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Abstract
Many types of pseudo-random signals have been used

to embed signatures as watermarks, with spread spectrum
signal techniques used to recover the signature from the
encrypted data. Legendre sequences are a suitable
candidate for signature encryption as they exhibit
‘perfect’ two level auto-correlation.

Additionally, Legendre sequences have the unusual
and interesting property of invariance under Fourier
transformation; the spatial and frequency representation
of each sequence is  identical up to a phase factor.

The presence of a Legendre-based watermark,
embedded in the pixel or transform domain, can be
detected by cross-correlating a sequence-encrypted
image with its Fourier transform. This property enables
verification of the presence of a watermark (of specified
length), without requiring prior knowledge of the
sequence type or key used for the encryption.
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1. Introduction
Pseudo-random, spread spectrum sequences have been

used as digital watermarks for over 5 years [9]. The
ability to embed and recover a signature on audio signals,
in images, or any other digital data, with minimal
perceptual perturbation, has received a great deal of
attention in many multi-media applications [2]. Here, we
focus on the task of verifying the presence of a
watermark, without requiring prior knowledge of the key
or sequence details used to embed the signature.
Establishing the presence of a watermark, prior to and
independently of examining the watermark contents, will
enable agents, for example server software, to
automatically monitor and control data transfer rights,
such as Internet copying.

This paper demonstrates that the above aims can be
achieved successfully by encoding signatures onto digital
data using Legendre sequences or arrays. The Fourier
invariance property of Legendre sequences is the
essential element in making our scheme work.

The correlation and Fourier invariance properties of
Legendre sequences are presented, for simple 1D signals
in section 2, with the details of our signature embedding
and recovery scheme given in section 3.  In section 4, we
extend the analysis to 2D Legendre arrays, which lend
themselves more appropriately to image watermarking.
Section 5 discusses the information storage capacity of
2D arrays.  The comparable technique of triple
correlation for blind signature detection, applicable for
linear “shift and add” invariant signals (such as M-
sequences), is discussed in section 6.  In section 7, we
present some sample results.

2. Legendre Sequences and Fourier
Invariance

The binary Legendre sequence [3] is a sequence with
optimal auto-correlation properties.  Such a sequence, bn,
is defined by:
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where p is prime, 0 < n < p, ℜℜ is the set of quadratic
residues for the finite field Zp, and ℵℵ is the set of non-
residues over the same field.  The Legendre sequence
above can be generalised from binary to a grey level
sequence, an, comprised of values given by an alphabet of
the higher roots of unity, [8].  The above equation
becomes:
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where r is a scaling factor, indg is the index function (or
‘number-theoretic logarithm’), defined as the exponent of
g, a primitive root of the prime p, required to produce n.
There are (p–2) Legendre sequences of length p.
Schroeder shows that the Discrete Fourier Transform
(DFT), Bn, of the binary Legendre sequence is

,nn bpB = )4(mod1≡p
or

,nn bpiB −= )4(mod3≡p
(3)

and that the DFT of the higher-alphabet Legendre
sequence, An, is

∗= nn aAA 1 ,

(4)

that is, the conjugate Legendre sequence is related to its
discrete Fourier transform by a complex constant, A1,  the
first component of the Fourier transform.  The magnitude
of this constant is √p, whilst the angle depends on the
value of the multiplier r.

The following example illustrates this feature.
Consider a binary Legendre sequence of length 5.
Legendre sequences of length p = 4k+1 have a zero first
element, the other elements are of unit magnitude. In this
case the phase is 0 or π.

1,1,1,1,0 −−=nb

The Discrete Fourier Transform, Bn,  of this sequence:

5,5,5,5,0 −−=nB

is identical to bn to within the scale factor √5.
The periodic cross-correlation, θθk of data items, dn,

with reference sequence, an, both of length p, is defined
as:

∑
−

≠+
=

+=
1

0
0

*
p

kn
n

knnk adθ

(5)
where n+k is reduced modulo p and * denotes complex
conjugation. The periodic auto-correlation values, Rk, of
the sequence bn are:

1,1,1,1,4 −−−−=kR

The cross-correlation values of the sequence, bn+k, with
the DFT coefficients Bn,  are

5,5,5,5,54 −−−−=kθ

θθk is a perfect two-valued cross-correlation, as is the
auto-correlation of the sequence. This feature makes the
Legendre sequence a unique watermark, in that the
sequence and its Fourier transform have the same auto-
and cross-correlation up to a scale factor. The Fourier
invariance property is dependent on the sequence being in
its characteristic phase (i.e. beginning with the zero
magnitude term). It does not apply to non-zero cyclic
shifts of the sequence. This is because a time shift in a
sequence translates to a phase shift of the Fourier
transform, this phase shift is different for different
Fourier coefficients.

If a sequence is displaced from its characteristic phase
by a cyclic shift ττ0, then for any offset

pmod0ττ −=
(6)

the characteristic phase is restored.
A simple implementation would restrict the embedded

watermark to Legendre sequences in their characteristic
phase only.  Information could then be stored in the
choice of the multiplier r of equation 2.   Alternatively,
the correlation process could involve two separate shift
operations in order to find a global correlation peak: a
shift operation for the Fourier transform computation and
a shift operation on the reference template.

Although Legendre sequences have complex values, it
is clear that, except for the first element, the sequence is
entirely expressed in the complex phase. This means that
if the correlation algorithm used to decode a sequence
treats the first element as a special case, it is possible to
compute the periodic correlation by treating the sequence
as real valued only.

An example of a non-binary Legendre sequence of
length 7, alphabet 3, has values ‘-,0,b,a,a,b,0’,
(corresponding to phase angles of 0=0, a=2π/3, b=4π/3),
where ‘–‘ represents a zero magnitude, and the other
elements assume unity magnitude.

3. Methods of Embedding
There are a number of ways to embed a watermark of

this kind into data. For a 1D audio signal, a
straightforward, but highly perceptible form of
embedding is as follows.  Since Legendre sequences are
normally complex valued, they may be added to 1D data



via a carrier [10]. In this case, the carrier would be phase-
modulated by the sequence

)2cos( tt Lty += π ,

where Lt = 2πqt/p,  qt is the sequence and p, its length.
Because the watermark is encoded entirely in the

phase of the above signal, we are free to modify the
amplitude according to other requirements.

In colour images, each data point n can be described
by a vector in a 3D space. It is then possible to choose
any two of the three pixel components as real and
imaginary, mapping complex numbers onto this space.
The angle of the pixel vector in that space can be
manipulated by embedding sequences as before [11].

Alternatively, if a colour image is mapped to a colour
space where one of the components represents some sort
of angle (eg. HSV or HLS [4], where the Hue component
is often represented as a position in a rainbow colour
wheel), then that angle can be directly modified in
proportion to the phase angles of the sequence.

Again, since the encoding is entirely in the phase of
the signal, amplitude modulation of the watermark
component can be used to hide the watermark (in this
case, visual edge masking).

Clearly, from section 2, it is unimportant, in terms of
recoverability, whether the sequence is applied in the
pixel or transform domain.  The factors determining
where to apply the sequence have more to do with such
aspects as visibility and resistance to rotation or scaling.

4. Multi-dimensional Arrays
A 2D Legendre array can be constructed by

multiplying row and column sequences directly to form a
product array [12].

For non-square arrays, given that our sequence
construction is separable, amn is given by

0normanyfor   0 ==mna
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where p, q are the row and column lengths (prime), g, h
are primitive roots modulo p, q respectively, ind is a
function returning the exponent of g, h required to
produce m or n, and r, s are any integers less than  p, q.

A 1D Legendre sequence can also be mapped into 2D
by a number of other schemes [12].

We define an embedding traversal direction, as the

sequence in which adjacent elements of the watermark
are applied to the image.  Possible embedding traversal
directions include:

• individual row- or column-wise scans (a new
sequence for each row/column),

• row- or column-wise raster scans (a single
sequence for the whole image),

• either of the above over sub-portions of an image
and these then tiled over the whole image,

• the JPEG-like 8x8 diagonal folding, then tiling
• non-adjacent traversals.

In all these cases, data for the Fourier Transform and
correlation must be accessed in the same manner as the
watermark sequence or array over the image.

For simplicity, the embedding traversal direction used
in section 7 is a simple, 1D single-row-per-sequence scan.

If the product array traversal was used as introduced at
the start of this section, the Fourier Transform and
correlator become the standard 2D versions.

The above discussion presents a key-less detection
scheme based on Fourier transform invariance. At the
time of writing, it is not known whether there exist
sequences or signals which are invariant to other
transforms frequently used in signal or image processing,
such as the Discrete Cosine Transform (DCT).

5. Information Storage
The Legendre product array is capable of information

storage in its cyclic shift from a reference template array.
For a p××p array, there are p2 such shifts.  Therefore, a
word of size Int(2log2p) can be accommodated.
Additional information may be embedded in the choice of
array e.g. the choice of the multiplier r for the row and

0 0 0 0 0 +5 +5 -20 +5 +5
0 +1 -1 -1 +1 +5 +5 -20 +5 +5
0 -1 +1 +1 -1 -20 -20 80 -20 -20
0 -1 +1 +1 -1 +5 +5 -20 +5 +5
0 +1 -1 -1 +1 +5 +5 -20 +5 +5

(a) Binary Legendre Array (d) Cross-correlation of the
Legendre Array and its

Fourier Transform

+1 +1 -4 +1 +1 0 0 0 0 0
+1 +1 -4 +1 +1 0 +5 -5 -5 +5
-4 -4 16 -4 -4 0 -5 +5 +5 -5
+1 +1 -4 +1 +1 0 -5 +5 +5 -5
+1 +1 -4 +1 +1 0 +5 -5 -5 +5

(b) Auto-Correlation (c) DFT of Legendre Array

Table 1: A 5x5 2D Legendre Array (a), its auto-correlation
(b) and Fourier transform (c) , and  the cross-correlation

(d) of the array (a) and its Transform (c), showing the
factor 5 between (b) and (d).



column sequences.  This can add another word of storage
equivalent to the first.

The cross-correlation between two p x p Legendre
arrays also factors into the product of two cross-
correlations of the component Legendre sequences:
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The cross-correlation θθk between two generalised
Legendre sequences of different alphabets is 0 for k=0,
and is a complex quantity of magnitude √√p otherwise.
Therefore, the cross-correlation between two different
arrays is 0 (for k or l = 0, i.e. on either axis) or a complex
number of magnitude p off axis.  The auto-correlation
peak is (p-1)2.  Therefore, the peak/false-peak ratio
approaches p for large p on a null image.  The above
raises the possibility of embedding n different arrays in
the same image [12].  On average, the peak/false-peak
ratio would degrade to p/√√n for a null image.  However,
by a careful mapping, tens or even hundreds of words
may be capable of being stored in 512x512 images.
Some overhead could be apportioned to error
correction/detection.  It should be noted that the addition
of multiple arrays results in watermarks with more
random “noise-like” appearance, which are therefore less
perceptible.

In practice, watermark visibility will constrain the
number of watermarks that can be applied well before
any other capacity constraints.  The number of
simultaneous watermarks is thus necessarily image
dependent.

6. Key-less Signature Detection Using
Higher Order Correlation

An alternative scheme for key-less signature detection
relies on higher order correlation. In particular, triple
correlations have been used in the detection of direct
sequence spread spectrum signals in a code division
multiple access scenario [1].  The 1D triple correlation θ
(τ1, τ2) is defined as:
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The m-sequence is a member of a class of binary
sequences possessing the shift-and-add property. In the
case of binary m-sequences, the isomorphism between (0,
1) and the roots of unity (-1, 1) results in the product (a*

i

ai+ττ) being equivalent to (ai+ττ’).  Therefore, the triple
correlation exhibits peaks of height h (the sequence
length) whenever τ2 = τ’.  Otherwise, the triple
correlation results in the off-peak auto-correlation value
of –1. This is independent of the m-sequence involved,
but relies on the correlation being performed over the
exact sequence length. This restriction is not severe, since
partial correlation asymptotes to this result as the
correlation length tends to the correct value. Since binary
m-sequences are only available in lengths of 2n-1, the
search for an unknown sequence need only include these
lengths.  The presence of other embedded m-sequences
results in a higher background, because of cross-
correlation effects. This results in distinct peaks
attributable to each sequence and some cross-correlation
peaks. The latter can be constrained by the choice of
sequences to be less than the square root of the length.
Cross-correlation between binary m-sequences has been
theoretically analysed [6,7].

The extension of the above theory to applications in
two or more dimensions is straightforward. M-sequences
of composite length can be folded into m-arrays. The
original m-sequence appears along the diagonal of such
an array.  Consequently, the array retains the ‘shift and
add’ property of the original sequence.

The triple correlation method is more computationally
intensive than the scheme proposed here and is also more
difficult to interpret.  It will not detect Legendre
sequences, just as M-sequences cannot be detected using
the Fourier invariance property.  As with the Legendre
invariance described in section 4, the correlator traversal
direction must match the embedding traversal direction.

7. Results
In this section, we present some sample results to

demonstrate how the proposed method works.
A 127 element 1D binary Legendre sequence with

values [-m,+m] was added to each row of an image (m is
a watermark ‘strength’ parameter whose value can be
image dependent or locally adaptive).

Recognising that any image traversal can be used,
row-wise traversal and processing was used here for
simplicity.  The results apply in general to any image
traversal direction, as long as the spatial pattern of



traversal is known, as described in section 4.
In our case, we used m=8 for a 256 level image for

demonstration purposes.  (A value of m=1 will elicit a
peak for this sequence length, but convolution with a 1D
Laplacian is needed to extract this peak.  For longer
sequences, this Laplacian convolution would not be
required).

Figure 1 shows the original image.  Since the
embedded sequence is balanced (mean = 0), and the
image is unipolar (all numbers positive), a row mean is
subtracted from each row to avoid a background offset in
the cross-correlation.

A 3D representation is shown of the normalised cross-
correlation magnitude between the watermarked image
with the watermark alone (Figure 2); and between the
watermarked image with its Fourier transform, (Figure 3).
These are all performed separately on each row.

Figure 2 shows the characteristic peak at column zero
in the cross-correlation of watermarked image and
watermark.  This procedure required knowledge of the
watermark and thus the encryption key.

Figure 3 shows the normalised cross-correlation
magnitude between image and its Fourier transform. This
does not require knowledge of the watermark or key.

Compare Figure 3 with Figure 4, which shows the
normalised cross-correlation magnitude of the
unwatermarked image with its Fourier Transform.

The background of correlation values can approach the
watermark peak in places.  This is one factor limiting the
strength, m, of the watermark to be applied to the image.

The power spectral density of each row can be used to
drive an adaptive mechanism determining a different m
for each row.  Hartung [5] claims that, to maximise
resistance against attacks, a spread-spectrum watermark’s
PSD should be a scaled version of the PSD of the image.

Since our watermark is encoded entirely in the phase
of the image row, its amplitude could be adjusted
according to the maximum PSD value for that row (figure
5) – crudely approximating (by row) Hartung’s assertion.
Figure 6 shows the image with a binary watermark added
whose row m-values depend on the row PSD.

8. Acknowledgments
The authors wish to thank Dr. T. E. Hall for his

invaluable input into the understanding of generalised
Legendre sequences and K. F. Wilson for her helpful
suggestion to utilise the Fourier invariance property.

9. References
1. E. R. Adams, M. Gouda, P. C. J. Hill, Detection and

Characterisation of DS/SS Signals Using Higher-
Order Correlation,  Proc. IEEE, ISSSTA’96, Mainz,
Germany, September 22-25, 1996, vol. 1, pp. 27-31.

2. J. F. Delaigle, C. De Vleeschouwer, B. Macq,
Watermarking Algorithm Based on a Human Visual
Model, Signal Processing (66) 3 (1998) pp. 319-335.

3. D. Everett, Periodic Digital Sequences With
Pseudonoise Properties, GEC Journal, 1966, Vol. 33,
No. 3, pp. 115-126.

4. J. D. Foley and A van Dam, Fundamentals of
Interactive Computer Graphics, Addison-Wesley,
1982.

5. F. Hartung, J. K. Su, B. Girod, Spread Spectrum
Watermarking : Malicious Attacks and Counter-
attacks, Presented at Electronic Imaging 99, SPIE,
Vol 3657, San Jose, USA, January 24-29, 1999.

6. F. J. Mac Williams, N. J. A. Sloane, Pseudo-random
sequences and Arrays, Proc. IEEE, vol. 64, pp. 1715-
1729, Dec 1976.

7. D. V. Sarwate, M. B. Pursley, Cross-correlation
Properties of Pseudorandom and Related Sequences,
Proc. of the IEEE vol. 68, no 5, May 1980, pp. 593-
619.

8. M. R. Schroeder, Number Theory in Science and
Communications, Ch 15, 2nd Ed.1997, Springer-
Verlag.

9. A. Z. Tirkel, G. A. Rankin, R. M. van Schyndel, W.
J. Ho, N. R. A. Mee, C. F. Osborne, Electronic Water
Mark, DICTA-93, Sydney, December 1993, pp. 666-
672.

10. R. G. van Schyndel, A. Z. Tirkel, I. D. Svalbe, Delay
Recovery from a Non-linear Polynomial-Response
System, ISPACS’98, Melbourne, November 5-7,
1998, pp. 294-298

11. R. G. van Schyndel, A. Z. Tirkel, I. D. Svalbe, A
Multiplicative Colour Watermark, Accepted in
NSIP’99, Antalya, Turkey, June 20-23, 1999.

12. R. G. van Schyndel, A. Z. Tirkel, I. D. Svalbe, T. E.
Hall, C. F. Osborne, Algebraic Construction of a new
class of Quasi-Orthogonal Arrays in Steganography,
Presented at Electronic Imaging 99, SPIE, Vol 3657,
San Jose, USA, January 24-29, 1999.



Figure 1
The original 127x127x8 bit gray image.

Figure 2
Normalised cross-correlation magnitude of
the image plus watermark with the known

watermark sequence (by row).  Note the peak
at column zero for each row.

Figure 3
Normalised cross-correlation magnitude of
the image plus watermark with its row-wise

Fast Fourier transform.  These were obtained
without knowledge of the key or watermark.

Figure 4
Normalised Cross-correlation Magnitude of
the unwatermarked image with its row-wise

Fast Fourier Transform.  Note the absence of
peaks in column zero.
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Figure 5.
The normalised maximum Power Spectral

Density of the image of figure 1, by row.  The
watermark amplitude can be scaled by the
maximum value of the PSD for each row.

Figure 6.
The image, watermarked, with row-amplitude
profile as in Figure 5 (exaggerated to reveal

the watermark)


