Modified Jacobi sequences
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Abstract: Quadratic residue and twin prime sequences are well known types of binary sequence
with ideal periodic autocorrelation functions. These are just special cases of much larger families
of sequences referred to here as Legendre sequences and modified Jacobi sequences. Although
these more general forms are suboptimal and do not have ideal autocorrelation functions,
nevertheless they do exhibit out-of-phase autocorrelation values which are independent of their
lengths, and so the longer sequences may be useful. The structure and properties of these
sequences are investigated, and a two-dimensional array representation that enables the
sequences and their autocorrelation functions to be derived in a simple and compact manner

are employed .

1 Introduction

Binary sequences which exhibit good periodic or aperiodic
autocorrelation properties are extremely useful in many
areas of communication engineering and many sources
have been identified over the years [1, 2]. Those sequences
which exhibit the ideal two-valued periodic autocorrelation
(such as m-sequences, GMW sequences, quadratic residue
sequences, twin prime sequences) have been studied exten-
sively. Unfortunately, these ideal types are not available in
large numbers or for a wide range of sequence lengths.
This makes the search for suboptimal but nevertheless
‘good” sequences a worthwhile activity. Legendre
sequences, Jacobi sequences and especially modified
Jacobi sequences fall into this category. They also possess
good aperiodic correlation properties and have high linear
equivalence which gives them some cryptographic signifi-
cance. This paper investigates the construction and proper-
ties of these types.

It is customary, when studying binary sequences for
their correlation properties, to employ the values 41 and
—1 to represent the digits of the sequence in place of the
usual 0 and 1. This ensures that multiplication on +1 and
—1 is equivalent to mod-2 addition on 0 and 1, and
thereby enables the conventional definitions of correlation
to yield meaningful results in the binary case.

Leta={aya,a,...a; _,} be a binary sequence of length
L in which a;=0or 1, and let @ = {dyd,d,...d, _,} be the
same sequence represented in +1 and —1 form. Thus,
d; = 1-2a;. The periodic autocorrelation function (1), of 4,
can be taken as

t)y=) a-a,, 0<t<L-1 4]
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wherein the suffix i 4+ 7 is interpreted mod-L. Alternatively,
a simpler definition may be adopted which can be applied
to either form of sequence representation and is given by

Ho)=d4,—D, 0<t<L—1 )

where A, is the number of agreements and D, is the
number of disagreements between the sequence and its
cyclic shift by 7 places. Note that 4, +D, =L, and so

ty=L—-2D, 0<t<L-1 3)

Also, r(0) =L and this represents the maximum autocorre-
lation value.

The definition of the aperiodic autocorrelation of the
two-valued sequence & =dyd,...d;_; of length L, at a
relative linear shift of 7 places, can be written as

L—1—1

c(r) = Z &r ) aH—r = A; - D; G
r=0

where A’, is the number of agreements and D', is the
number of disagreements between the sequence and the
overlap of length L —7 with its shift of 7 places.

In this paper, the authors, adopt the agreements-
disagreements forms of definition and employ the
sequences in their 0 and 1 forms.

The aperiodic autocorrelation merit factor MF, intro-
duced by Golay [3] and defined as

2
MF, = ——— ®
23 le@P

provides a convenient measure of ‘goodness’ of the aper-
iodic autocorrelation properties of a binary sequence. It is a
simple matter to establish the relationship between the
aperiodic and periodic autocorrelation coefficients for the
same sequence. This reveals that,

r0)=c0)=L
r(7) = c(r) + oL — 1)y for T # 0 (6)
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0 15 30 10 25 S5 20

21 1 16 31 11 26 6

7 022 2 17 32 12 27

28 8 23 3 18 33 13

4 29 9 24 4 19 34
Fig. 1 Array format for folded sequence of length 35

Thus, the periodic values can be deduced from the aper-
iodic values but not vice-versa. It is useful to define a
periodic version of the merit factor:

MF, = ——LZ— ™

P L
z Ir(@)I?

by direct substitution of the equivalent periodic values.

Sequences with a length L which can be factorised into
two or more relatively prime factors can be folded into a
two-dimensional structure sometimes referred to as a pseu-
dorandom array (PRA) [4]. This can provide a compact
form of representation which is useful for manipulating the
sequence and which can reveal interesting structural prop-
erties of the sequence. One method for performing this
folding is to start at the top left-hand corner of the array
with the first digit of the sequence and then to place
subsequent digits down the diagonal by moving one posi-
tion in each dimension at each step. When an edge is
encountered, the array is re-entered at the opposite edge on
the next row or column. In this way, each location in the
array will be visited exactly once in one pass through the
sequence, provided the dimensions of the array are rela-
tively prime. Fig. 1 illustrates the result of this process
when applied to a general sequence of length
L=35=5x7. Note that, in the general case when
L =pg, in the first column of the p X g array i=0 mod ¢
and in the first row i = 0 mod p. The remainder of the array
corresponds to values of i that are relatively prime to L, i.e.
the highest common factor of i and L is 1. This situation is
expressed symbolically as (i, L)=1.

The sequence of L autocorrelation values can also be
plotted in this way to give a compact two-dimensional
representation of the autocorrelation function. Arrays of
this kind are employed in the following investigations.

2 Legendre sequences

Legendre or quadratic residue sequences [1, 2] exist for all
lengths L which are prime. They can be constructed using

the Legendre symbol
( : )
P

if i is a quadratic residue mod p
otherwise

which is defined as

()1

The integer i is a quadratic residue mod p if the equation
x* =i mod p has a solution x which is relatively prime to p.

A Legendre sequence a={aya,a,...a;_;} is then
formed by writing

®

a,-=(£) for0<i<L ©)]

and the value of ¢, can be taken either as 0 or 1. As there are
exactly (p — 1)/2 quadratic residues (QR) and (p — 1)/2
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quadratic nonresidues (QNR), Legendre sequences are
‘balanced’. If L is an odd prime with L=m mod 4, then
the periodic autocorrelation values () are

L for 7=0

m—4 for t=aQRmodL (10)
2—m for t=aQNRmodL

Hz) =

This gives rise to two classes of Legendre sequences.
Class 1: L=3 mod 4

r(t) = { _Ll

and so this class has the ideal two-valued autocorrelation
function. For example, when L = 11, the quadratic residues
are 1, 3, 4, 5 and 9. The corresponding Legendre sequence
is

fort =0
otherwise

(1)

a={10100011101}
and its autocorrelation function is

r={11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}

Class 1 Legendre sequences exhibit a mirror-skew symme-
try about ay, and a; _; =d; The sequences conventionally
referred as quadratic residue sequences belong to this
class.

Class 2: L=1 mod 4

L for =0
—3 for t=aQRmod L (12)
1 for t=aQNR mod L

) =

and so this class has a three-valued autocorrelation func-
tion. For example, when L =13, the quadratic residues are
1,3,4,9, 10, 12. The corresponding Legendre sequence is

a={1010011110010}
and its autocorrelation function is

r={13, -3, 1, -3, -3, 1,1, 1, 1, -3, -3, 1, -3}

Class 2 Legendre sequences exhibit a mirror symmetry
about aq, with a; _;=g;

Using the results of eqns. 11 and 12, it is a simple matter
to establish that the periodic merit factors of binary
Legendre sequences are given by

2
-1 for L =3 mod 4
MF, = (13)

( ) or 1 mod

2.1 Proper decimation of Legendre sequences

As Legendre sequences have prime lengths all sampling
values give rise to proper decimation and a sequence of
samples with the same length as the original. If a Legendre
sequence is sampled every s places, the sequence of
samples will be identical to the original sequence in both
value and phase if s is a quadratic residue mod L. If s is a
quadratic nonresidue, the sequences of samples, other than
ay, will be the inverse of the original. Consider the
previous class 1 sequence of length 11. If this is sampled
with sampling value s, then the sequence of samples will
be

10100011101 ifs=1,3,4,529
11011100010 ifs=2,6,7,8,10
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For the class 2 sequence of length 13
1010011110010 ifs=1,3,40910,12

1101100001101 ifs=2,56,78,11

In all cases, the sequences of samples exhibit the same
autocorrelation values as the original sequences.

3 Jacobi sequences

Jacobi sequences [5, 6] exist for all lengths of the form
L =pgq, where both p and g are prime. They are constructed

using the Jacobi symbol
i
o]
which is defined as
= ()e () oseer
pq p q

A Jacobi sequence b= {bybb, ...b; |} can be formed by
writing

1[4 ()e(0) e

Thus, b; =0 if i, expressed mod p or mod g, is a quadratic
residue for both p and g, or is a quadratic nonresidue for
both p and ¢. Otherwise, b;=1. It follows that Jacobi
sequences can be constructed from the modulo-2 sum of
two Legendre sequences with lengths p and g, respectively.
The periodic autocorrelation function of the Jacobi
sequence can also be constructed from a product of the
autocorrelation functions of the two Legendre sequences.
Consider the case p=35, g=7 so that L=35. The
Legendre sequences of lengths 5 and 7 are 1 0 1 1 0 and
100101 1. Their autocorrelation functions are {5, —3,
1,1, =3}and {7, —1, —1, —1, —1, — 1, —1}. Thus, the
Jacobi sequence of length 35 is formed by term-by-term
modulo-2 addition as follows:

10110101101011010110101101011010110
100101110010113100101110010111001011
00100010100000110011011111100011101

(14)

(15)

and its autocorrelation function takes the values

5 =3 1 1 -3 5 -3 1 1 -3 5 =3 1 1 -3 5 -3 1

7 -1 -1 -1 -1 -1 -1 7 -1 -1 -1 -1 =1 -1 7 -1 -1 -1

35 3 -1 -1 3 -5 37 -1 3 -5 3 -1 -1 -21 -5 3 -1
1 -3 5 =3 1 1 -3 5 =3 11 =3 5 =3 1 1 -3

-1 -1 -1 7 -1 -1 -1 -1 -1 -1 7 -1 -1 -1 -1 -1 -1

-1 3 -5 =21 -1 -1 3 -5 3 -1 7 3 -5 3 -1 -1 3

In this example, it is found that ~(7) € {35, 7, 3, —1, —5,
—21} and note that this set of values can be related to a
‘product’ of the values for the two Legendre sequences, i.e.
{5, 1, =3} x {7, —1}. In general, there are four cases

1

b

1001011

a b

Fig. 2 Arrays formed from Jacobi sequence of length 35 and its auto-
correlation function

depending on the interaction of the two types of Legendre
sequence. These can be summarised as follows:

(1) p=3mod4,g=3mod4;

(@) € {p, -1} x {g, =1} = {pg, —p, —¢. 1}
p=3mod4,qg=1mod 4,
H1) € {p, =1} x {g, 1, =3} = {pq, p, =3p, —q, —1, 3}
(i) p=1mod 4,q =3 mod 4;

r(®) € {p, 1, -3} x (¢, 1) = (pq, ¢, =3¢, —p, -1, 3)
(iv) p=1mod4,g=1mod4

rt) € {p, 1, -3} x {g, 1, -3}

={pq,p,-3p.q,1,-3,-39,9}

The previous example is seen to be of type (iii).

The fact that Jacobi sequences have lengths of the form
L =pgq ensures that they can be folded into a p x g array.
Fig. 2a shows the array formed from the previous sequence
of length 35 and Fig. 2b gives the array version of its
autocorrelation values. Both these arrays are seen to have
interesting structures.

Arrays can also be employed in the construction of
Jacobi sequences and their autocorrelation functions. If
two sequences of length pg are considered, the first made
up from q repetitions of the Legendre sequence of length p,
and the second made up from p repetitions of the Legendre
sequence of length ¢, which are then plotted on two
separate p x g arrays, the array of the corresponding
Jacobi sequence can be found by adding these two arrays
in a cell-by-cell mod-2 fashion. In fact, the first array will
consist of identical columns containing the Legendre
sequence of length p and, consequently, it has rows
which are either all 1s or all Os. Similarly, the second
array will have identical rows containing the Legendre
sequence of length ¢ and columns which are either all 1s or
all 0s. Figs. 3a and 3b illustrate this for the previous
example with p=5, ¢g=7. When these two arrays are
added the Jacobi sequence is formed as can be seen from
Fig. 3c.

The constant nature of the rows of the first array and the
columns of the second ensure that the rows of the sum

(ii)

011 0110100
011 1001 011
o011 = 011201200
011 0110100
011 1001011

Fig. 3 drray of Jacobi sequence of length 35 formed by adding arrays of Legendre sequences
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1 01 1 01 00

o1 001 0 11

Fig. 4 Array construction using row and column labelling

array are either the Legendre sequence of length g or its
inverse (0s and 1s interchanged) and the columns are either
the Legendre sequence of length p or its inverse. This
enables a more direct method of constructing the final array
to be devised. If the rows are labelled with the digits of the
sequence of length p and the columns with the sequence of
length ¢, then working down the rows (or along the
columns) the row sequence (column sequence) or its
inverse is entered according to whether the label on the
row (column) is a 0 or a 1, respectively. This process is
illustrated for the previous example in Fig. 4. This proce-
dure is similar to that employed by Calabro and Wolf [5] to
construct what they termed quadratic residue arrays. Alter-
natively, the value in each position of the array takes on the
mod-2 sum of its co-ordinates. The Jacobi sequence itself
can derived from the final array by following the path of
the plotting procedure described above and reading off the
digits at each step.

A similar technique can be used to derive the autocorre-
lation function array, but in this case the two factor arrays
are multiplied together on a cell-by-cell basis to give the
final array. Alternatively, if the row and column labelling is
adopted, each cell takes on the value of the product of its
co-ordinates. This is illustrated in Fig. 5. The unfolded
version of the autocorrelation function can also be read off
from its array in a similar manner to that desribed in the
preceding test for deriving the sequence.

3.1 Sampling of Jacobi sequences

As Jacobi sequences have composite lengths of the form
L=pgq, with p and ¢ both prime, not all sampling values
will lead to proper decimation. This will only arise when
the sampling values s is relatively prime to L, and conse-
quently, must not be a multiple of either p or q. There are
exactly (p — 1)(¢ — 1) relatively prime values which fall
into four sets of (p — 1)(g — 1)/4 equivalent values, each
of which produces a distinct sequence of samples.

Jacobi sequences are formed from the sum of two
Legendre sequences of lengths p and g, respectively, and
so sampling a Jacobi sequence is equivalent to sampling
these component sequences. As observed in this paper,
when a Legendre sequence is sampled either the original
sequence or its inverse (apart from a,) is obtained. The

-3 =21 3 3 3 3 3 3

Fig. 5 Autocorrelation function array constructed using row and column
labelling
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four sets of sampling values correspond to the four
possible cases listed as follows:

Case (i) s is a QR mod p and a QR mod g. The sampled
component sequences are both identical to their original
forms, and so they combine to give an identical version of
the Jacobi sequence.

Case (ii): s is a QR mod p and a QNR mod ¢. The
component sequence formed from the length p Legendre
sequence is unchanged by sampling but that corresponding
to the length ¢ Legendre sequence becomes inverted (apart
from the positions corresponding to a;). The combined
sequence is therefore distinct from the original Jacobi
sequence.

Case (iii): s is a QNR mod p and a QR mod g. Now the
component sequence corresponding to the length p
Legendre sequence becomes inverted, but that derived
from the length g sequence remains unchanged. These
combine to form another sequence distinct from the origi-
nal Jacobi sequence.

Case (iv): s is a QNR mod p and a QNR mod ¢g. Now
both component sequences become inverted by sampling
and these combine to produce another sequence distinct
from the original Jacobi sequence.

All four sequences resulting have the same autocorrela-
tion values as the original Jacobi sequence.

These sequences of samples can also be derived using
the array structure described in the preceding text by
employing the Legendre sequences or their inverses
(apart from gq;) to label the rows and columns. This is
illustrated in Fig. 6 using the previous example sequence of
length 35. The four arrays corresponding to the four cases
listed above yield the following sequences:

(1)001000101000001100110111111000
11101

forse{l, 4,9, 11, 16, 29}

(i) 010110010101110111000000010111
10010

for s€ {2, 8, 18, 22, 23, 32}

1 0o 0 1 0 1 1 10 0o 1 0 1
1 0110100 1 0110100
o1 00 1 0 1 1 101101 00

ol 001011 1 0110100
case(i) case(ii)

11 1 0 1 0 0 111 0o 1 0 0

1000 1 01 1 100 01 011

o 1 1T 1 01 0O 1 00 01 011

1 0001 011 o111 10100
o1 11 01006 10001011

case(iif) case(iv)

Fig. 6 Derivation of sampled Jacobi sequences using arrays
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(i) 01011100011111101100110000010
100010

for s € {6, 19, 24, 26, 31, 34}

(iv)00100111101000000011101110101
001101

for se {3, 12, 13, 17, 27, 33}

Note that case (iii) gives the reverse sequence of case (i)
and case (iv) gives the reverse sequence of case (ii). The
arrays for cases (i) and (iv), and for cases (ii) and (iii),
differ only in the forms of the first rows and columns,
whereas the main body of the array is the same in each pair.

When the Jacobi sequence is sampled with s equal to a
multiple of p or g improper decimation occurs and p
sequences of length ¢ or g sequences of length p result.
These short sequences are related to cyclic shifts of the
component Legendre sequences or their inverses, and
appear on the rows and columns of the array form of the
Jacobi sequence.

4 Modified Jacobi sequences

The Jacobi sequences described in Section 3 do not exhibit
particularly good autocorrelation functions and contain
out-of-phase values which are related to the factors p and
q. However, a relatively straightforward modification can
radically improve this situation so that the out-of-phase
autocorrelation values become dependent only on the
difference &k between p and ¢. These modified Jacobi
sequences of length L = pq can be defined as follows [5, 6]:

(i)€]9<i> for(i,L)=1 0<i<lL
p q

bi= 0 fori=0mod g (16)

1 otherwise

This modification is equivalent to forcing b, of the normal
Jacobi sequence to be O for all i which are multiples of ¢
and to be 1 for all i, other than i =0, which are multiples of
p. These modifications manifest themselves very clearly on
the array version of the sequence. Those values of i which
are multiples of ¢ (i.e. i=0 mod g) lie on the first column
of the array and those values of i which are multiples of p
(i.e. i=0 mod p) lie on the first row of the array. Thus, to
perform the modifications indicated by eqn. 11 it is
necessary to make the first column hold all Os and the
first row (apart from the element in the first column) all 1s.
This process is illustrated for the example sequence of
length 35 in Fig. 7. The resulting sequence in this case is
found to be

00100110101000010011101111100011
101

01 101 00 60110100
1001011 0001011

unmodified modified
Fig. 7 Modification of array version of Jacobi sequence
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These arrays also reveal that some of the values in the
first column of the Jacobi sequence are already 0 and some
elements on the first row are already 1, and, consequently,
it is only necessary to change the remaining elements. This
can be seen to be equivalent to adding an extra version of
the inverted form of the Legendre sequence of length p to
the first column and an extra version of the length ¢
sequence to the first row. If these extra sequences are
unfolded from the array, they form two sequences of
length pg which are expanded versions of the Legendre
sequences. That is, the first is made up from the sequence
of length p with ¢ — 1 Os inserted between each digit and
the second is the inverted from of the length ¢ sequence
with p — 1 Os inserted between each digit. Thus, the
modified Jacobi sequence can be thought of as a modulo-
2 sum of four component sequences of length pg. The
replicated versions of the two Legendre sequences of
length p and ¢ form the first two components, and
expanded versions of the length p sequence and the
inverted form of the length ¢ sequence provide the third
and fourth components. For example, in the case of the
length 35 sequence:

10110101101011010110101101011010110
10010111001011100101110010111001011
10000000000000100000010000000000000
10000100001000000000100000000000000
00100110101000010011101111100011101

Henceforth, it is assumed, without loss of generality, that
g >p, so that k=g — p is an even integer. Two distinct
classes of modified Jacobi sequences arise depending on
the value of k.

Class 1: k=2 mod 4. Modified Jacobi sequences in this
class have autocorrelation functions of the following form:

L for 7 =0 mod p and 7 = 0 mod ¢

k—3 for7=0modpand 7 0 mod g

r(@) =
1—%k fort 0 modp and 7 =0 mod g

—1 for 7 % 0 mod p and 7 £ 0 mod ¢
a7

It follows that this class of modified sequences has a four-
valued autocorrelation function except for the case k=2.
Then, k—3=1— k= —1, and the sequences have the
ideal two-valued autocorrelation function r(t) € {L, —1}.
In this case, g=p+2, and so p and g are consecutive or
twin primes. The modified Jacobi sequences with k=2 are
better known as twin prime sequences [1, 2].
It follows that, in the autocorrelation spectrum,

L oceurs once
k-3 occurs ¢ — 1 times
-1 occurs (p — 1)(g — 1) times

11—k occurs p — 1 times
and the periodic merit factor can be shown to take the form

LZ

MF, = 18
PUL 4 2pk — 2 + k(k—4)* —9 {18)

Sequences in this class are made up from Legendre
sequences belonging to different classes, i.e. one from
class 1 and one from class 2.
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Class 2. k=0 mod 4. Modified Jacobi sequences in this
class have autocorrelation functions of the following form:

L for 7 =0 mod p, and 7 =0 mod g
k—3 fort=0mod p, and 7% 0 mod ¢
1—k fort# 0 modp, and 7 =0 mod ¢

1 for 7 % 0 mod p and mod g,
and is a QR both mod p (19)
and mod ¢ or a QNR both mod p
and mod ¢

r(r) =

-3 for 7 # 0 mod p and mod ¢,
and is a QR mod p

and a QNR mod g or vice versa

It follows that this class of modified sequences has a five-
valued autocorrelation function except for the case k=4.
Then, k — 3=1 and 1 — k= —3, and the sequences have
three-valued autocorrelation functions with »(t) e {L, 1,

-3}
Consequently,
L occurs once
k—3 occurs g — | times
1 occurs (p — 1)(g — 1)/2 times

-3 occurs (p — 1)(g — 1)/2 times
1—k occurs p — 1 times

and the periodic merit factor is given by
LZ
MF, = 2
5L+ 2pk(k — 4) + k[(k —4)" — 4] -5

Sequences in this class are made up from Legendre
sequences of the same class, i.e. both class 1 or both
class 2.

Thus, for both classes of modified Jacobi sequences, the
out-of-phase autocorrelation values are independent of the
sequence length and depend only on the difference %
between the two prime factors. For example, when

(20)

k=2 r(r)elL, -1}
MF, = L*/(L — 1)
k=4 r(t)e{l,1,-3}
MF,, = L*/(5L — 21)
k=6 r(t)ell,3,-1,-5}

MF, = L*/(L +32p + 15)

k=8 r(x)e(l,51,-3,-7}

MF, = I?/(5L + 64p + 91)
k=10 r(x)e(L,7,—1,-9}

MF, = L*/(L + 128p + 351)

k=12 rx)elL,9,1,-3,—11)
MF, = L?/(5L + 192p + 715)

k=14 r(x)e{L,11,—1,—13}
MF, = L?/(L + 288p + 1391)

k=16 r(x)e{L, 13,1, -3, —15}
ME, = L?/(5L + 384p + 2235)

erc.

When these autocorrelation functions are folded into their
array formats regular structures emerge as can be observed
in Fig. 8. For both classes, the maximum value L is placed
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1-k -1 1-k 1or-3

Fig. 8 Structure of autocorrelation function of modified Jacobi
sequences: Class 1 and Class 2

in the first element of the array and the remainders of the
first row and column take the value k—3 and 1 — &,
respectively. For class 1 sequences, the remainder of the
array holds — 1, whereas for class 2 sequences the remain-
der of the array is equally shared between the values 1 and
—3. The autocorrelation value 1 occurs in the positions
corresponding to the Os in the sequence array and the value
—3 occurs in the positions of the 1s. Fig. 9 shows the
variation of the periodic merit factor with sequence length
for various values of k.

4.1 Sampling modified Jacobi sequences

It has been observed that modified Jacobi sequences can be
regarded as being composed of the mod-2 sum of four
component sequences: a replicated form and an expanded
form of two Legendre sequences. The expanded forms
ensure that the first column on the array version of the
sequence holds all Os and the first row holds all 1s. The
four cases of proper decimation identified for the unmodi-
fied sequences still apply, but now, when s is equivalent to

14
121

10F

a
121
10
"
9
)
3 or
Al
1 L 1 1 ] 1 J
2 4 6 8 10 12 14

log, (L)
b
Fig. 9 Periodic merit factor of modified Jacobi sequences for k <20
ak=0mod4 bk=2mod4

log, (MF,)

- k=4 & k=2
-l k=8 -l k=6
-A- k=12 -A- k=10
-x- k=16 —x— k=14
-x~ k=20 -x~- k=18

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 4, July 2000



a QR mod p or mod ¢, both forms of each Legendre
sequence remain unchanged, and when s is equivalent to a
QNR both forms become inverted. This ensures that the
arrays of the sampled modified Jacobi sequences still have
an all Os first column and an all 1s first row. As a result,
only two distinct forms result and case (i) and case (iv)
combine to yield the original sequence, and case (ii) and
case (iii) combine to produce a new sequence. Thus, in the

case of the length 35 sequence, the following holds:

Table 1: All available modified Jacobi sequences with L <5000 and k<20

00100110101000010011101111100011
101

ifse{l, 3,4,9, 11, 12, 13, 16, 17, 27, 29, 33}

01011100011111011100100001010110
010

ifse{2, 6, 8, 18, 19, 22, 23, 24, 26, 31, 32, 34}

k p q L r(z) k p q L r(t)
2 3 5 15 {15, —1} 12 5 17 85 {85, 9,1, —3, —11}
5 7 35 {35, — 1} 7 19 133 {133,9,1, -3, —11}
11 13 143 {143, — 1} 1 23 253 {253,9, 1, —3, —11}
17 19 323 323, — 1} 17 29 493 {493,9, 1, -3, —11}
29 31 899 {899, — 1) 19 31 589 {589, 9,1, —3, —11}
41 43 1763 {1763, — 1} 29 M 1189 {1189,9, 1, —3, — 11}
59 61 3599 {3599, — 1} 31 43 1333 {1333,9,1, —3, — 11}
41 53 2173 {2173, 9,1, =3, —11}
4 3 ! 21 21,1, -3) 47 59 2773 (2773,9, 1, -3, —11)
7 1 7 77,1, =3} 59 7 4189 {4189, 9,1, -3, —11}
13 17 221 221,11, -3} 61 73 4453 {4453, 9,1, -3, —11}
19 23 437 {437,1, -3} 14 3 17 51 1,1, -1, —13)
37 41 1517 {1517, 1, -3} 5 19 o5 95, 11, —1, —13)
43 47 2021 {2021, 1, -3} 17 31 527 {527, 11, —1, —13}
67 7 4787 {47571, -3} 23 37 851 {851, 11, —1, —13}
6 5 1 55 (55,3, —1, _5} 29 43 1247 {1247, 11, =1, —13}
7 13 91 ©1,3, -1, —5) 47 61 2867 {2867, 11, —1, —13}
1 17 187 (187, 3, 1, 5} 53 67 3551 {3551, 11, —1, —13}
13 19 247 (247,3, _1, _5} 59 73 4307 {4307, 11, —1, —13}
7 2 391 {391,3, -1, -5 16 3 19 57 {57, 13, 1, —3, — 15}
23 29 667 {667, 3, —1, —5} ; 23 161 {161, 13, 1, —3, —15)
31 37 147 1147,3, =1, =5 13 29 377 {377, 13,1, —3, —15}
87 43 1591 {1591, 3, -1, -5} 31 47 1457 {1457, 13, 1, —3, — 15}
41 47 1927 1927, 3, 1, =5} 37 53 1961 {1961, 13, 1, —3, —15}
4 53 2491 (2491, 3, -1, =5} 43 59 2537 {2537, 13, 1, —3, — 15}
53 59 3127 {3127, 3, —1, —5}
61 67 4087 {4087, 3, —1, —5} 18 5 23 115 {115, 15, —1, —17}
67 73 4891 {4891, 3, —1, 5} n 29 319 {319, 15, —1, —17}
13 31 403 {403, 15, —1, —17}
8 3 " 33 83,51, =3, -7 19 37 703 {708, 15, —1, —17}
5 13 65 {65,5,1, =3, =7} 23 41 943 {943, 15, —1, —17}
1 19 209 {209,5,1, =3, -7} 29 47 1363 {1363, 15, —1, —17}
23 31 713 {713,5,1, -3, -7} a1 . 2419 (2419, 15, —1, —17}
2 37 1073 {1073, 5,1, =3, ~7} 43 61 2623 (2623, 15, —1, —17}
53 61 3233 {3233,5,1, -3, -7} 53 71 3763 (3763, 15, —1, —17)
59 67 3953 {3983, 5,1, =3, -7 61 79 4819 {4819, 15, —1, —17}
10 3 39 (89,7, =1, -9} 20 3 23 69 69, 17,1, —3, —19}
i 19 19,7, -1, -9} 1" 31 341 {341, 17,1, —3, —19}
13 z 299 {299, 7, =1, =9} 17 37 629 {629, 17, 1, —3, —19}
9 2 551 {581, 7, =1, —9} 23 43 989 {989, 17,1, —3, —19}
31 41 127 271,7, =1, -9 41 61 2501 {2501, 17, 1, -3, —19}
43 53 2279 {2279, 7, =1, =9} 47 67 3149 {3149, 17,1, -3, — 19}
61 7 4331 14331,7, -1, -9 53 73 3869 (3869, 17,1, —3, 19}
59 79 4661 {4661, 17, 1, —3, — 19}

IEE Proc.-Comput. Digit. Tech, Vol. 147, No. 4, July 2000

247



Table 2: Legendre sequences for L <80

Class L Legendre sequence

1 3 101

2 10110

1 7 1001011

1 1" 10100011101

2 13 1010011110010

2 17 10010111001110100

1 19 1011000010101111001

1 23 10000101001100110101111

2 29 10110000101110110111010000110

1 31 1001001000011101010001111011011

2 37 1010011010000111011110111000010110010

2 41 10010011000111110101001010111110001100100

1 43 1011010110001000001110100011111011100101001

1 47 10000100001101010001101100100111010100111101111

2 53 10110100100010100011111100110011111100010100010010110

1 59 10100010101101100010000110000011111001111011100100101011101

2 61 1010001110110000011001011010111111010110100110000011011100010

1 67 1011010110011100001010000001101110100010011111101011110001100101001

1 71 10000001000101100100011100101001011100010110101100011101100101110111111
2 73 1000010100110111010011100010111101100001101111010001110010111011001010000
1 79 1001001100001011010000001001111001110101010100011000011011111101001011110011011

This new sequence of samples has the same autocorrela-
tion values as the original and is observed to be the reverse
of the original.

5 Imbalance of sequences

The imbalance of a binary sequence is defined as the
difference between the number of 1s and the number of
0s. A Legendre sequence of length p (with a, = 1) contains
(p+1)2 1s and (p — 1)/2 0s and, therefore, has an
imbalance [ given by

@+ (-1
=7 ¥ J._
3 5 1 (21)
A Jacobi sequence of length L =pgq, formed from the sum

of two Legendre sequences can be shown to have (pg — 1)/
2 1s and (pg + 1)/2 0s, and so its imbalance is given by

pg—1) g+
=< - ‘-1
7 5 (22)
The modification described above changes (p — 1)/2 1s to
0Os and (¢ — 1)/2 Os to 1s so the net change in the number
of Isis (¢ — 1)/2 — (p — 1)/2=(q — p)/2. It follows that
the imbalance changes to

(pq—1)+(q~p)_ g+ (g-—p)
2 2 2 2
:q—p—l:k—-l (23)

1

I =

for the modified Jacobi sequences.

6 Sequence and autocorrelation function
construction using arrays

The discussions from Section 5 will enable any Jacobi or
modified Jacobi sequence and its autocorrelation function
to be constructed very easily using the array format. Table 1
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-7 -3 1 -3 -3 1 1 1 I -3 -3 1 =3

6010011110010

0101100001101

Fig. 10 Array construction of sequences and autocorrelation function
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lists all the available modified Jacobi sequences with length
L <5000 and with k<20. Table 2 lists all the Legendre
sequences required for the construction of the sequences in
Table 1.

As an example of this process, the case L=65=5x 13
is considered, so k=8 and r(z)€ {65, 5, —1, —7}. The
Legendre sequence of length 5 is 10110 and of length 13 is
1010011110010 and these are used to label the rows and
columns of a 5 x 13 array. The entries in the array are made
equal to the mod-2 sum of their co-ordinates as shown in
Fig. 10a. This produces the Jacobi sequence of length 65.
This array is modified by setting all elements in the first
column to 0 and all elements, except the first, in the first
row to 1. This produces the array of Fig. 105, which can be
unfolded to produce the modified Jacobi sequence of
length 65. This takes the form

0001011000111001010111111101001100
1100101111111010100111000110100

In this case, k=8=0 mod-4, and so the autocorrelation
array conforms to the general structure of eqn, 19. This has
the maximum value of 65 placed in the leading element of
the first row and column. The remaining positions in the
first row take the value £ — 3 =5 and the remaining values
in the first column take the value 1 — k= —7. Elements in
the main body of the array take the value of 1 or —3 and
these occupy the respective positions of the Os and 1s in the
sequence array. This gives the array of Fig. 10c. The
distinct sampled version of this sequence can be derived
by inverting the sequence array in all positions except on
the first row or column as depicted in Fig. 10d. Its
autocorrelation array will be similar to Fig. 10¢, but with
the 1s and —3s interchanged.

7 Aperiodic autocorrelation

Quadratic residue sequences and twin prime sequences
also exhibit high merit factors when their aperiodic auto-
correlation functions are investigated, especially when
employed in a cyclically shifted form [6]. The situation
is illustrated in Fig. 1la, which shows the variation of
aperiodic merit factor with the initial cyclic shift for a class
1 Legendre sequence of length L=1019. It can be
observed that the maximum merit factor appears at a
shift of approximately 25% of the sequence length in
either direction. Class 2 Legendre sequences and the
other forms of modified Jacobi sequences also retain this
property. Fig. 115 shows the plot for a class 2 Legendre

a
O=NWAOON

MF,
O N WHOON

200 400 . 600 800 1000
shift
b

(=]

Fig. 11 Tariation of aperiodic merit factor with initial cyclic shift of
sequence

a Legendre sequence, L =1019 (class 1)
b Legendre sequence, L =1013 (class 2)
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800 1000 1200 1400 1600 1800
shift
a

200 400 600

MF,
O NQITTON

200 400 600 800 1000 1200 1400
shift
b
Fig. 12  Variation of aperiodic merit factor with initial cyclic shift of
sequence

o

a MJ sequence, L=1763, k=2 (twin prime)
b MJ sequence, L=1517, k=4

sequence of length 1013, Fig. 12a corresponds to a
modified Jacobi sequence of length L=1763 =41 x 43,
for which k=2, i.e. a twin prime sequence, and Fig. 120
results from a modified Jacobi sequence of length
L=1517=37 x 41, for which k=4. Fig. 13 shows varia-
tion of the maximum merit factor for optimally shifted
Legendre sequences with length. They are observed to
approach an asymptotic level of about 6. Other large
classes of sequences such as m-sequences and GMW
sequences have an asymptotic aperiodic merit factor of
only 3. Fig. 14 demonstrates that modified Jacobi
sequences with k=4 have a similar behaviour to the
Legendre sequences. The data in Table 3 confirm that
this is also the case for other values of .

14

loga(L)
Fig. 13  Maximum aperiodic merit factor of Legendre sequences in their
optimal shift pposition
(i) class 1
(ii) class 2

0 ) A . o . . '

6 8 10 12 14
log, (L)

Fig. 14 Maximum aperiodic merit factor of modified Jacobi sequences

with k=4, in their optimal cyclic shift position
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Table 3: Merit factors of all available modified Jacobi sequences with L<5000 and k<20

k L MF, MF, z k L MF, MF, T

2 15 16.07 4.17 1 12 85 3.44 3.34 18
35 36.03 475 24 133 6.49 417 38
143 144.01 4.01 108 253 15.64 4.90 58
323 324.00 4.65 89 493 37.72 558 118
899 900.00 4.87 225 589 47.47 5.62 152
1763 1764.00 5.13 441 1189 115.61 5.97 302
3599 3600.00 5.32 2695 1333 133.28 5.88 334

4 21 5.25 479 5 2173 24275 5.85 544
77 16.29 5.09 17 2773 325.77 5.92 702
221 45.06 5.72 58 4189 531.94 5.95 1054
437 88.25 5.83 112 4453 571.58 5.95 1122
1517 304.24 5.97 381 1% 51 1.13 1.50 18
2021 405.04 5.99 508 95 3.08 2.46 29
4757 952.24 5.97 1199 527 40.76 4.42 136

6 55 13.15 3.99 14 851 81.68 4.64 639
91 25.09 3.64 13 1247 141.49 493 314
187 63.12 4.44 © 136 2867 461.94 5.25 2151
247 89.98 4.09 62 3551 624.05 5.32 888
391 160.93 4.40 96 4307 817.55 5.36 1082
667 313.74 4.82 507 16 57 0.88 1.27 12
1147 610.77 4.89 859 161 4.53 3.54 39
1591 907.27 5.09 1185 377 15.60 4.88 88
1927 1141.16 5.17 484 1457 99.09 5.80 367
2491 1547.40 5.21 629 1961 146.51 5.85 479
3127 2021.11 5.28 773 2537 204.77 5.90 645
4087 2759.10 5.37 3059 18 115 2.14 2.02 34
4891 3393.17 5.40 1215 319 10.75 3.75 238

8 33 2.43 2.62 9 403 15.35 3.81 103
65 574 4.00 18 703 35.43 438 178
209 23.74 5.23 48 943 54.76 4.72 245
713 99.14 5.78 181 1363 94.16 4.91 346
1073 157.46 5.89 271 2419 217.29 5.17 596
3233 531.98 5.96 790 2623 244,34 5.16 672
3953 661.23 5.97 1008 3763 411.42 5.31 954

10 39 1.97 2.35 15 4819 586.88 5.37 1244
119 10.37 3.66 26 20 69 0.65 0.95 16
299 38.63 4.07 75 341 8.44 4.32 85
551 91.06 464 418 629 20.76 5.16 160
1271 288.99 5.00 313 989 39.60 5.48 253
1739 443.03 5.06 453 2501 142.87 5.89 636
2279 638.53 5.17 1701 3149 194.97 5.90 799
4331 1501.81 5.36 1091 3869 256.76 5.93 969

4661 328.67 5.94 1179

8 Conclusions

Quadratic residue sequences and twin prime sequences are
well known types of binary sequences with ideal periodic
autocorrelation. In this paper, the authors have indicated
that these sequences correspond to special cases of the
much larger classes of Legendre sequences and modified
Jacobi sequences, respectively. Legendre sequences exist
for all lengths L=p, a prime, and Jacobi and modified
Jacobi sequences exist for all lengths L = pg, with p and ¢
both prime. It has been demonstrated that both classes of
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Legendre sequences and modified Jacobi sequences exhibit
out-of-phase periodic autocorrelation values which are
independent of the sequence length. Consequently, the
‘peak-to-sidelobe’ ratio and the periodic merit factor
improve for the longer versions of these sequences.
When a Legendre sequence of length L is sampled with a
sampling value s which is equivalent to a QR mod-L the
sequence of samples is identical to the original sequence and
always has the same phase, i.e. it is self-similar. When s is
equivalent to a non QR, a distinct sequence is produced
which is equivalent to the original sequence with all its digits
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except a, inverted. Similarly, proper decimation of a modi-
fied Jacobi sequence either reproduces the original sequence
in identical phase or gives a distinct sequence which is the
reverse (except for by) of the original. Sequences of samples
have the same correlation values as the original.

Quadratic residue sequences also possess high linear
complexity [7, 8] and therefore have cryptographic signifi-
cance. They have also been employed in the acoustic
design of concert halls [9] and twin prime sequences
have been used in their two-dimensional array versions as
partially opaque filters for X-ray image processing [10-12].
It is anticipated that these properties and applications are
shared by the general forms of Legendre and modified
Jacobi sequences, due to their common forms of origin.

It has been shown that the array representations are
simple to generate and provide a convenient and compact
two-dimensional format for constructing these sequences
and deriving their autocorrelation functions, and also high-
light their inner structure.

Design data have been included to enable any Jacobi or
modified Jacobi sequence with length L <5000 and with
k <20 to be constructed and its autocorrelation function to
be derived using the procedures described in this paper.
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