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Introduction: Optical tomography (OT), as a potential diagnostic tool for de-
tecting growths in translucent soft tissue, has been proposed and studied by several
groups in recent years. Its principle is to use multiple light sources and defectors
attached to the tissue surface to collect information on light attenuation, and to re-
construct the internal 3-D absorption and scattering distributions. Unusual growths
inside the tissue may be discerned from the recovered optical densities because tu-
morous tissue has different scattering and absorption properties.

The current state of the art shows some promise for clinical applications [11]. Its
non-invasiveness, low cost, non-ionizing nature, safety, and constant improvements in
both algorithm [3][6][7][10][15] and instrumentation [13][19] make it well worth con-
tinued and focused efforts aimed at advancing to a higher level of technical maturity
and human-machine friendliness.

Problem: Our goal is to develop algorithm to image the otherwise inaccessible
scattering and absorption distribution inside the illuminated tissue. To provide the
neceessary data, we also need to design suitable information collection strategies, and
explore the underlying mathematics of our model for the seattering and absorption
process. We also hope to delimit the circumstances in which this inverse problems is
reasonably well-posed.

Previous Work: Experiments have shown that visible and near infrared light,
though highly attentuated, can travel through soft biological tissues, e.g. human
brain and breast. Upon the recognition that scattering is dominant in the tissue-type
media, the following time-independent diffusion approximation for the photon density
T was derived from the general radiative transport equation [1[2][12][16]:
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where jiy and p, denote the diffusion and absorption coefficients, while gy is the
source distribution. pg relates to the absorplion coefficient p,, scattering coefficient
i and the anisotropy factor f by
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The anistropy factor arises because light is not scattered uniformly in all direc-
tion, but predominantly in the forward direction. From this time-independent dif-
fusion equation one can develop a reconstruction approach for the unknown optical
parameters based on steady state source to detector attennations. The basic idea is
to collect detector responses for a large number of detector positions for each of a
large number of source positions.

Consideration of time variation adds an extra dimension to the problem and allows
various image recovery methods to be derived based on the choice of measurements,
i.e. time-varying photon density, time-integrated photon density and frequency do-
main modulation and detection. We will focus here, however, on the steady-state
approach—in part because of its very much simpler instrumentation requirements.

Much pioneering work has been done by Simon Arridge and his group [1]-[9] in
this area. [4][8][9] provide theoretical framework for the inverse problem and the
sensitivity issue is addressed. [3] develops a finite element approach to numerically
solve the inverse problem. [20] presents a layered model for the adult head and
their FEM simulation results. [5] summarizes existing inverse solvers and related
regularization schemes. The most extensive survey on the development of optical
tomography can be found in [11]. However, due to the mathematical difficulty in
handling the severe ill-posed nature of the inverse problem, reconstruction algorithm
remains inaccurate and computationally very expensive. So far no regularization
scheme has been adapted to the 2-D or 3-D) anatomical image data structure. The
problem of experimental design waits for close investigation.

The model problem A - vAw = 0 has been intensively studied in the Electrical
Impedence Tomography (EIT). John Sylvester gives rigorours accounts on the unique-
ness of the inverse boundary problem [23][24]. Inverse reconstruction algorithms have
been developed and applied in real practice. It is suggested that the studies of optical
tomography will benefit from the preceeding development in EIT.

Difficulties/challenges: When compared with Computed Tomography, Mag-
netic Resonance Imaging, PET and ultrasound imaging, OT reconstruction encoun-
ters certain difficulties because photon density drops fast as light travels away from
the source. This is characterized by the governing equation. In a homogeneous infinite
medium, the fundamental solution to (1) is given by

W(p) = 57t (3)

as a function of the distance p to a point source. Therefore in the near neighborhood

of a point source, the photon density function drops at a rate proportional to p='.

But away from the source the potential decays exponentially.
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It becomes very difficult to recover any useful information about regions deep
inside the object when (p,/pq)”" is much smaller than the thickness of the tissue.

(pta/1ta) ™" called the scale length, is an important measure in considering the appli-
cability of this particular imaging method.

This rapid attentuation of the light can make reconstruction problems ill-posed,
and make it hard to obtain good signal-to-noise ratios in measurements.

As an example, consider three different simple, layered models in 1-D (model-
ing say homogeneous, breast, and head tissues), where (pt,/ptq)”! is in each case a
piecewise constant function:
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The following graph shows the dropoffs of the photon density away from the source
when photon injection taking place at the left terminal and zero Neumann boundary
condition being imposed at the right end:
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Note that the differences in the optical parameter distribution have only a small
effect on the photon density measurements conducted at the right end of the object.
This implies that the reconstruction will tend to be sensitive to errors in measure-




ments. Consequently, regularization is of great significance in this inverse problem.

The physics of scattering and absorption bear a fair amount of similarity at the
microscopic scale. Intuitively, a slab of material may be highly absorptive overall
either because it just has a high coeflicient of absorption, or because high scattering
prevents the photons from leaving the volume as rapidly, thus increasing their chance
of being absorbed. As we saw already, the distribution of photon flux is sensitive to
the ratio (jts/pe4)~", but not as sensitive to changes in the scattering and absorption
that leave this ratio constant.

Separating the contributions to the light attenuation due to spatial variations
in scattering and absorption properties is intrinsically difficult. This topic is given
particular considerations in [21][22] and it has been suggested that investigation of
the time resolved photon migration may lead to a resolution. However, this technique
requires extremely sensible source and detector, causing excessive cost to the entire
system. Whereas it is the recovery of the interior absorption densitv—based on the
assumption that scattering is essentially uniform—Ilies at the core of the most recent
competent results. The sensitivity of photon density on the scale length (p,/pa)™!
suggests that we may focus on recovering the ratio rather than the two coefficients
separately.

Reconstruction of the spatial distributions in scattering and absorption beneath
the skin is made possible by the great freedom associated with the boundary condi-
tions. Heuristically, the mapping from infinitely many feasible boundary functions,
i.e.,
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to the varying photon density functions ¥ measured on the boundary (Neumann-
Dirichlet mapping), will assemble enough information for us to make dependable
inferences, as long as the scale length (pa/pra) ™" is not considerably oversize the thick-
ness of the tissue. Yet what finite set of experiments and measurements lead us to
a high resolution is unclear. In other word, we must study the choice of bound-
ary conditions and how to conduct proper measurements. This will be embodied in
the reconstruction algorithm. Optimal (or suboptimal) experimental design problem
shall be treated as one of the main challenges and key ingredients in the study of OT.
We are at present attacking this problem by qualitative perturbation analysis and
entropy-based decision theory. Low frequency incoming pattern seems to improve
the penetration depth. While high frequency input helps to sharpen the image in its
trustworthy region.

Approach: In the first attempt to solve this inverse problem, we adopt the
steady-state attenuation approach.

The physics of photon migration finds analogy in a resistive circuit model. The




underlying equation for the electrical potential in the steady state is the same as (1):
(
V- (oV®) + g% = ¢ (4)

Here @ is the scalar potential, & and g are the medium conductance and the leakage
resistance to ground. The right hand side represents the current source term. The
correspondences between the optical parameters and the conductances of the circuit
media are given hy:
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and the inverse mapping
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Because of this analogy — and one-to-one mapping between the two sets of pa-
rameters — we can concentrate on the electrical model (4).

We can further approximate the continuous resistive model with a discrete network
of resistors and use such a network for experimentation and simulation. It remains
a matter of interest to find out how well a discrete network relates to the contin-
uous medium, particularly under consideration of the complexity of the anatomical
structures in most of the biological tissues.

We should also keep in mind that the network topology is not necessarily a regular
lattice, but can be modeled or estimated, in one way or the other, to reflect the
anotomical structure of the tissue. Regular tessellation is not ideal because it does
not take into account local features. As a consequence, one need a fairly dense grid
to capture the rapid changes and the ridge orientation. This will lead to too heavy
a computational burden. The adaptibility of the network tolology to the underlying
distribution is an unexplored field, and maost likely, full of joyful challenges.

As an example, consider the simple 2-D network structure shown below:
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“Horizontal” resistors connect neighbouring nodes and each node is grounded by
a “vertical” leakage conductor. The horizontal resistors model scattering, while the
vertical conductors model absorption. Currents can be injected at the exposed nodes
on the left boundary, while potentials can be measured at exposed nodes on the right
boundary. Interior nodes are not accessible to either current injection or measurement
of potential. The task is to recover the values of the vertical grounding conductors
assuming that the horizontal conductors are all the same. Part of the problem is to
determine a good source current injection and output potential measurement strategy.

If the grid has N x M nodes, then we have N x M unknown leakage conductances
to ground. We can inject current at each of the N nodes on the left in turn, and
each time read out N potentials on the right. So there are N x M unknowns and
N? measurements. Clearly the aspect ratio of the rectangle controls how stably we
can expect to recover the leakage conductances. If the rectangle is tall and skinny,
then M < N and we have an overdetermined system, if it instead is thick and flat
then M > N and we are dealing with an underdetermined system. From this crude
analysis one might expect that the reconstruction problem may be well-posed for
relatively “thin” objects, and ill-posed if light has to travel “too far” from source to
detector.

The incomine currents 2 1s linearly related to the potentials @ by Ohm's rule:
(=1 w »
Gi=1i (5)

i and ¥ are 1-D vectors (with N M components each) and G is the forward conductance
malriz which encodes the unknown conductance parameters (see Appendix B for
detailed formulation). G is symmetric, positive definite and sparse with only 5 nonzero
diagonals. The discrete version (5) is an approximation of the diffusion equation (4).

The forward problem is to solve for the nodal potentials excited by a particular
incoming current pattern when given the values of all the conductances. A well-known
algorithm to obtain the solution of such a linear system is Cholesky Factorization
which employs the particular matrix structure of G. It costs O(N # (NM)?) flops on
a NxM rectangular grid. Because of the intensive use of the forward solver during
inverse reconstruction, developing a faster algorithm is desired, especially when the
grid size is large. One possible solution is parallel programming, i.e. implementing a
parallel SOR (successive overrelaxation) solver with red-black ordering.

We note that while the above equation is linear in terms of the relationship between
the injected currents ¢ and the measured potential #, ¥ is nonlinear in terms of the
unknown conductances. And it is the leakage conductances that we are interested in
recovering.

When there is only one set of unknown parameters, i.e. the vertical conductances,
nonlinearity and ill-posedness already generate tremendous difficulties in the inverse
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reconstruction. Adding an extra set of unknowns, the horizontal conductances, does
not drastically increase the complication and change our solution procedure. But the
computational cost is greatly increased, and we expect the stability of the solution to
be compromised.

In the case of biological tissues, consider the sensitivity of the light transportation
to the perturbations in g, and p, we mutiply Eqn. (1) by & = b, /e
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where fi, is the nominal scattering coefficient. Since p1; >> 1, small deviations in
either 1, or iy from their norminal values are insignificant to kg (the first coefficient
in Eqn. (6)) which is predominated by 1/(3(1 — f)). This convinces us to ignore
variations in kg (the horizontal conductance in the network case) at the early stage
of algorithinic development.

Under the above simplification, we are capable of carrying on some rigorous math-
ematical analysis on the model problem (Eqn. (6)) with appropriate boundary con-
dition and deriving a few nontrivial analytical solutions for certain nonhomogeneous
absorption distribution (the horizontal conductance in the circuit network) with con-
stant diffussion coefficient (or the leakage conductance). Comparison between the
numerical reconstruction with the analytical solution can give one a general feeling
of the system performance. But a prudent investigation of the sensitivities of dif-
ferent input/output patterns on each of the absorption and scattering coefficients
is necessary in order to conceive a more sophisticated and accurate reconstruction
algorithm.

The recovery of the grounding conductance can be treated as a statistical pa-
rameter estimation problem. Parameters are chosen to minimize the misht of the
predictions and the observations. Since the dependency of the output potential on
the grounding conductances is nonlinear, the approximate solution to this optimiza-
tion problem is obtained recursively. At each intermediate step we acquire a linearized
solution which is a better fit to our data.

The nonlinearity is studied by the expectation surface of each potential response.
For the following 2 — by — 2 rectangular grid,
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we leave g3 and g4 fixed. When impulse current is applied at node 1, the expec-
tation surface of the potential at node 3 is curved as a function of the perturbations
in g; and gs:
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One of the significant improvement we have made so far is in reducing the nonlin-
earity via data transformation. The typical expectation surface of the new response
variable, obtained by the transformation, has a very low degree of nonlinearity:
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We have developed several iterative algorithms with high speed of convergence
based on this technique and a novel linearization scheme.

The regularized Newton-Raphson and Quasi-Newton iterative reconstructions have
comparable performances, i.e. reconstruction errors and SNR. They differ in choosing
iteration matrix. Newton-Raphson method compute the Jacobian and find a linear
least-square solution at each step. Quasi-Newton method saves time on computation
by efficiently updating its iteration matrix from the old one.

Various regularization strategies have been considered. Among them Tikhonov




regularization supplies analytical tools for convergence study and estimating the rate
of convergence. Cubes, spheres and cylinders are among some simple geometric ob-
jects we have dealt with so far.

The generalized EM-algorithm is a Bayes approach capable of incorporating our
prior knowledge about the tissue image of interest. The special handling of the
multi-response variable is appealing because the parameters to be estimated are able
to preserve their 2-D data structure and neighboring coherence. Regularization is
natually performed in a 2-D random field with a prior information obtained from
some other imaging modality, i.e. MRI. This general treatment of the nonlinear
parameter estimation via data htting and data modeling can also be easily adapted
to variety of other inverse problems. But the computation involved in this formulation
is more expensive than in the previous algorithms.

Here are some examples of our reconstruction:




Conclusion and Future Worlk:

Our algorithms are capable of recovering the overall pattern in the grounding
conductance. Fast convergance is observed. As sensitivities suggest that the spatial
resolution in the reconstruction degrades toward the center of the object.

Further study in recoverability of both absf:nrptiun and scattering coefficients under
appropriate experimental setup and network topology are desired, as well as the
effective computational techniques. A reasonably good prior model will undoubtedly
help improve the accuracy in the EM reconstruction. Only then performance of
the regularized Newton-typed algorithm and Bayes-based algorithm can be made
COmMparison.
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