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Presentation Outline | 9

» Seguences, Correlation, Cryptographic Properties,
Cryptanalysis, and Their Relation to Transforms for
Signals

» Indication Functions: A Bridge to Connect Resiliency
(Cross Correlation) and Propagation (Additive
Autocorrelation)

» Constructions of Boolean Functions with 2-Leve
(Multiplicative) AC and Three-valued Additive AC, and
more

» Discussions
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|Nn communications:

Applications of Pseudo-random Sequences

In cryptography:

» Orthogonal codes, cyclic codes

» CDMA (code divison multiple
access) applications

» Synchronization codes

» Radar, and deep water distance
range

» Testing vectors of hardware
design

» Key Stream Generators in Stream
Cipher Models

Functionsin Block Ciphers
Session Key Generators

Pseudo-random Number
Generators in Digital Signature
Standard (DSS), etc.

» Digital Water-mark
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Design of Pseudo-random Sequence

Generators

(8) Towards 2-Level (b) Towards Large
Auto-Correlation Linear Span

and Low Correlation

LFSR as Basic Blocks
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Stream Cipher Applications

D
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LFSRZ& Output ﬁu\ Length m
LFSRn / H nem

Output

A Combinatorial Function A Filtering Generator
Generator

f iIsaboolean function in n variables.
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Notation &

» F = GF(2"), afinitefield, a isaprimitive element of F
F, = GF(2), binary field.

» a={a}, abinary sequencewith period N|2"- 1; f(x) |,
the trace representation of a, I.e.,

a=f@'), i=01....
Note. T(X) is apolynomia function from GF(2") to GF(2)
which can be represented by

f(¥)=aTn" (AX), AT GF(2%)
Kk
where the K s are different coset leaders modulo 2" - 1, and n, is

the size of the coset containing k.

> X=Xkx@ +eo+x, @™ = (%, %) | an element in finite field
GF(2" or an element in the vector space F.,"




(Multiplicative) Autocorrelation |

The (multiplicative) autocorrelation of function f(X) is

defined as the autocorrelation of the sequence a, which
IS given by

N-1
C,(t)=1+Ct)=1+q (-D* ™, t =0,1,...

=0

The sequence a has an (ideal) 2-level autocorrelation if

i N If t ©0 (mod N)
Ct)=i .
7-1 otherwise
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Convolution or Additive Autocorrelation |

The additive autocorrelation of f (or the additive
autocorrelation of the sequence is defined through its trace
representation f) is defined as the convolution of f(x):

Ar(w) =g (-3
X F

G. Gong Beijing'04 9



Known Constructions of 2-Leve
Autocorrelation Sequences (or Orthogonal
Codes, or Hadamard Difference Sets)

= Number theory approach (N isaprime): quadratic residue

sequences (with N © 3 mod 4), Hall sextic residue sequences,
and the twin prime sequences.

N =2"- 1.
= PN-sequences = m-sequences (1931, Singer, 1958, Golomb)

s GMW sequences (1961, Golden-Miller-Welch, 1984, Welch-
Scholtz)

s Conjectured Sequences (Gong-Gaal-Golomb, 1997, No-
Golomb-Gong-Lee-Gaal, 1998)

= Hyper-oval Construction: (Maschietti, 1998)

s  Kasami Power Function Construction (Dobbertin, Dillon,
1998)

G. Gong Beijing'04 10
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2-level Additive Autocorrelation | &

f(x) iIsabent function if and only If

f)y=+J2", "I1F

Note. Bent functions only exists for n even.

f(x) has 2-level additive autocorrelation if and only if f(X) Is
bent. There are two general constructions for bent functions
(compared with the constructions of the binary sequences

with 2-level (multi.) autocorrelation, thisisrelatively easy).

Question: What is the best additive autocorrelation for n odd?

G. Gong Beijing'04 11



Transformsfor Signal (Sequence) Design

(Engineering Per spective)

Hadamard (Walsh) )
Transform of f: Convol gt_lon or
]’c‘(l ) _ é (_ 1)Tr(l )+ f (X) Add't'ye
o autocorrelation of f:

45

Time | Frequency 1A, (W)= § (- 0rfoew
doman | doman / i F

f (%) f(l)

They are related by the Convolution Law.
In other words, the square of the Hadamard transform of f is
equal to the Hadamard transform of the convolution of f with
Itself or additive autocorrelation of f. Conversaly,
AW)=2-§ (-7 F2()
2" Tk

which is afundamental relation through this representation.
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Desired Cryptographic Properties Wa%‘““

of Boolean Functions

Definition 1 (Siegenthaler, 1984)

A Boolean function f(x) in n variablesis
Kth-order correlation immuneif for
each k-subset K of {0, ...,n- 1}, Z=
f(x), considered as a random variable
over F,, isindependent of all x foril K.
Furthermore, if f(x) 1sbaanced and kth-
order correlation immune, then f(x) is
said to bek-order resilient.

Property (Xiao and
Massey, 1988). f(x) is kth-
order correation immuneif
and only if

f(1)=0, LEH( )£k

where H(x) isthe Hamming
weight of x.

Nonlinearity of f is defined as the
minimum distance of f(x) with all affine
functions, or equivalently,

Nf:2”'1-%max, 1f()]

A historical remark.
Golomb studied these
concepts under the
terminology of invariants of
boolean functionsin 1959,
and he isthe first to compute
them using Hadamard
transform.
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Definition 2.

A Boolean function f(x) in nvariablesissaid to
satisfy the avalanche criterion (SAC) If

A(wW=0  for alwwith H(w)=1

to have the k-order propagation if

AW=0  foralwwithls H(W) £k

G. Gong Beijing'04 14



(cross correlation with m-sequences) Universiy of
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Hadamard Convolution or
autocorrelation
| | ndicator
Function |

Resiliency, k-order
nonlinearity “ propagation
Linear Differential
cryptanalysis cryptanalysis

G. Gong Beijing'04



Engineering Perspective of Differential Cryptanalysis
and Linear Cryptanalysis Associated to Transforms
for Signal (Sequence) Design

f f(t+
| | |
t t+t
Differential cryptanalysis (or propagation) isto exploit the correlation of the
signal f(t) at timeinstancest and t+t . It +t)

f NG

t t+t

Correlation immunitiy (or resiliency, nonlinearity, linear cryptalalysis) isto
exploit the correlation between the signal f(t) and the reference linear signal |(t)
at timeinstancest and t+t .
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Indicator Function: A Bridge for
Connecting Resiliency and Additive
Autocorrelation
Definition. A indicator function of f, denoted by s(X), is defined
: s )=l i=o

~1if f(1)10
Example. For n=5, GF(2°) definedby g5+a3+1=0, and

f(X)=Tr(x°) -

| 0123456789 1011121314151617 18192021 222324 252627282930
f@') 8000080808-88088000-88-8880088080 0

s;(@) 100001010111011000 111110011010 0

G. Gong Beijing'04 17



Preferred set: Forn=2m+ 1, f issaidto be preferred if
the Hadamard transform of f has the following three values:

P={0,+2™"

Optimal Additive autocorrelation (AC): For n=2m+1, let f be

balanced, the additive AC of f is said to be optimal if the

maximal magnitude of the additive AC at nonzero, denoted as
D; ,is oma andA; has on1 zerosin GF(2").

Note.
1. According to the Parseval energy formula, 2™ is minimum
among magnitudes of all 3-valued Hadamard spectra.

2. Zhang and Zheng (1995) conjectured that*
Df 3 2m+1
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Observation 1: Indicator Function &
and Reslliency

Let f bepreferred. Then fis 1-order resilient if and only if
the dual of f is nonlinear.

Zhang and Zheng, 1999 under boolean forms, Gong and
Y ousself, 1999 under polynomial forms, Canteaut-Carlet-
Charpin-Fontaine, 2000, for any three-valued Hadamard

transform.

G. Gong Beijing'04
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Observation 2: Indicator Function and
Additive Autocorrelation

Let f be preferred. Then the additive autocorrelation functions
of fat nonzero isegqual to opposite of the Hadamard transform
of f. In other words,

A (W)=-5.(w), " 0t wi GF(2")

G. Gong Beijing'04 20
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Theorem. A Sufficient Condition for Preferred
Additive Autocorrelation

If the Hadamard transforms of both f and its indicator
functions are preferred, then the additive autocorrelation is

preferred.

()i P S (1) P mmp AW P
—
f 1 / l

s. =g > S

g
nonlinear nonlinear

l l P :{O’iz(n+1)/2}
1-resiliency  1-propagation
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Constructions ®

All functions, listed in Tables 1-3, are from binary
seguences with 2-level (multiplicative) autocorrelation.

Cryptographic Properties.

a) 2-level AC

b) Nonlinearity; 2™t- 2(m/2

c) Preferred f

d) 1-order resiliency

e) Preferred additive AC, so optimal additive AC
f) 1-order propagation.

G. Gong Beijing'04 22



Table 1. Properties (a)-(d)

Functions from the
sequence sets

|ndicator Functions

Comments

Kasami decimation:
Tr(x%),d=2%- 2“+1

Tr(x>™), for 3k ° 1modn

Kasami 1971, Dillon 1999

The other Kasami, nonlinear
Welch, Niho
Subset of GMW Nonlinear 2-level AC (Goldon, Miller,
uences Welch 1961) HT (Games
> (85), Klapper(96))
Welch-Gong sequences Tr (Xd-l) 2-level AC (Noet. al 1998,
WG(X) Dillon et. al. 1999)
Glynn Type 1 hyperoval 2-level AC (Matchietti
g sgguencép Tr (X(k_ le) 1998), Hadamard transform
(Xiang 1998, Dillon 1999)
Kasami power function . 2-level AC (Noet. al 1998,
Sequences. Ck(x) Tr (X ) Dillon et. al. 1999)




Table 2. Properties (a)-(e)

3k © 1mod n
(Boolean) Functions |ndicator Functions
Kasami sequences: Jaq
TI‘(Xd),dZZZk- 2k +1 Tr(X )
Welch-Gong sequences 41
WG(X) = Tr (t(x+1) +1) )
Kasami power function sequences: ( , )
Tri{x
C.(x), k = 3
C,0 =Tr(t(® ™) Trlx)
where
t(X) — y+ X2k+1 n X22k+2k+1 n X22k- 2+1 n X22k+2k-1

G. Gong Beijing'04



Table 3. Properties (a)-(f)

(Boolean) Functions |ndicator Functions
Welch-Gong sequences G
Tr(x*)
WG(X) =Tr(t(x+1) +1)
Kasami power function sequences
(5-term sequences).
Tr (xd' )

C (¥) =Tr (t(* ™))

where

k 2k , ~k 2k ok 2k 4 ok
t(X):X+X2 +1+X2 +2 +1+X2 -2 +1+X2 +2 -1’3k0 1m0dn



Example 11.7 et n=7. Then k== n—-k=2==2""% 1 1 =5, and
tz) =2+ 2% + 22 4+ 29 4 229, Thus

Cs(z) = Trit® ) =Tr(e® + 2 + 22 + 27 + 29)
WaGz) = Tritlz+ 1)+ =Triz+ 2+ 27+ 2 4+ 2%).

Baoth Cs(z) and WG(z) have the following properties:
(a) Orthogonal or 2-level autocorrelation.
(b) Nonlinearity Ny = 56.
(¢) Hadamard transform is preferred, i.e., belongs to {0, £16].
(d) 1-resiliency under some basis.
(¢) The additive autocorrelation function is preferred, i.e., belongs to {0, +-16}.

(f) l-order propagation under some basis,

G. Gong Beijing'04 26
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Discussions

» What are the additive autocorrelations of the rest
functions with 2-level autocorrel ation?

» The functions constructed from sequence design do
not have linear structure for any fixed set of input
variables (possible week |eakage of Maiorana-
McFarland like resilient functions).

» Experimental results show that there are many
functions having preferred Hadamard transform, and
preferred additive AC, so optimal additive AC, but not
2-level AC.

G. Gong Beijing'04
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