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Abstract
Diffuse optical tomography (DOT) poses a typical ill-posed inverse problem
with a limited number of measurements and inherently low spatial resolution.
In this paper, we propose a hierarchical Bayesian approach to improve spatial
resolution and quantitative accuracy by using a priori information provided by
a secondary high resolution anatomical imaging modality, such as magnetic
resonance (MR) or x-ray. In such a dual imaging approach, while the
correlation between optical and anatomical images may be high, it is not
perfect. For example, a tumour may be present in the optical image, but
may not be discernable in the anatomical image. The proposed hierarchical
Bayesian approach allows incorporation of partial a priori knowledge about
the noise and unknown optical image models, thereby capturing the function-
anatomy correlation effectively. We present a computationally efficient iterative
algorithm to simultaneously estimate the optical image and the unknown
a priori model parameters. Extensive numerical simulations demonstrate
that the proposed method avoids undesirable bias towards anatomical prior
information and leads to significantly improved spatial resolution and
quantitative accuracy.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffuse optical tomography (DOT) is a non-invasive imaging modality that makes use of
the light in the near-infrared (NIR) spectrum (Yodh and Chance 1995, Hebden et al 1997,
Arridge and Hebden 1997, Intes and Chance 2005). The inverse problem in DOT involves
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reconstruction of spatially varying absorption and scattering properties (O’Leary 1996, Boas
et al 2001, Arridge 1999) as well as fluorophore lifetime and yield (Chang et al 1997, Hawrysz
and Sevick-Muraca 2000, Eppstein et al 2002) in tissues from boundary measurements.
These fundamental quantities can be utilized to obtain tissue oxy- and de-oxyhaemoglobin
concentrations, blood oxygen saturation, water, fat and contrast agent uptake in tissue (Kincade
2004). The unique physiological and biochemical information offered by DOT is very valuable
for practical applications such as breast cancer diagnosis (Cerussi et al 2001, Srinivasan et al
2003, Intes et al 2003), cognitive activity monitoring (Strangman et al 2002, Villringer and
Chance 1997, Chance et al 2003), brain tumour and haemorrhage detection (Hebden et al
2004), functional muscle imaging (Quaresima et al 2003) with a growing list of applications
in fluorescence tomographic imaging (Frangioni 2003, Weissleder and Ntziachristos 2003).

DOT poses a typical ill-posed inverse problem with a large number of unknowns
and a relatively limited number of measurements. This necessitates the incorporation of
a priori information into the inverse problem formulation in order to obtain viable solutions.
Furthermore, propagation of NIR light is not restricted to a plane owing to the diffuse nature
of photons in turbid media, which results in poor spatial resolution. To tackle the ill-posed
nature of the inverse problem and to address the low spatial resolution in DOT, a number of
approaches have been developed. Bayesian approach has been suggested to incorporate a priori
information to the inverse problem formulation (Oh et al 2002, Milstein et al 2002, Eppstein
et al 2002, Guven et al 2002, Ye et al 2001). Introducing penalty functions (Hielscher
and Bartel 2001) and uniform (Paulsen and Jiang 1996, Arridge 1993, Jiang et al 1996,
Yao et al 1997) or spatially varying regularization terms (Pogue et al 1999) within the
regularization framework are alternative ways to incorporate a priori information into the
image reconstruction process. In all these studies, no other imaging modality has been utilized
to infer information specific to the medium of interest, which could be used to tune the prior
information.

1.1. Related literature

Recently several research groups reported development of hybrid imaging systems combining
optical methods with high resolution anatomical imaging techniques. These include a
concurrent x-ray tomosynthesis-DOT system at Massachusetts General Hospital (Li et al
2003), MRI-DOT/DOS (Diffuse Optical Spectroscopy) systems at University of Pennsylvania
(Intes et al 2002), University of California at Irvine (Gulsen et al 2003) and Dartmouth College
(Brooksby et al 2003) and ultrasound-DOT system at University of Connecticut (Zhu et al
2003a). These multi-modality developments are all motivated by the fact that DOT offers
unique functional information (such as tissue oxy- and deoxy-haemoglobin concentrations)
while high resolution anatomical imaging modalities provide complementary information for
disease diagnosis and understanding with superior localization and spatial resolution. Another
incentive comes from the assumption that the contrast elements provided by high resolution
imaging modalities correlate well with the optical properties. A number of studies lend
support to this assumption. Ntziachristos et al (2000) have reported that there exists a good
spatial correlation between gadolinium (Gd)-enhanced MR and Indocyanine Green (ICG)-
enhanced DOT images. Cuccia et al (2003) have also shown that Gd-enhanced and Methyl
Blue (MB)-NIR results correlate well with each other in terms of perfusion dynamics. Merritt
et al (2003a, 2003b) presented similar observations to demonstrate correlation between MR
and DOS in water and lipid concentration retrieval. Furthermore a number of studies have
shown that incorporation of high resolution anatomical images as a priori information leads
to improved diffuse optical image reconstruction (Dehghani et al 2002, Ntziachristos et al
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2002). Pogue and Paulsen (1998) used MR images to generate a finite element mesh to
reconstruct a simulated rat cranium, where the available information, about the structure and
optical properties, is used for the initial guess in the inversion algorithm similar to the approach
followed by Xu et al (2002). Schweiger and Arridge (1999) suggested using the structural
information to reconstruct images of a segmented brain model at a low resolution level in order
to obtain a good initial guess for the high-resolution solution of the same problem. Use of MR
scans has been employed for optical breast imaging (Chang et al 1997, Barbour et al 1995)
where the ‘reference medium’ was obtained from accurate optical properties of the tissue,
with the anatomy derived from MR images. Li et al (2003) reported optical breast imaging
results guided by x-ray mammography, where x-ray contrast was assumed to be proportional
to DOT contrast. X-ray images are used as the spatial constraint to decompose the optical
medium into two major sub-domains, representing the region of interest as referred to the
tumour region and the background, respectively. A hybrid L-curve method is followed for
the estimation of regularization parameters for each of the regularization terms corresponding
to the sub-domains, which challenges the inverse problem computationally. Brooksby et al
(2003) extended the idea proposed by Schweiger and Arridge (1999) to incorporate the initial
low-resolution optical image as derived from MR image by using structural information and
spatially varying regularization. The reported results are encouraging; however, accurate
quantification of the tumour region is possible only when the true optical heterogeneity of
tissue distribution is included. Therefore in this approach, the overall performance relies upon
the quality of the initial guess.

1.2. Proposed method

In all the studies referenced above, the performance of the DOT image reconstruction
relies on the assumption that the correlation between the anatomical and optical images is
high. However, there may be regions in the optical image that do not have any anatomical
counterparts. For example, a tumour may be apparent in the optical image, but may not
have a corresponding signature in the anatomical image. Furthermore, average optical
coefficients extracted from anatomical images may be significantly different from the true
optical coefficients of tissue. As a result, the assumption of strong optical-anatomy correlation
may cause undesirable, erroneous bias in optical image reconstruction. Therefore, more
flexible prior models are needed to properly represent optical-anatomy correlation. For
example, when the average optical properties extracted from anatomical images are not
reliable, prior image model should provide weaker constraints in image reconstruction. The
hierarchical Bayesian framework affords such a flexibility in designing prior image and noise
models. In the hierarchical Bayesian framework, one can formulate the inverse problem in
multiple stages where each stage includes information about the unknown parameters of the
preceding stage. The first stage of the hierarchy includes the data likelihood and the first
stage of the image prior, which comprise statistical models for the noise and optical image,
respectively. These models include parameters associated with noise and image statistics,
which are not known precisely in practice. These unknown parameters are referred to as
hyperparameters, which can be regarded as random variables. The succeeding stage of
the hierarchical formulation incorporates a priori information about the hyperparameters in
the form of prior distributions—so called hyperpriors—defined on the hyperparameters. The
incorporation of the second stage concludes the design of the two-level hierarchical noise and
image models.

In this paper, we consider a two-level hierarchical Bayesian formulation to incorporate
a priori anatomical and tissue classification information into the DOT image reconstruction.



2840 M Guven et al

We start with the segmentation of the high resolution image and classify the segmented
image into sub-images representing major tissue types. Based on the tissue label information
extracted from the anatomical image, we design the first stage of the prior distribution on the
unknown optical image as a function of unknown hyperparameters, namely the image mean and
standard deviation. Next, we design the data likelihood corresponding to the parametric noise
model with an associated unknown hyperparameter, which is related to the noise variance. The
uncertainty in the models owing to the unknown hyperparameters is addressed by defining
hyperpriors on the hyperparameters, which constitutes the second stage of the hierarchical
formulation. The hyperprior on the noise-variance related hyperparameter is assumed to be
uniform so as to not constrain its value. The hyperpriors on the hyperparameters of the image
model are formulated with the aid of coregistered tissue classification. Consequently, the
second stage of the image prior integrates the subjective information into the formulation,
defining the extent of the correlation between the anatomical and optical images. As a
result, a priori information is used to constrain the hyperparameters, thereby imposing weaker
constraints on the optical image. We refer to sections 2 and 3 for a detailed discussion of the
hierarchical noise and image models.

Having designed the hierarchical noise and image models, we formulate the joint
distribution of the measurements, the image and the unknown hyperparameters associated with
the noise and image models. In order to estimate the hyperparameters, we adapt the linear
conjugate gradient (CG) algorithm to include a hyperparameter estimation step followed by an
image update. In this context, we apply an iterative empirical Bayesian approach to estimate
the hyperparameters, which in turn gives the maximum a posteriori (MAP) estimates of the
hyperparameters at each CG iteration prior to the image update. Hence, the noise and image
models are accommodated at each update of the hyperparameters along with the solution
process.

We perform simulation experiments to evaluate the performance of the proposed
hierarchical Bayesian formulation and hyperparameter estimation scheme. Our results indicate
that hierarchical Bayesian approach captures the function-anatomy correlation properly and
provides improved DOT image reconstruction without introducing undesirable bias towards
a priori anatomical information. Our simulation experiments show that the proposed method
provides accurate reconstruction of tumours even when tumour contrast is absent in the
anatomical image.

1.3. Organization of the paper

The paper is organized as follows. Section 2 defines the forward model. Section 3 provides
background on the hierarchical Bayesian formulation of the inverse problem and describes
the components of the hierarchical model. Section 4 presents the iterative algorithm for the
simultaneous estimation of the optical image and the unknown hyperparameters. Section 5
includes numerical experiments to validate the properties of the proposed approach. Section 6
summarizes our results and conclusion. The appendix includes the derivation of the estimation
of the hyperparameters.

2. Forward model

In the NIR region of the electromagnetic spectrum, light propagation in biological tissue can
be modelled by the diffusion approximation to the radiative transfer equation. The diffusion
equation in the frequency domain is given by

� ·D(r) � φ(r) − µa(r)φ(r) − iω

c
φ(r) = −Aδ(r − rs), (1)
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where φ(r) represents the spatially varying optical field in the medium � ⊂ R
3, due to the

point source Aδ(r −rs) located at r = rs . ω denotes the modulation frequency of the source,
c is the speed of light and i = √−1. D(r) is the spatially varying diffusion coefficient and
µa(r) stands for the spatially varying absorption coefficient of the medium.

In this work, we focus on the reconstruction of absorption coefficients of the medium.
Therefore, we assume that the diffusion coefficient of the medium is known and spatially
invariant. As a result, the following diffusion equation given in frequency domain suffices to
define the forward model:

D �2 φ(r) − µa(r)φ(r) − iω

c
φ(r) = −Aδ(r − rs). (2)

We have employed the perturbation approach (O’Leary et al 1995, Arridge 1995, Kak
and Slaney 1988) with a first-order Rytov approximation to solve the forward problem in the
frequency domain to yield a system of linear equations after the discretization of the medium
� into N uniform voxels (Guven et al 2003a):

y = Wx + ζ, (3)

where y is the measurement vector, W is the Jacobian based on the Rytov approximation
computed around a specified homogeneous background µa(r) = µa0, x ∈ R

N denotes
the vector of differential absorption coefficients δµa of the medium with respect to the
homogeneous background and ζ is the additive noise in the measurement system. Note
that recently a number of researches (Ntziachristos et al 2002, Li et al 2003, Zhu et al 2003b ,
Intes et al 2003) have reported improved DOT reconstructions for clinical images based on
linearized forward model using high resolution anatomical priors.

3. Hierarchical Bayesian formulation of the inverse problem

We approach the DOT inverse problem from a Bayesian perspective. In particular, we propose
a hierarchical Bayesian approach to effectively capture the function-anatomy correlation.

We formulate the posterior distribution of the unknown image and compute its maximum
a posteriori (MAP) estimate x̂MAP; that is

x̂MAP = arg max
x

{log p(x|y)},
where log p(x|y) is the posterior distribution of the unknown image x given the measurements
y. Equivalently,

x̂MAP = arg max
x

{log p(y|x) + log p(x)},
where p(y|x) is the data likelihood and p(x) is the prior on the unknown image x.

In our problem, in addition to the optical boundary measurements y, we also have the
anatomical tissue label information C, derived from the a priori anatomical image. Therefore,
the MAP estimate can be modified as

x̂MAP = arg max
x

{log p(x|y,C)}
= arg max

x
{log p(y|x,C) + log p(x|C)}, (4)

where p(y|x,C) is the data likelihood and p(x|C) is the conditional probability density
function of x given the tissue label information C.

Given the forward model (3), the data likelihood is governed mainly by the noise statistics.
Therefore equation (4) reduces to

x̂MAP = arg max
x

{log p(y|x) + log p(x|C)}. (5)
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In our formulation, the noise statistics and the prior distribution are governed by unknown
model parameters λ and Q, respectively. Here, λ is the scalar parameter associated with
the noise variance and Q is the vector of mean and variance of sub-images that correspond
to different tissue labels. We will refer to these parameters as hyperparameters. In order
to estimate the unknown image and the associated hyperparameters, we consider the joint
conditional distribution p(y,x, λ,Q|C):

p(y,x, λ,Q|C) = p(y, λ|x)p(x,Q|C), (6)

where p(x,Q|C) is the conditional hierarchical prior on the image x and the hyperparameters
Q. Equation (6) can be alternatively expressed as

log p(y,x, λ,Q|C) = log p(y|x, λ) + log p(λ) + log p(x|Q,C) + log p(Q|C), (7)

where p(λ) is the prior distribution on λ. We shall refer to p(λ) and p(Q|C) as hyperpriors
(Berger 1988). In this representation, p(x|Q,C) is the first-stage prior and p(Q|C) stands
for the second-stage prior. In the following sections, we will discuss how the data likelihood
and the hierarchical prior are modelled.

3.1. The data likelihood model

The measurement vector y is formed as

y = [
y

f1
11 y

f1
12 · · · y

f1
1D y

f1
21 · · · y

f1
SD y

f2
11 · · · y

fF

SD

]T
, (8)

where S is the number of sources, D is the number of detectors and F is the number of
frequencies associated with each source. The total number of measurements is then equal to
P = S × D × F . For computational efficiency, we limit the data set to the real part of the
measurements, thus y ∈ R

P .
Photon detection can be modelled using shot noise statistics, which originates from

Poisson statistics. With a sufficiently large number of detected photons, the Poisson statistics
can be approximated by a Gaussian distribution, with a variance proportional to the magnitude
of the measurements (Ye et al 2001, Oh et al 2002). Consequently, we model the data
likelihood in equation (6) as

p(y, λ|x) = 1

K|Λζ (λ)|1/2
exp

[
−1

2
‖y − Wx‖2

Λ−1
ζ (λ)

]
, (9)

where we assume a non-informative prior for λ, which is a uniform density on R
1 (Berger

1988). In the above distribution, Λζ (λ) is the covariance matrix of size P × P,K is the
normalization constant and ‖z‖2

Λ = zT Λz. Under the assumption of statistical independence,
Λζ (λ) becomes a diagonal matrix of the form:

Λζ (λ) = λΛy =




λσ 2
ζ1

0 0 · · · 0

0 λσ 2
ζ2

0 · · · 0

0 0
. . . 0 0

...
. . .

. . .
. . . 0

0 0 0 0 λσ 2
ζP




, (10)

where σ 2
ζp

is equal to the absolute value of the pth measurement and the unknown parameter
λ controls the scale of the noise covariance matrix. Therefore, we shall refer to λ as ‘noise
scale’ for the rest of the paper.
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3.2. Hierarchical formulation of the prior distribution

We downsample the high resolution anatomical image to match its resolution with that of
the optical image. Next, we utilize the downsampled anatomical image to decompose the
optical domain into M non-overlapping sub-images, each of which is assumed to represent a
major tissue type. For instance, for breast, these tissues types can be parenchyma, adipose
and tumour (Ntziachristos et al 1999, 2000). We assume a Gaussian distribution for each sub-
image, with unknown mean and standard deviation. Thus, the first stage in the hierarchical
prior distribution for the ith sub-image is given by

p(xi |µi , σi) = 1(
2πσ 2

i

)Ni/2 exp

[
− 1

2σ 2
i

‖xi − µi‖2

]
, i = 1, 2, . . . ,M (11)

with the implicit assumption that the voxels in each sub-image are statistically independent.
µi = (µi · · · µi)

T is the uniform mean value vector of size Ni × 1, where Ni stands for
the number of voxels in the ith sub-image. The covariance matrix associated with the ith
sub-image Λx(σi) = σ 2

i INi×Ni
where σi is the standard deviation of each voxel in the ith

sub-image and INi×Ni
is the Ni × Ni identity matrix. Assuming that the sub-images are

statistically independent, the first-stage prior of the image given the tissue label information
C is

p(x|Q,C) = p(x|µ, σ,C)

= 1

(2π)N/2|Λx(σ)|1/2
exp

[
−1

2
‖x − µ‖2

Λ−1
x (σ)

]
, (12)

where Q = [µ, σ]. µ is the vector of mean values assigned to the sub-images and σ is the
vector of standard deviations associated with the sub-images, that is

σ =
[
σ1 · · · σ1︸ ︷︷ ︸

N1

σ2 · · · σ2︸ ︷︷ ︸
N2

· · · σM · · · σM︸ ︷︷ ︸
NM

]T

, (13)

µ =
[
µ1 · · ·µ1︸ ︷︷ ︸

N1

µ2 · · · µ2︸ ︷︷ ︸
N2

· · · µM · · ·µM︸ ︷︷ ︸
NM

]T

, (14)

and Λx(σ) is the covariance matrix of the image x

Λx(σ) =




σ 2
1 IN1×N1 0 0 · · · 0

0 σ 2
2 IN2×N2 0 · · · 0

0 0
. . .

. . . 0

...
. . .

. . .
. . . 0

0 0 0 0 σ 2
MINM×NM




. (15)

The second-stage prior involves incorporation of the a priori information into the
hierarchical prior distribution; in the form of hyperpriors defined on the unknown
hyperparameters of the first stage, that is the mean and standard deviation of different tissue
types in the optical image. Note the mean values of different tissue types are specific to the
unknown optical image and are different from average optical values of tissues available in
the literature. Nevertheless, the information available in the literature can be used to design
hyperpriors on the unknown mean and standard deviation, which allows effective modelling
of the uncertainty in the prior information.

We assume a Gaussian distribution for the mean value µ of the image:

p(µ|C) = 1

(2π)N/2|Λµ(ϑ)|1/2
exp

[
−1

2
‖µ − µ̃‖2

Λ−1
µ (ϑ)

]
, (16)
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where µ̃ = µ|µi=µ̃i
and µ̃i is the average differential absorption of the ith tissue type.

Λµ(ϑ) = Λx(σ)|σi=ϑi
is the covariance matrix where ϑi stands for the standard deviation of

the mean value of each voxel in the ith tissue type, for i = 1, 2, . . . , M .
Similarly, we assume a Gaussian distribution for standard deviation σ of the image:

p(σ|C) = 1

(2π)N/2|Λσ (γ )|1/2
exp

[
−1

2
‖σ − µσ‖2

Λ−1
σ (γ )

]
, (17)

where µσ = µ|µi=µσi
and Λσ (γ ) = Λx(σ)|σi=γi

for i = 1, 2, . . . ,M . Thus, the second-stage
prior p(Q|C) becomes

p(Q|C) = p(µ, σ|C) = p(µ|C)p(σ|C)

= 1

(2π)N |Λµ(ϑ)|1/2|Λσ (γ )|1/2
exp

[
−1

2

(‖µ − µ̃‖2
Λ−1

µ (ϑ)
+ ‖σ − µσ‖2

Λ−1
σ (γ )

)]
.

(18)

Having designed the first- and second-stage priors, the hierarchical prior distribution in
equation (6) becomes

p(x,Q|C) = p(x, µ, σ|C) = p(x|µ, σ,C)p(µ|C)p(σ|C)

= 1

(2π)3N/2|Λx(σ)|1/2|Λµ(ϑ)|1/2|Λσ (γ )|1/2

× exp

[
−1

2

(‖x − µ‖2
Λ−1

x (σ)
+ ‖µ − µ̃‖2

Λ−1
µ (ϑ)

+ ‖σ − µσ‖2
Λ−1

σ (γ )

)]
. (19)

In practice, µ̃i can be assigned based on the average absorption coefficients of tissue
types provided in the literature with a sufficiently large variance ϑ2

i . Analogously, the mean
value of σ can be extracted from the error bounds of the average optical properties of tissue
types which are documented in the literature. See for example, Mobley and Vo-Dinh (2003)
and Cheong et al (1990) for an exhaustive list of optical coefficients for human tissue and
fluids. An alternative method could be to employ a low-resolution estimate of the optical
image (typically a least-squares solution) to extract approximate values for these parameters
from the optical data. While alternative distribution models on µ and σ can be considered, we
will see in the next section and appendix that the Gaussian model leads to a computationally
efficient hyperparameter estimation scheme.

4. Image reconstruction and hyperparameter estimation

Following an empirical Bayesian approach (Berger 1988), we propose an iterative algorithm to
estimate both the optical image and the hyperparameters. At each iteration, the MAP estimates
of the hyperparameters are computed by successively maximizing the joint distribution with
respect to each hyperparameter. The hyperparameter estimation step at each iteration is
followed by an image update.

Substituting equations (9) and (19) into (6), the joint probability distribution of the
measurements, optical image and the hyperparameters becomes

p(y,x, λ, µ, σ|C) = p(y, λ|x)p(x|µ, σ,C)p(µ|C)p(σ|C)

= 1

K(2π)3N/2|Λζ (λ)|1/2|Λx(σ)|1/2|Λµ(ϑ)|1/2|Λσ (γ )|1/2

× exp

[
−1

2

(‖y − Wx‖2
Λ−1

ζ (λ)
+ ‖x − µ‖2

Λ−1
x (σ)

+ ‖µ − µ̃‖2
Λ−1

µ (ϑ)
+ ‖σ − µσ‖2

Λ−1
σ (γ )

)]
. (20)
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Let �(x, λ, µ, σ) be the objective functional given by

�(x, λ, µ, σ) = −log p(y,x, λ, µ, σ|C). (21)

Then, the image reconstruction becomes an optimization problem in which the objective
functional �(x, λ, µ, σ) has to be minimized with respect to the image x and the
hyperparameters λ, µ and σ.

The hyperparameter estimation problem has been a focus of both the statistical and
engineering communities and many procedures have been suggested to date (Mohammad-
Djafari 1993, 1996, Zhou et al 1994, Molina et al 1999, Utsugi 1997). Since the optimization
with respect to the optical image itself is a computationally intense problem, it is desirable to
keep the computation complexity of hyperparameter estimation to minimum. Therefore, we
propose an iterative algorithm based on the empirical Bayesian approach that successively
estimates the hyperparameters. The hyperparameter estimation step is followed by the
image update by one iteration of CG algorithm, applied with the current estimates of the
hyperparameters.

We consider an alternating minimization scheme for the estimation of the mean and
standard deviation, where the current estimate of one of the parameters is used to estimate
the other. This approach provides a computationally efficient solution to the hyperparameter
estimation problem with only O(N) extra operations at each iteration, where N is the number of
voxels. The estimation of the noise scale λ is independent of the image model hyperparameters
and requires O(N) extra operations when a gradient-based algorithm (such as conjugate
gradient algorithm) is used. As a result, the image is updated based on the current estimates
of the hyperparameters with O(NP ) operations, by one CG iteration.

A pseudocode describing the details of the proposed iterative image and hyperparameter
estimation scheme is given in table 1. The outline of the algorithm is as follows: the image
estimate is initialized to zero vector at the beginning of the iterations. At each iteration, for
the given image update x̂, we consider x̂ as the hidden variable of the conditional probability
p(y|λ) and formulate the MAP estimate of the hyperparameter λ, which corresponds to the
minimization of the objective functional �(x, λ, µ, σ) with respect to λ,

λ̂MAP ← arg min
λ

�(x̂, λ, µ, σ). (22)

Hyperparameters of the image model are estimated in a similar way. We formulate the
MAP estimate of the hyperparameter µ, given the image update as the observations and the
current estimate of the standard deviation as the hidden variable of the conditional probability
p(x|µ,C). This corresponds to the minimization of the objective functional with respect
to µ,

µ̂MAP ← arg min
µ

�(x̂, λ, µ, σ̂). (23)

Similarly, we formulate the MAP estimate of the hyperparameter σ, given the image update as
the observations and the current estimate of the mean as the hidden variable of the conditional
probability p(x|σ,C). This is equivalent to the minimization of the objective functional with
respect to σ:

σ̂MAP ← arg min
σ

�(x̂, λ, µ̂, σ). (24)

Note that the estimate λ̂ is attained regardless of the value of σ and µ and vice versa (see the
appendix). The estimation of the hyperparameters is followed by the update of the image by
one CG iteration

x̂MAP ← CGupdate{�(x, λ̂, µ̂, σ̂)}, (25)
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Table 1. The modified conjugate gradient algorithm with the proper initializations and embedded
hyperparameter estimation sub-routine.

begin{Initialize}
Image: x̂(0) = 0

Hyperparameters: λ̂(0) = 1; µ = µ̃; σ̂
(0)
i = ki for i = 1, 2, . . . , Mki > 0

Gradient vector: g(0) = −�(x̂(0)) = − ∂�(x,λ,µ,σ )
∂x |x=x̂(0)

Search direction: d(0) = g(0)

Termination criterion: ε

Iteration counter: n = 0
end{Initialize}
repeat
begin{Update Image}

Exact line search: α(n) = arg minα>0 �(x̂(n) + αd(n), λ̂(n), µ̂(n), σ̂ (n))

x̂(n+1) = x̂(n) + α(n)d(n)

end{Update Image}
begin{Estimate Hyperparameters}

λ̂(n+1) ← arg minλ �(x̂(n), λ, µ(n), σ (n))

µ̂(n+1) ← arg minµ �(x̂(n), λ(n), µ, σ (n))

σ̂ (n+1) ← arg minσ �(x̂(n), λ(n), µ̂(n+1), σ )

end{Estimate Hyperparameters}
begin{Update Search Direction}

g(n+1) = −�(x̂(n+1))

β(n+1) = max(
g(n+1)T (g(n+1)−g(n))

g(n)T g(n) , 0)

d(n+1) = g(n+1) + β(n+1)d(n)

end{Update Search Direction}
n = n + 1

until ‖α(n)�(x̂(n))‖ < ε

where the step length is computed by the exact line search (Nash and Sofer 1996) and Polak–
Ribière–Polyak method (Polak and Ribière 1969, Polyak 1969) is used to calculate β parameter
of the CG method. The derivation of the hyperparameters is given in the appendix in detail.
The computational complexity of the proposed image reconstruction and hyperparameter
estimation algorithm is shown in table 2.

Note that the proposed simultaneous image reconstruction and hyperparameter estimation
algorithm can be viewed as a variation of the alternating minimization algorithm (Csiszar and
Tusnady 1984), where the minimization of the objective functional �(x, λ, µ, σ) with respect
to the image is replaced by one CG iteration that leads to the update of the image. Similar
approaches can be found in Mohammad-Djafari (1993, 1996) and Milstein et al (2002). The
empirical approach proposed in this work is asymptotically efficient and comparable with the
hierarchical analysis (Berger 1988, Molina et al 1999) provided that the number of observations
(Ni for the sub-images, P for the measurements) is large (Berger 1988). Alternative approaches
for hyperparameter estimation include ML-Type II (Berger 1988) and marginalized ML type
estimation schemes, which do not incorporate hyperpriors. Extension of these approaches
to marginalized MAP estimation requires integration over the multi-dimensional image x
(Molina et al 1999, Galatsanos et al 2002), which may result in increased computational
complexity.

5. Results

We perform three sets of experiments to evaluate the performance of the proposed method. For
each of the experiments, we used a finite difference code to simulate the optical measurements.



Diffuse optical tomography with a priori anatomical information 2847

Table 2. Computation complexity of the algorithm described in table 1. N is the number of voxels
and P is the number of measurements. Since the noise scale estimate λ̂ is used in the calculation
of α, this saves O(NP ) number of multiplications and O(NP ) number of additions. Thus,
the estimation sub-routine does not affect the overall computational complexity of the original
conjugate gradient algorithm.

Number of Number of
Operation multiplications additions

α computation
(exact line search) O(NP ) O(NP )

β parameter calculation O(N) O(N)

Estimation of λ O(NP ) O(NP )

Estimation of µ O(N) O(N)

Estimation of σ O(N) O(N)

Gradient calculation
and image update O(NP ) O(NP )

Total O(NP ) O(NP )

3% of the mean value of measurements was added to the measurement vector y in each
experiment.

In the first set of experiments, the objective is to evaluate whether the optical image
reconstruction is biased towards the average optical coefficients, which are used to formulate
the hyperprior defined on the mean value. Second set of experiments demonstrate how well
the hierarchical Bayesian formulation captures the correlation between the optical and the
a priori anatomical image. In the last set of experiments, we evaluate the proposed method
using optical data simulated from an MR breast image. We show that the a priori information
improves the image reconstruction and does not lead to an erroneous bias towards the a priori
information.

5.1. Simulation experiment I

A priori selection of parameters in the assumed image and/or noise models may bias the optical
image reconstruction in an undesirable way. The hierarchical Bayesian formulation and the
empirical hyperparameter estimation scheme proposed in this paper avoids such undesirable
results by incorporating dynamic image and noise models in the problem formulation. In
this experiment, we show that the proposed hyperparameter estimation approach is relatively
insensitive to average optical values used to design the hyperprior p(µ|C), defined on the
mean value of the image.

We consider a square heterogeneity with a mean absorption coefficient of 0.071 cm−1

embedded in a background with a mean absorption coefficient of 0.04 cm−1 as shown
in figure 1. The diffusion coefficient of both the heterogeneity and the background is
assumed equal and set to D = 0.033 cm. We consider a transmission geometry and
distribute 19 sources and 19 detectors on opposite sides to yield a total of 722 measurements,
collected at two frequencies, that is 100 and 200 MHz. We evaluate the Jacobian at µa0 =
0.04 cm−1 and perform 200 experiments with the proposed hierarchical Bayesian formulation
and hyperparameter estimation scheme. At each experiment, p(µ|C) is formulated such that
µ̃i + µa0 for the square inclusion and for the background are drawn randomly from a uniform
distribution with lower and upper bounds (0.038, 0.114) and (0.02, 0.06), respectively (Note
that µ̃i value is used in the formulation of the objective functional). The associated standard
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Figure 1. The medium used to simulate the optical data for the first experiment. A square absorber
is embedded in an almost homogeneous background.
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Figure 2. The average absorption values ( ¯̂µa) in the reconstructed sub-images for randomly drawn
average absorption values µ̃a . Results are shown for 200 trials. Note that the ¯̂µa values estimated
for the square inclusion (an average value of 0.068) are very close to the actual value of 0.071.
(a) The average value ¯̂µa in the reconstructed square heterogeneity versus the average absorption
value drawn for the square heterogeneity is shown. (b) The average value ¯̂µa in the reconstructed
background sub-image versus the average absorption value µ̃a drawn for the background is shown.

deviation ϑi is sufficiently large and set to ϑi = 6(µ̃i + µa0). Similarly p(σ|C) is formulated
such that µσi

= 0.4(µ̃i + µa0) and γi = 15µσi
.

This simulation study demonstrates that the proposed method provides effective means
to constrain image reconstruction without biasing the solution. Figure 2 shows the average of
the estimated absorption values ¯̂µa (i.e. x̂i + µa0) versus the assigned hyperparameter values
µ̃a (i.e. µ̃i + µa0) for the square inclusion and the background, respectively. We observe that
quantitative accuracy is achieved even in the extreme cases and the reconstruction for the
background is almost insensitive to the assigned hyperparameters.

5.2. Simulation experiment II

In this experiment, we examine a case where the heterogeneity is present in the a priori
anatomical image but not in the optical image (see figure 3). Based on the anatomical
template, the optical image was segmented into two sub-images, one corresponding to the
background and the other corresponding to the two inclusions, which were assumed to have
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Figure 3. The optical image (a) and the anatomical counterpart (b). Note the additional absorber
(square inclusion) indicated by the anatomical prior which does not exist in the optical map.

Table 3. The parameter set used in the inverse problem formulations for the simulation experiment
II, displayed for the two sub-images: the inclusions and the background. µa0 = 0.04 and
D = 0.33 cm for this experiment. This experiment was performed with the same source-detector
configuration as in experiment 1.

Hyperprior parameters

(µ̃i + µa0, ϑi) (µσi
, γi )

Both inclusions in (0.08, 0.04) (0.03, 0.45)
the anatomical image
Background (0.04, 0.02) (0.02, 0.30)

the same average optical coefficients. For comparison, we also considered the maximum
likelihood (ML) approach for the inverse problem formulation. The ML approach estimates
the optical image based on the data likelihood model given in section 3.1. This formulation
does not incorporate any a priori information about the image. Nevertheless, the noise scale
λ is unknown and has to be estimated as described in section 4. Note that the ML (no prior)
formulation is in fact regularized by the stopping criterion of the conjugate gradient algorithm
used in the minimization of the resulting objective functional. We list the parameter set used
in the hierarchical prior design in table 3.

The reconstructed images are shown in figure 4. The true mean values and the sample
average of the estimated absorption coefficients of the heterogeneity on the left and on the right
and of the background are shown in table 4. Even though the anatomical image indicates a
heterogeneity on the right, the hierarchical Bayesian formulation leads to a qualitatively good
reconstruction. The ML estimate of the image detects the rectangular inclusion, but suffers
from low resolution and lacks accuracy in the reconstructed value of the absorption coefficient
of the rectangular absorber.

5.3. 2D experiment with MR-simulated data

We used the T1-weighted MR breast image from Ntziachristos et al (1999) to design a realistic
optical breast model (figure 5). The MR breast image was segmented into parenchyma and
adipose layers by applying a simple thresholding algorithm with respect to the MR image
intensity values. Next, a tumour corresponding to an infiltrating ductal carcinoma revealed
by Gd-DTPA (gadolinium-diethylenetriamine pentaacetic acid) enhancement was inserted
(shown in figure 5 as well). Each sub-region was assigned an absorption value as indicated
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Figure 4. The reconstructed images as a result of hierarchical Bayesian formulation (a), and
ML (no prior) formulation (b). ML solution is quantitatively inaccurate and suffers from low
spatial resolution. Hierarchical Bayesian formulation leads to an image estimate with quantitative
accuracy.

Figure 5. The original MR breast image with an artificial tumour inserted.

Table 4. The actual mean values and the mean of the reconstructed sub-images as a result of
maximum likelihood (no prior) and hierarchical Bayesian formulations. Sub-images are defined
on the sub-domains as indicated by the anatomical image shown in figure 3(b).

True mean Maximum Hierarchical
Sub-domain value likelihood Bayesian

Rectangular inclusion 0.076 0.061 0.071
Square inclusion 0.040 0.037 0.044
Background 0.040 0.041 0.040

in Ntziachristos et al (1999)
(
µ

adipose
a = 0.03 cm−1, µ

parenchyma
a = 0.06 cm−1, µtumour

a =
0.09 cm−1

)
to obtain an initial template (figure 6(b)). To simulate a corresponding optical

image, zero mean Gaussian noise was added prior to filtering the image by a low-pass filter.
The resulting optical image is shown in figure 6(b). Note the quantitative and spatial mismatch
along the boundaries and especially within the tumour. The homogeneous diffusion coefficient
of the medium was set to 0.042 cm. Nine frequencies ranging from 0 to 244 MHz were used
to obtain 729 measurements with nine sources and nine detectors positioned along the x-axis
on opposite sides. The optical medium was uniformly discretized into 90 pixels along the
x-axis and 60 pixels along the y-axis leading to a total of 5400 1 × 1 cm2 pixels.
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Figure 6. The anatomical and optical images are shown on the left and right, respectively. Note
the spatial mismatch between the two images.
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Figure 7. The hierarchical Bayesian reconstruction of the optical image (a) using the anatomical
template shown in figure 6(a) for the design of the hierarchical image model. Part (c) shows the
image that zooms into the tumour region in the optical image shown in (a). The ML estimate of the
entire image and the sub-image focusing the tumour region are shown in (b) and (d), respectively.
The rectangular box in the figures shows the actual location of the tumour.

We performed two types of experiments to test the performance of the proposed
hierarchical Bayesian approach for this problem.

(i) Tumour present both anatomically and optically. In this experiment, the template
extracted from the anatomical image shown in figure 6(a) was used to design the hierarchical
image prior. As a result, the optical image was segmented into three sub-images each of
which corresponded to the labelled images in the anatomical image as shown in figure 6(a).
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Figure 8. The mean value and the standard deviation estimates for each sub-image (sub-images
are determined by the anatomical image) and noise scale estimate versus iteration number are
shown. The thick solid line shows the estimated values. The constant solid line in (a) shows the
actual mean value and the constant dashed line in (a) shows the assigned mean value (µ̃i + µa0)

used in the design of the hyperprior defined on the sub-image means. The actual mean values in
these sub-regions are 0.032, 0.058 and 0.076, respectively. (a) The estimated mean values µ̂i for
each sub-image versus iteration number are shown. The estimates for the parenchyma, adipose
and tumour sub-images are given at the top, middle and bottom, respectively. (b) The estimated
standard deviation σ̂i for each sub-image versus iteration number are shown on the left. The
estimates for the parenchyma, adipose and tumour sub-images are given at the top, middle and
bottom, respectively. The noise scale estimate λ̂ versus iteration number is shown on the right.

In the design of the hyperprior defined on the mean (i.e. p(µ|C)), values that are significantly
different from the actual mean of the sub-images were used. Thus, this experiment evaluates
the robustness of the proposed method when the true statistics of the optical image are
significantly different from the statistics extracted from the prior anatomical image.

The reconstructed image and the sub-image zoomed into the tumour region are shown in
figures 7(a) and (c), respectively. For comparison, the ML estimate of the image is shown in
figures 7(b) and (d). The simulation results show that hierarchical Bayesian approach leads to
qualitatively better results and resolves the tumour more accurately.

In figure 8, the estimates of the hyperparameters associated with the noise and image
models are given as a function of the iteration number. Note that the mean value estimates
for each sub-image converge to actual values, even though the corresponding assigned
hyperparameters regarding the mean value deviate from the true average optical values by
at least 15% (see table 5). The experiment also demonstrates that the initialization of the
hyperparameters does not have any effect on the performance of the estimation (figure 8).

(ii) Tumour present optically but not anatomically. In this experiment, we removed the
tumour region from the template extracted from the prior anatomical image, but kept it in the
optical image as shown in figures 9(a) and (b). As a result, the optical image was segmented
into two sub-images. The objective of this experiment is to evaluate how well the proposed
method reconstructs optical tumours when they are not anatomically present.

The reconstructed images for this experiment are given in figures 10(a) and (c),
respectively. The ML estimate of the image is given in figures 10(b) and (d). We observe
that, even though there is a significant mismatch between the optical image and the anatomical
counterpart in the tumour region, the hierarchical Bayesian formulation leads to a qualitatively
better reconstruction than the ML approach, even around the tumour. Furthermore, the tumour
is better localized as compared to the ML solution and is not biased towards the a priori



Diffuse optical tomography with a priori anatomical information 2853

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) (b)

Figure 9. The anatomical template (a) and the original optical image (b). Note that the tumour is
not anatomically present.
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Figure 10. The hierarchical Bayesian reconstruction of the optical image (a) using the anatomical
template shown in figure 9(a) for the design of the hierarchical image model. Part (c) shows the
image that zooms into the tumour region in the optical image shown in (a). The ML estimate of the
entire image and the sub-image focusing the tumour region are shown in (b) and (d), respectively.
The rectangular box in the figures shows the actual location of the tumour.

anatomical image. The error in the localization of the tumour can be attributed to the source-
detector geometry. The propagation of light along the y-direction results in a smoothing effect
on the optical image along the y-direction. This effect is enhanced near source and detectors
due to the behaviour of the solution of the diffusion equation. The vertically smoothing effect
can be observed in the ML estimate of the image more apparently (figures 10(b) and (d)). The
smoothing effect can be suppressed by incorporation of a priori information for the tumour
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Figure 11. The mean values of the reconstructed sub-images versus iteration number (a). The
estimated values of the standard deviation of the two sub-images and the noise scale λ are shown in
(b). (a) The average value ( ¯̂µa in each reconstructed sub-image versus iteration number are shown.
The estimates for the parenchyma, adipose and tumour sub-images are given at the top, middle
and bottom, respectively. The domains of the sub-images correspond to the domains in the optical
image shown in figure 9(a). (b) The estimated standard deviation σ̂i for each sub-image versus
iteration number are shown on the left. The estimates for the parenchyma, adipose sub-images are
given at the top and bottom, respectively. The sub-images correspond to the sub-images defined by
the anatomical template shown in figure 9(b). The noise scale estimate λ̂ versus iteration number
is shown on the right.

Table 5. The actual mean of the absorption values in each sub-image and the parameter set used
in the inverse problem formulations for the MR-simulated experiments I and II. µa0 = 0.0439 for
this experiment. N/A stands for ‘not applicable’.

Sub-images

Parenchyma Adipose Tumour

The first (µ̃i + µa0, ϑi ): (0.038, 0.23) (0.05, 0.3) (0.09, 0.54)
experiment (µσi

, γi ): (0.015, 0.228) (0.02, 0.3) (0.036, 0.54)

The second (µ̃i + µa0, ϑi ): (0.03, 0.18) (0.06, 0.36) N/A
experiment (µσi

, γi ): (0.012, 0.18) (0.024, 0.36) N/A

(µ̄actual
a + µa0): 0.032 0.058 0.076

as in case (i), where the tumour is better resolved (figure 7(c)). Further improvement can
be achieved by employing sources and detectors positioned along the y-axis as well as along
x-axis.

In figure 11, the average absorption value of each reconstructed sub-image versus iteration
number is given. The sub-images correspond to those as indicated by the actual optical image
shown in figure 6. Note that the mean value of the reconstructed image in the tumour region
converges to the actual value even though the anatomical image asserts that no tumour exists.

The set of parameters used in the design of hyperpriors for these experiments and the
actual mean of absorption values for each sub-image are shown in table 5.

6. Conclusion

In this work, we formulated the inverse DOT problem within a hierarchical Bayesian
framework where the hierarchical prior distribution is based on the a priori information
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extracted from a secondary high-resolution anatomical image. Instead of directly constraining
the optical image with the anatomical prior, we incorporated the a priori information in the
form of hyperpriors to impose constraints on the unknown hyperparameters of the image
and noise models. We proposed a computationally efficient iterative algorithm, based on an
empirical Bayesian approach, to simultaneously estimate the optical image and the unknown
hyperparameters. We tested the proposed approach in three different simulation experiments.
Numerical experiments demonstrate that the proposed approach improves the spatial resolution
and quantitative accuracy of optical images. Our study shows that the hierarchical Bayesian
approach provides an effective framework to capture the correlation between optical and
anatomical images.

The proposed hierarchical Bayesian formulation can be extended to incorporate spectral
a priori information (Intes et al 2004). Finally, we note that the results are based on
the linearized forward model around a homogeneous background. However, the proposed
hierarchical Bayesian formulation and the iterative optical image and hyperparameter
estimation scheme can be adapted to the nonlinear inverse DOT problem, wherein the Jacobian
of the forward model is iteratively updated.
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Appendix

The minimization of the objective function �(x, λ, µ, σ) with respect to the noise scale λ

given the updated image estimate x̂ results in the ML estimate λ̂ of the noise scale:

λ̂ = 1

P
‖y − Wx̂‖2

Λ−1
y

. (A.1)

Note that the estimate λ̂ is independent of the hyperparameters associated with the image
model. On the other hand, the minimization of the objective functional with respect to µ
yields the MAP estimate of the mean. In order to find an estimate for the vector µ, we make
use of the probability density function formulation for each individual sub-image and rewrite
the objective function with µi dependent terms, given the sub-image estimate x̂i and the
current estimate of the standard deviation σ̂i :

�µi
(µi ) = 1

2σ̂ 2
i

‖x̂i − µ̃i‖2 +
1

2ϑ2
i

‖µi − µ̃i‖2. (A.2)

Minimization with respect to yields the estimate µ̂i for the mean value of the ith sub-image,
i.e.

µ̂i = 1

Ni
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i

ϑ2
i + σ̂ 2

i

Ni∑
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)
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Ni

(
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Ni∑
k

xik +
σ̂ 2

i

ϑ2
i + σ̂ 2

i

Niµ̃i

)
, (A.3)

where xik denotes the kth voxel in the ith sub-image and µ̃ik = µ̃i stands for the assigned
mean value of the image mean for the kth voxel in the ith sub-image.
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Following a similar procedure, we make use of the hierarchical prior formulation for each
individual sub-image and rewrite the objective functional with σi-dependent terms, given the
sub-image estimate x̂i and the current estimate of the mean µ̂i :

arg min
σi

�σi
(σi) = log

(
σ

Ni

i

)
+

1

2σ 2
i

‖x̂i − µ̂i‖2 +
1

2γ 2
i

‖σi − µσi
‖2, (A.4)

where σi = (σi · · · σi)
T . After taking the derivative of the above expression, the estimate for

the sub-image standard deviation σi satisfies the following equation:

Niσ̂
2
i − ‖x̂i − µ̂i‖2 +

Ni

γ 2
i

σ̂ 3
i (σ̂i − µσi

) = 0. (A.5)

This is a fourth-order equation in σ̂i , which is rather difficult to solve. In order to simplify the
solution, we make use of the following approximation:

µσi
σ̂ 3

i ≈ µ2
σi
, (A.6)

and equation (A.5) becomes a quadratic equation of the estimate σ̂ 2
i

Ni

γ 2
i

σ̂ 4
i + Niσ̂

2
i −

(
‖x̂i − µ̂i‖2 + Ni

µ2
σi

γ 2
i

)
= 0. (A.7)

Then the positive value for the variance estimate σ̂ 2
i is equal to

σ̂ 2
i = −Ni +

√�
2Ni/γ

2
i

> 0, (A.8)

where the discriminant � in the equation can be evaluated as

� = N2
i + 4

Ni

γ 2
i

(
‖x̂i − µ̂i‖2 + Ni

µ2
σi

γ 2
i

)
> 0. (A.9)

Note that in the limiting case, for γ 2
i → ∞, the sub-image variance estimate σ̂ 2

i converges to

lim
γ 2

i →∞
σ̂ 2

i = lim
γ 2

i →∞
−Ni +

√�
2Ni/γ

2
i

= ‖x̂i − µ̂i‖2

Ni

, i = 1, 2, . . . , M, (A.10)

which corresponds to the ML estimate of the variance (Guven et al 2003b).
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