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Background:

The medium is highly scattering. We assume for simplicity that the
scattering properties are spatially uniform. There is also some absorption.
The absorption density is expected to vary spatially. In fact, the result we
are after is the spatial pattern of absorption.

We are allowed to apply light sources and make measurements only
on the boundary of the volume of interest.

We expect to gather data by measuring brightness at many points on
the surface while illuminating it at a particular point. These brightness
measurements are repeated for many possible light source positions. If
we assume fixed positions for sensors and emitters, and if there are are
n light sensors and m light detectors, we obtain a data vector with M =
m x n components.

These measurements may not be all independent. Because of reci-
procity, the brightness measure at P when the volume is illuminated at Q
is equal to (?) the brightness at Q when the volume is instead illuminated
at b.

The task is to recover as much information as possible about the
internal distribution of absorbing material. We may expect as a rough
rule of thumb that we should not try to recover an image of absorption
density with more pixels than the number of independent measurements
— (m *x n/2) say.

We can attempt reconstruction with a larger number of pixels but
then we are dealing with an ill-posed problem that will need to be ‘reg-
ularized’. In this underconstrained case we expect to be able to make
changes in some pixel values that can be compensated for by opposite
changes in neighboring pixels without affecting the measurements avail-
able at the boundary in a noticable way.

‘DC’ Model:

With intense scattering, the directions of travel of photons are ran-
domized soon after they enter the volume. Any directionally of source
or detector optics has very little effect more than a millimeter or so into
the volume. At any given point in the volume, there is a given photon
flux, with photons going in every which direction. The fraction of these



photons that are absorbed in a given volume depend on the absorption
density there.

We can model this system using the diffusion equation. Equivalently
we can treat it as a problem in heat conduction, or finally, as a resistive
grid.

Consider a uniform resistive grid. The potential at a point in the grid
represents the photon flux. We can inject currents (?) on the boundary
of the grid and also measure potentials (photon flux) at points on the
boundary.

This grid represents the scattering behavior of the material. Without
any additional factors (such absorption or boundary conditions), the po-
tential in the grid will rise without bound if we inject a fixed current. This
corresponds to a volume of scattering material with no photon loss, and
a stream of photons being injected at one point.

Absorption is represented by leakage conductance from nodes of the
grid to ground. The leakage current is proportional to the local poten-
tial (photon flux) and the conductance of the leakage resistor (absorption
density). A grid with some leakage will stabilize with fixed finite potential
distribution where the total incoming photon flux is balanced by the total
lost through absorption.

An aside: Note that in the ‘DC’ case, we do not need to know the scat-
tering length per se (which corresponds to the resistivity of the grid). What
matters is the ratio of conductance of the leakage path to conductance of
the grid. That is, the ‘absorption per scattering length’. In reconstruction
this means that we would only need to know the scattering length accu-
rately if we wanted to know the absorption density in absolute terms.

Boundary Conditions:

Viewed this way, it becomes clear that we need to be precise about
what happens on the boundary. One extreme case would be application
of a totally reflective material (either specular/mirror like or diffuse such
as a perfectly white powder — it makes no difference). This corresponds
to open circuit conditions on the boundary of the resistive grid.

Another extreme case would be total absorption on the boundary
(black material applied directly, or the object is placed in a large dark
volume). This corresponds to shorting the boundary of the resistive grid
to ground.

(Another option might be applying material with the same scatter-
ing/absorbing properties on the boundary. This ‘matched termination’
would correspond to extending the grid indefinitely in space.)



It is not clear at this point whether better signal data can be collected
in the ‘open circuit’ or in the ‘short circuit’ condition (It is not obvious to
me anyway, but maybe to somebody else?)

Forward Problem:

The forward problem is to compute, for each light source position
what measurements can be expected at each of the light sensing positions,
given the spatial pattern of absorption density. Basically ‘all’ one need do
is solve a spatially varying Poisson’s equation:

Av(x,y) +pv(x,y)alx,y)) =0
where v (x, ) is the potential (light flux density), p is the resistivity of the
grid (light scattering) and a(x,y) is the leakage conductivity to ground
(light absorption density). In the forward problem we are given a(x, y)
and asked to find v(x, y).

Suitable boundary conditions are defined (open circuit or short-circuit
to ground) and current is injected at one point on the boundary. The
potential along the boundary is the sought after result. This problem can
be solved effectively using iterative methods. (Minor difficulties may arise
if a(x, y) has abrupt transitions).

The result of the computation is a set of M = m * n numbers (m light
detector outputs for each of n possible light source positions).

Inverse Problem:

Unfortunately we are interested in the inverse of the above problem.
We can collect the m * n element measurement vector, and want to know
the spatial distribution of light absorption density a(x, y).

One way to attack this problem is an iterative approach where we up-
date/correct a current guess for a’ (x, y). Given a’ (x, y), we can compute
the expected measurement vector E' (i« m + j) as above. We can compare
this to the actually observed measurements E(i * m + j). Then we can
try to make adjustments in a’(x, y) to bring E’(...) into better agreement
with E(...). When E'(...) = E(..) we may expect that a’(x, y) = a(x,y).

Several optimization methods come to mind here. One would be a
form of gradient descent. Such methods usually require that a deriva-
tive/gradient be obtained. That is, we need to know how each of the M
components of the measurement vector depend on each of the N absorp-
tion density values. Based on this we can make an adjustment that yields
the best improvement of fit in a least square sense. That is, it reduces
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This computation could be quite expensive. At each step we need to solve
the resistive grid, and then compute the derivatives. There are N x M
components to these derivatives! And computing the derivatives may
involve numerical estimates that require solving the grid again several
times after making small adjustements.

It is impractical to actually store the full gradient. For example, sup-
pose we use 100 photodiode sensors and 100 laser diode emitters. Then
we have M = 10,000 measurements. Suppose we construct a grid with
about the same number of nodes N = 10,000. The gradient then would
require 108 numbers (and 100 sensors and 100 sources is not a lot since
one needs a certain number to achieve sufficient spatial resolution — see
below).

We also need to be concerned about whether such an iterative method
converges, and whether it can get stuck in local minima.

Some ideas on the iterative scheme

The potentials on the boundary do not vary linearly with the conduc-
tance of a particular leakage path to ground. One thing that may help is
that the grid is linear in another respect. If we inject a current at a node,
we expect the response to be proportional to the current injected. A small
change in a leakage conductance will produce a small change in leakage
current. So for small increments, the response is linear.

Another things that may help is good choice of discretization of the
resistive grid. For example, if we work with a planar grid (2-d case) and
the boundary is circular, then a rotationally symmetric layout has benefits.
Consider for example, resistors laid out along radii equally space in angle,
with other resistors laid out along concentric circles. While this layout
has some problems with uneven sampling and a singularity at the origin,
it also has the advantage that we do not need to separately understand
the response of the grid (light intensities at n detectors) to an absorber
placed at each of the N nodes for each of m possible light source positions
(that is, 108 numbers). Instead, because of rotational symmetry, we need
consider only one light source position on the boundary (leading to ‘only’
10% numbers).

Also, methods that do not compute the complete derivative may have
an advantage. We may not need to walk in the direction of steepest de-
scent, as long as most of the time we are going ‘down hill’. The notion of
a ‘stochastic derivative’ may play a role here. The disadvantage of using
a stochastic derivative is that while saving a great deal of computation, it
is not guaranteed to take us ‘down hill’ at every step.



To avoid local minima (either inherent in the problem or because of
short-cuts used in the iterative method) one may want to use simulated
annealing. Usually this is a very slow method. Recent work on so-called
‘fast’ simulated annealing (still slow, but not quite glacial) may be relevant
here. In ‘fast’ simulated annealing, the temperature is reduced with the
inverse of time rather than logarithmically.

Aniterative method can always benefit from a good first guess. It may
be possible to get a good first guess by using a fan-beam back-projection
approach.

Some heuristics may also come into play. If the signal of detectors on
a particular part of the periphery is low for most source positions, then
one may expect a concentration of absorbing material near that area. Sim-
ilarly, if the signal at most detectors is low when for source positions in
some particular part of the periphery, then one may expect a concentra-
tion of absorbing material near that area.

Three Dimensions:

In most of what is said above, no mention was made of whether the
volume of interest — or the model resistive grid — are two or three di-
mensional. Many of the same considerations apply in both cases.

However, the computations get more expensive with a full three-d
grid. So for initial work and perhaps even later — for computational rea-
sons — one may wish to stay with a 2-d grid. If the volume of interest is
really three dimensional, then one is of course distorting the problem in
some sense. Reconstructions of the interior will at a minimum be some
sort of smeared superimposition of layers. Reconstruction nearer the sur-
face is likely to be less affected by this.

We don’t expect to be able to reconstruct well deep inside the object
in any case, since the distribution of light on the boundary is most directly
affected by (i) absorbing material near a source, and (ii) absorbing material
near a Sensor.

If computational limitations were not a concern, then distribution of
source positions and the sensor positons over the 2-d surface of the 3-d
volume would have advantages. We could most likely get better condi-
tioning of the problem. Here is why:

Consider first a circular 2-D case with n sensors and m detectors.
Suppose for simplicity that n = m. If the radius is R, then the spacing
of sources and detectors is 6 = 2mR/n = 2R /m. If we assume an equi-
spaced grid of nodes covering the area we would use a grid interval of
perhaps a little more than € = /iTR2/n * m. If n = m, we find that the



pixel size is about
€~1/2J186,

where ¢§ is the spacing of sources and sensors on the peripheri. The prob-
lem becomes underconstrained if we try to reconstruct on a grid finer
than €. (This is not to say we can neccessarily achieve this kind of reso-
lution). So the pixel spacing is (within some small factor) the same as the
sensor/detector spacing.

Consider instead a spherical volume. Here the spacing of sensors and
detectors on the surface would be roughly § = \41TR2/n = \/4TTR?/m. A
reasonable voxel size would be € = 3/(4/3)TTR3/(n * m). So

€~1/12m)38(5/R)/3

Note the (6/R)'/3 term. Here the voxel size drops faster than linearly
with the sensor spacing. So we may expect to get resolution substantially
smaller than the sensor and/or source spacing.

This is not too surprising. In the two-d case we have a match of
dimensionality. We gather a ‘2-d’ data set (for all source positions times
all sensor positions) and we want to reconstruct a 2-d absorption density.
In the three-d case we gather a ‘4-d’ data set (for all source positions
times all sensor positions) and we want to reconstruct a 3-d absorption
density. More constraint. But also likely to be a lot more work. Still, this
is the ‘real’ problem one ultimately wants to solve. The two-d version is
an approximation.

AC Model:

If we use a modulated source, then we need to take into account some-
thing other than the simple static case described above. This situation can
be modelled by adding uniformly distributed capacitance to ground from
the resistive grid. The forward problem now involves solving something
like
ov(x,y)

ot
Which takes considerably more computing power. On the other hand, we

now measure both phase and amplitude on the boundary. Also, results
from simpler geometries suggest that the ‘AC’ signal is more useful for
reconstruction than the ‘DC’ signal. Its just alittle scary to look at iterative
methods that would involve solving the capatively loaded grid many times.

One additional problem is that here we need to know p/C (related to
the scattering length). In the ‘DC’ case, the actual resistivity of the resitive
grid was of little concern, only the ratio of resistivity to leakage resistance
was of importance (related to the absorption over the scattering length).

Av(x,y) +pv(x,y)a(x,y) =pC



Using an analog network as a fast Poisson solver:

Nothing solves the resistive grid equations faster than the resistive
grid itself! Since solving the resitive grid is an intimate step of the iterative
process, one might consider actually building such a grid and using it to
solve the forward part of the problem.

One problem would be the need for a fairly high bandwidth to/from
the grid, since N conductances to ground need to be loaded up and then
the grid solved for each of n choices for the position of the point where
current is injected. Each solution involves reading out m boundary po-
tentials.

Maybe more serious is that we expect the signal to have a very wide
dynamic range. The photon flux density on the side opposite to the source
is likely to be several orders of magnitude lower than that on a part of the
boundary tyhat is closer to the source. And analog resistive grids may be
difficult to build so that wide dynamic range is not a problem.

Other thought:

As in most ‘inverse’ problems, we need to be aware that reconstructed
image quality may be poor in terms of resolution and/or signal to noise ra-
tio. This is seen clearly in ‘image restoration’ problems, which are near ill
posed. Still, when there are enough measurements, and the measurement
accuracy is high enough, good results can be obtained, as seen in CAT
reconstructions. So one thing we need to strive for is a large enough vol-
ume of measurement data to over-constrain the problem and high enough
quality in the measurements to compensate for amplification of noise in
the reconstruction process.

The ‘imaging’ process we use produces serious ‘smearing’ if we want
to look at it that way, which suggests one will be faced with the kind of
problems that are seen in image enhancement and image restoration. On
the other hand, we are getting many ‘projections’ so we may find that to-
mographic reconstruction provides a better analogy. It is hard to predict,
since this problem really seems to fall somewhere in between.
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