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Here we consider about the simplest possible case of the two-d resistive sheet to get some insight into the
more general problem.

(draw your own picture here :)
There are four nodes, arranged in N = 2 rows and M = 2 columns. On the left are the two nodes used

for input ((1) and (2)) and on the right are the two output nodes ((3) and (4)). Four ‘horizontal’ resistors
with conductance g12, g13, g24 and g34 connect these four nodes. These resistors represent scattering, and
are assumed to be of known value. There is also a ‘vertical’ leakage path from each of the four nodes to
ground — with conductances g1, g2, g3 and g4. These represent absorption, and are the unknowns.

We are to recover the values of the unknown leakage resistors. We perform two experiments: First we
inject current at node (1) and measure the potentials on nodes (3) and (4). Call the ‘trans-impedance’ (ratio
of output potential to injected current) observed this way R3,1 and R4,1. Then we inject instead current at
node (2) and again measure the potential on nodes (3) and (4). Call the ‘trans-impedance’ observed this
way R3,2 and R4,2.

If the grid was N ×M instead of 2×2 then we would have performed N experiments, each time injecting
current on one of the N input nodes and reading out the potential on each of the N output nodes. We then
try to recover the N ×M unknown leakage conductances to ground. Clearly there is not enough constraint if
M > N since there are then more unknowns than measurements. Conversely if M < N , we have redundant
information and may want to use a least squares approach to obtain the best possible answer.

Here we deal with the simple case where M = N = 2. The node equations in this case are:

I1 = g1V1 + g13(V1 − V3) + g12(V1 − V2)
I2 = g2V2 + g12(V2 − V1) + g24(V2 − V4)
I3 = g3V3 + g13(V3 − V1) + g34(V3 − V4)
I4 = g4V4 + g24(V4 − V2) + g34(V4 − V3)

or 


(g1 + g13 + g12) −g12
... −g13 0

−g12 (g2 + g12 + g24)
... 0 −g24

· · · · · · · · · · · · ·
−g13 0

... (g3 + g13 + g34) −g34

0 −g24
... −g34 (g4 + g24 + g34)







V1
V2
· · ·
V3
V4


 =




I1
I2
· · ·
I3
I4




Note that all off diagonal elements are negative, and that the unknown leakage conductances all appear on
the diagonal. Also, the matrix becomes singular if all leakages conductances are set to zero, since then each
row adds up to zero.

Making use of the partitioning indicated above, we can write


 G11

... G12
· · · · · · ·
G21

... G22







V1
V2
· · ·
V3
V4


 =




I1
I2
· · ·
I3
I4




This partitioning is convenient, since in the experiments we always have I3 = 0 and I4 = 0, and since V1 and
V2 are not known.

If we invert this set of equations we get:


 C11

... C12
· · · · · · ·
C21

... C22







I1
I2
· · ·
I3
I4


 =




V1
V2
· · ·
V3
V4



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where
C11 = (G11 − G12G

−1
22 G21)−1

C21 = −G−1
22 G21C11

C22 = (G22 − G21G
−1
11 G12)−1

C12 = −G−1
11 G12C22

Upon multiplying out we obtain

C11

(
I1
I2

)
=

(
V1
V2

)

where the term involving C12 drops out because I3 = 0 and I4 = 0. This equation is of no interest since we
don’t know V1 and V2. But we also obtain

C21

(
I1
I2

)
=

(
V3
V4

)

where the term involving C22 drops out because I3 = 0 and I4 = 0. The four unkowns (g1, g2, g3, g4) occur in
the matrix C21, but we obviously can’t solve for them using a single set of measurements. We can however,
combine two sets of measurements and obtain:

C21

(
I1,1 I1,2
I2,1 I2,2

)
=

(
V3,1 V3,2
V4,1 V4,2

)

where typically we would choose I1,1 = 1, I2,1 = 0 for the first experiment and I1,2 = 0, I2,2 = 1 for the
second. We then obtain

C21 =
(

R3,1 R3,2
R4,1 R4,2

)

where, provided I2,1 = 0 and I1,2 = 0, R3,1 = V3,1/I1,1, R4,1 = V4,1/I1,1, and R3,2 = V3,2/I1,2, R4,2 =
V4,2/I1,2. So from image measurements we can recover the matrix C21, and we know that

C21 = −G−1
22 G21C11

or
C21C

−1
11 = −G−1

22 G21

then, since
C11 = (G11 − G12G

−1
22 G21)−1

we obtain
C21(G11 − G12G

−1
22 G21) = −G−1

22 G21

We need to manipulate this some more to try and isolate the two matrices G11 and G22, which contain the
unknowns g1, g2, g3, and g4. We see that

C21G11 = C21G12G
−1
22 G21 − G−1

22 G21

or
C21G11G

−1
21 G22 = C21G12 − I

or finally
G11G

−1
21 G22 = G12 − C−1

21

Here C−1
21 is obtained from experimental measurements, while G11 and G22 contain the unknown leakage

conductances. In our simple example, G12 and G21 are diagonal.
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Numerical Example

Suppose that the ‘horizontal’ resistors have conductance as follows: g13 = 1, g12 = 2, g24 = 1, and g34 = 2.
Next assum that the leakage or ‘vertical’ resistors have conductance g1 = 1, g2 = 2, g3 = 2, and g4 = 1.
Then the conductance matrix is 



4 −2
... −1 0

−2 5
... 0 −1

· · · · · · · · · · · · ·
−1 0

... 5 −2

0 −1
... −2 4




and so

G−1
11 =

1
16

(
5 2
2 4

)
and G−1

22 =
1
16

(
4 2
2 5

)

and so

G12G
−1
22 G21 = G−1

22 =
1
16

(
4 2
2 5

)

while

G21G
−1
11 G12 = G−1

11 =
1
16

(
5 2
2 4

)

so

G11 − G12G
−1
22 G21 =

1
16

(
60 −34

−34 75

)

and

G22 − G21G
−1
11 G12 =

1
16

(
75 −34

−34 60

)

So in the inverse we have

C11 =
1

209

(
75 34
34 60

)
and C22 =

1
209

(
60 34
34 75

)

and

C21 =
1

209

(
23 16
20 23

)
and C12 =

1
209

(
23 20
16 23

)

Finally

G−1 = C =
1

209




75 34
... 23 20

34 60
... 16 23

· · · · · · · · · · · · ·
23 16

... 60 34

20 23
... 34 75




In the first experiment we have I1 = 1 and the other node currents are zero so



V1
V2
V3
V4


 =

1
209




75
34
23
20


 .

In the second experiment we have I2 = 1 and the other node currents are zero so



V1
V2
V3
V4


 =

1
209




34
60
16
23


 .

3



Note that we can only measure V3 and V4 in each case. This is the end of the ‘forward’ problem (finding
trans-impedance given leakage conductances).

The ‘inverse’ task is to recover the unknown leakage conductances. Extracting the relevant parts from
the above ‘experimental’ data we see that

C21 =
1

209

(
23 16
20 23

)
.

so

C−1
21 =

(
23 −16

−20 23

)
.

so

G12 − C−1
21 =

( −24 16
20 24

)
.

and

G11 =
(

g1 + 3 −2
−2 g2 + 3

)
and G22 =

(
g3 + 3 −2

−2 g4 + 3

)
.

So

G11G
−1
21 G22 =

(
g1 + 3 −2

−2 g2 + 3

) (
g3 + 3 −2

−2 g4 + 3

)
.

So that we get the following equations in the unknown leakage conductances:

(g1 + 3)(g3 + 3) + 4 = 24
2(g1 + 3) + 2(g4 + 3) = 16
2(g3 + 3) + 2(g2 + 3) = 20
(g2 + 3)(g4 + 3) + 4 = 24

or
ḡ1ḡ3 = 20

ḡ1 + ḡ4 = 8
ḡ2 + ḡ3 = 10

ḡ2ḡ4 = 20

where ḡ1 = g1 +3, ḡ2 = g2 +3, ḡ3 = g3 +3, and ḡ4 = g4 +3. These equations have only one solution: ḡ1 = 4,
ḡ2 = 5, ḡ3 = 5, and ḡ4 = 4, that is g1 = 1, g2 = 2, g3 = 2, and g4 = 1.

Summary

While this shows a solution method for a 2 × 2 grid, some of the points noted here also apply to the more
general case, although an explicit solution cannot be expected then. In general, the matrix would have to be
partitioned into a 3 × 3 arrangement corresponding to the fact that in addition to input nodes and output
nodes there are then also interior nodes.
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3 × 3 node grid example

Here we have three input nodes (1, 2, 3), three output nodes (7, 8, 9), and three interior nodes (4, 5, 6).
In three experiments we apply currents to each of the input nodes in turn, each time reading out all of the
output nodes, yielding a total of nine measurements. We try and recover the nine leakage conductances to
ground from each of the nine nodes.

It is natural to partition the conductance matrix as follows given that I4, I5, I6, I7, I8, and I9 are always
zero, and that we do not measure V1, V2, V3, V4, V5, and V6.




G11
... G12

... G13
· · · · · · · · · · ·
G21

... G22
... G23

· · · · · · · · · · ·
G31

... G32
... G33







V1
V2
V3
· · ·
V4
V5
V6
· · ·
V7
V8
V9




=




I1
I2
I3
· · ·
I4
I5
I6
· · ·
I7
I8
I9




In detail




g′
1 −g12 −g13

... −g14 0 0
... 0 0 0

−g12 g′
2 −g23

... 0 −g25 0
... 0 0 0

−g13 −g23 g′
3

... 0 0 g36
... 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−g14 −0 0

... g′
4 −g45 −g46

... −g47 0 0

0 −g25 0
... −g45 g′

5 −g56
... 0 −g58 0

0 0 −g36
... −g46 −g56 g′

6
... 0 −0 −g69

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0

... −g47 0 0
... g′

7 −g78 −g79

0 0 0
... 0 −g58 0

... −g78 g′
8 −g89

0 0 0
... 0 0 −g69

... −g79 −g89 g′
9







V1
V2
V3
· · ·
V4
V5
V6
· · ·
V7
V8
V9




=




I1
I2
I3
· · ·
I4
I5
I6
· · ·
I7
I8
I9




where g′
1 = (g1 + g12 + g13 + g14), g′

2 = (g2 + g12 + g23 + g25), g′
3 = (g3 + g13 + g23 + g36), g′

4 = (g4 + g14 +
g45 + g46 + g47), g′

5 = (g5 + g25 + g45 + g56 + g47), g′
6 = (g6 + g36 + g46 + g56 + g69), g′

7 = (g7 + g47 + g78 + g79),
g′
8 = (g8 + g58 + g78 + g89), and g′

9 = (g9 + g69 + g79 + g89).

We note that G13 and G31 are all zeros, and G12 = G21, and G23 = G32 are diagonal. Also, the
sub-matrices appearing on the diagonal are of Toeplitz form. Tpeolitz matrices can be inverted in order N2

(instead of order N3).
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We can write the inverse as follows:




C11
... C12

... C13
· · · · · · · · · · ·
C21

... C22
... C23

· · · · · · · · · · ·
C31

... C32
... C33







I1
I2
I3
· · ·
I4
I5
I6
· · ·
I7
I8
I9




=




V1
V2
V3
· · ·
V4
V5
V6
· · ·
V7
V8
V9




We can use the formula for the inverse of matrix partitioned into four parts twice on this matrix partitioned
into nine parts. But it may be a bit much to expect to easily obtain explicit formulae the way we did for
the 2 × 2 case. . .

Note that we are only really interested in the bottom left corner (C31) of the inverse, given that I4, I5,
I6, I7, I8, and I9 are always zero, and that we do not measure V1, V2, V3, V4, V5, and V6. Each experiment
yields three measurements and thus three equations of the form

C31


 I1

I2
I3


 =


 V7

V8
V9


 .

By performing three experiments we can find all nine elements of the matrix C31. Each of these is a
polynomial in the unknown leakage conductances g1, g2, g3, g4, g5, g6, g7, g8, and g9 (or rather, we can
cross-multiply to obtain nine such polynomials).

The part of the inverse of this conductance matrix that we need is the lower left corner, C31. Using the
decomposition rule for partitioned 2 × 2 matrices twice, we get

C31 = G−1
33 G32(G22 − G23G

−1
33 G21)−1G21

(
G11 − G12(G22 − G23G

−1
33 G21)−1G21

)−1

Note that the term (G22 −G23G
−1
33 G21)−1G21 appears twice. This can be exploited to save on computation.
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