gradient 

direction error above a second predetermined value; 25 

and 
assigning a rating between 1 and 0 to probe positions 

having a gradient direction error that falls between the 
said first and second predetermined values. 

28. The method of claim 1 wherein computing a match 30 

score includes: 
computing a weighted sum of probe ratings; and 
dividing the weighted sum by the total weight of all 

probes to provide the match score. 
29. The method of clam 28, wherein all probe weights are 35 

1. 
30. The method of claim 28, wherein an expected value of 

the weighted sum of the probe ratings on random gradient 
directions is subtracted from an actual weighted sum, with 
the total weight adjusted accordingly, so that a perfect match 40 

still gets a score of 1.0 but an expected value of the score on 
random noise is 0. 

42 
31. The method of claim 1, wherein computing a match 

score includes: 
computing a direction rating factor for each probe; 
assigning a probe rating to each probe that is the product 

of the direction rating factor and a gradient magnitude 
under the probe; and 

computing a weighted sum of the probe ratings to provide 
the match score. 

32. The method of claim 1, wherein computing a match 
score includes: 

computing a direction rating factor for each probe; 
computing a magnitude rating factor that is 1.0 for gra­

dient magnitudes above a certain first value, 0 for 
magnitudes below a certain second value, and propor­
tionally between 0 and 1.0 for values between said first 
and second values; 

assigning to each probe a rating that is the product of the 
direction rating factor and the magnitude rating factor; 
and 

providing a match score that is a weighted sum of the 
probe ratings divided by the total weight of all the 
probes. 

33. The method of claim 1, wherein returning the location 
of each local maxima with magnitude that exceeds the 
accept threshold includes: 

refining the found positions of the local maxima by 
evaluating a small, dense set of poses surrounding each 
coarse peak. 

34. The method of claim 33, further including: 
interpolating among the dense set of poses to provide an 

interpolated position of the local maximum so as to 
provide a potential instance of the pattern in the run­
time image. 

35. The method of claim 34, further including: 
evaluating a match function to determine whether an 

instance of the pattern is actually present in the run­
time image at said pose by comparing the value of the 
match function to an accept threshold. 

* * * * * 


