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Abstract.  Next generation helical cone-beam CT will feature pitches around 80 mm. It is              
predicted that reconstruction algorithms to be used in these machines with still rather 
modest cone angles may not necessarily be exact, but rather have an emphasis on simplicity 
and speed.  The PI-methods are a family of algorithms, all of which are based on complete 
data capture with a detector collimated to the Tam-window followed by rebinning to 
obliquely parallel ray geometry. The non-exactness is identified as inconsistency in the 
space invariant one-dimensional ramp-filtering step. It is shown that this inconsistency can 
be reduced resulting in significant improvement in image quality and increased tolerance 
for higher pitch and cone angle. 

 
 
1. Introduction 
 
 Three-dimensional reconstruction algorithms in general are conveniently divided 
into exact1 and non-exact algorithms. The first exact algorithms for helical cone-beam 
scanning (Tam 1995) were straight-forward extensions of Grangeat’s result (Grangeat 
1987), which required that the totality of available projections covered the object in full. 
However, a practical requirement for any new method is the ability to cope with the 
long object problem (Danielsson et al 1997). A recent evaluation of three exact 
algorithms for this purpose has been presented (Sourbelle et al 2001). Even more recent 
are the methods by Katsevich (2001), Kudo et al (2001) and Hu et al (2001). However, 
as pointed out by Defrise et al (2001), the numerical complexity of the exact algorithms 
tends to increase the execution time and call for extra precautions to combat 
discretization errors and loss of resolution.  
 The next generation of CT-machines will have moderately high pitches around 80 
mm, which means cone angles less than 2±  degrees. Even so, the speed will be 
impressive. With a gantry that rotates 2.5 r/sec a body section of 20 cm is covered in 2 
seconds. Therefore, in the wake of potential implementation problems for the exact 
methods, non-exact algorithms with inherent simplicity are of considerable interest. The 
number of such non-exact (approximate) algorithms is steadily increasing (Turbell et al 
2000). Among more recent proposals are the one by Strierhofer et al (2001) where a 
slice is composed by segmented planes, each one being narrow enough to allow for 2D-
reconstruction.  
 The PI-detector fits exactly the Tam window (Tam 1995), the area between two 
consecutive turns of the helix. Figure 1 illustrates the ray geometry for this detector in 
its rebinned and non-rebinned versions. As we show in the next section, the data capture 
is complete and (almost) non-redundant (Danielsson et al 1997). This is the reason why 
all exact and an increasing number of non-exact methods are using the PI-detector. 
 

                                                            
1 A reconstruction algorithm is exact if any requirement on fidelity to the original can be met, provided that accurate 
and noise-free projection are data captured with sufficient density along a source trajectory, which meets some 
specific conditions for completeness. 
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2. The PI-line  
 
 A PI-line is defined to be any line that has two points on the helix less than 360 
degrees apart (Danielsson et al 1997). Accordingly, a PI-segment is the segment of a PI-
line inside the helix. The PI-reconstruction methods to be described in the next sections 
are based on the following three observations of the PI-segments.   
 Observation 1). As the object cylinder rotates upwards in the fixed source-detector 
system in Figure 1a), at the first instant of exposure the PI-segment is a ray-path 
projecting its content onto a point at the upper edge of the detector. After a 180-degree 
rotation as seen from a point on the PI-segment itself, this PI-segment becomes a perfect 
ray-path for the second time. Again a ray projects its content onto a single detector point 
although at the lower edge of the detector. Hence, all PI-segments are projected over 
180 degrees as seen from themselves.  
 Observation 2). We study the local Fourier transform of a small sub-volume on a 
PI-line in the manner of Orlov (1975). The distance to the source is so large that the 
divergence of the cone-beam is negligible and we may assume that the volume is 
projected by a parallel beam. The 180-degree exposure can then be portrayed as in 
Figure 2. The point-shaped object is in the center of a unit sphere. A source path is laid 
out on this sphere from the entrance angle A to the diametrically opposite exit angle B. 
We should also imagine that the 3D Fourier transform of the small object is overlaid 
this space and centered at the origin.  
 The arbitrary frequency component D is normal to a central plane, which is 
sectioning the Fourier space as well as the unit sphere onto which we have mapped the 
source trajectory. By virtue of the Fourier slice theorem, a source position on this plane 
will generate projections, which contains the frequency component D.  The source 
trajectory from A to B has to cross this plane, say, at C, so that the projection taken 
from this source position will include D. Therefore, each Fourier component of each 
small sub-volume on a PI-line is included in the projection data. If A and B are not 
diametrically opposite there would be room for a central Fourier plane not crossed by 
the source path. The 180-degree exposure guarantees complete data capture.  
 Observation 3).  Figure 3 will help us to see that every point inside the helix 
cylinder is on a PI-line. Select an arbitrary point A. The horizontal plane through A 
(indicated by a horizontal circle through the helix cylinder) will intersect the helix at B. 
Let the line BAC rotate around A, while B keeps contact with the helix sliding upwards. 
During this process, let the other end C keep its contact with the helix cylinder surface. 
Both C and B are leaving the horizontal plane, but while we force B to move along the 
helix left- and upwards towards B’, C is moving right- and downwards towards C’. This 
point on the helix is reached before the line has rotated 180 degrees. The original 
horizontal line has now become the PI-line B’AC’ to which A belongs. Also, point A 
cannot belong to any other PI-line. A futile attempt would be to find a second PI-
segment as AC’’ in Figure 3 but in order to land with the other end B’’ of the line 
segment on the helix, we have to slide and rotate AC’’ to the right until it coincides with 
B’AC’. Hence, each object point belongs to one and only one PI-segment. 
 The above three observations and conclusions can be summarized in the 
conjecture that the PI-detector is performing a complete data capture of the object 
space. This is consistent with the fact that the same data capture has proven to be 
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sufficient and necessary for exact reconstruction (Tam 1995). However, the conjecture 
also indicates that as soon as the data capture for a small sub-volume is complete it 
should be possible to reconstruct this sub-volume. In so doing, the long object problem 
would also be solved. Interestingly, the most recently invented exact method by 
Katsevic (2001) is indeed able execute its reconstruction without involving projection 
data from far-away parts of the long object. The same feature also holds for the PI-
methods to be presented here. 

 
3. PI-ORIGINAL  

 
 In the rebinned geometry Fig. 1b), a set of obliquely parallel PI-segments will 
enter and exit the illuminated area simultaneously. These PI-segments and their object 
points are residing on a continuous non-planar surface, which we call a PI-surface. As a 
consequence to the above observation 3), the set of successive PI-surfaces are non-
overlapping but nutated with respect to each other, while completely filling the object 
space.  
 The discovery of the original PI-method (Danielsson et al 1998) was based on the 
simple insight that the above rebinned ray geometry guarantees that the backprojection 
step will deliver the same number of contributions to all object points. No special 
consideration except simplicity was given to the filtering step.The PI-ORIGINAL 
algorithm consists of the following four steps.  

  
 1) Pre-weighting of detector data with cosine of the cone angle 
 2) Rebinning to obliquely parallel projection data on the virtual detector 
 3) Rampfiltering of rebinned data row-by-row  
 4) Backprojection along the original ray paths without magnification factor 

  
 Considering the extreme simplicity of the algorithm, we found the results 
encouraging (see below under 6. Experiments) and a stimulus for further research and 
improvements. One such development became the n-PI methods reported by Proksa et 
al (2000), where n is any odd number. The original PI-method is the 1-PI method. The 
3-PI method utilizes a detector bounded by three consecutive turns; the 5-PI method has 
a detector bounded by five consecutive turns, etc. It can then be shown (although less 
trivially than expected) that each object point is indeed exposed during a rotation 
interval of πn . In practice, this family of methods can use (almost) the same physical 
detector. For the n-PI case, the patient is just translated n times slower than for 1-PI, all 
other parameters being constant. The pitch and the cone angle become proportional to 
1/n. With constant photon flux from the source the expected signal-to-noise ratio is 
proportional to n . The family of n-PI-methods taken together forms a powerful 
system able to utilize much higher cone angles than 02±  by trading speed for artifact 
and noise reduction.  

 
4. PI-SLANT and PI-2D 

 
 Definition. A reconstruction using filtered back-projection is consistent if the 
object points to be reconstructed are divided into sets so that all points within a set 
participate in all projection events (all projection angles), as well as in all filtering 
events and all back-projection events.   
 Ordinary planar slice-by-slice two-dimensional reconstruction is fully consistent. 
A typical inconsistency occurs when truly 3D-reconstruction is approximated with 2D-
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versions. Although we have not (yet) defined a measure of inconsistency, we take it for 
granted that such a measure can be defined and we allow ourselves to talk about degrees 
of consistency, minimizing inconsistency and so on. We also take it for granted that 
there is a strong correlation between inconsistency and non-exactness in the 
reconstruction. To minimize inconsistency in the original PI-method, we try to localize 
disjunctive 2D sets of object points which are nearly possible to project with a 1D-set of 
rays throughout the 180 degree rotation. Natural candidates for such sets are the PI-
surfaces. The PI-surface is not perfectly planar but slightly saddle-shaped. During the 
rotation the projection of the points of a PI-surface will be centered along a slanted line, 
which is the projection of the mid-ray in the PI-surface.  

In Figure 4 we see the projections of the points of a PI-surface for nine rotation 
positions in the interval from 00=θ  to 0180=θ . For the top and bottom rows the ramp-
filtering along horizontal rows as in PI-ORIGINAL is correct (consistent) with respect 
to the PI-surfaces. But for the better part of the exposure interval it is highly 
inconsistent. In the five-step PI-SLANT algorithm below, the filtering instead takes 
place along the slanted mid-lines of the projections.  

 
 1) Pre-weighting of detector data with cosine of the cone angle 
 2) Rebinning (horizontally) to obliquely parallel projection data  
 3) Resampling  (vertically) to sets of slanted lines  
 4) Ramp-filtering along slanted lines 
 5) Backprojection along the original ray paths without magnification factor  
 

 Filtering of this kind aiming for maximum consistency was proposed by Larson et 
al (1998) and Heuscher (1999). However, the filtered data were then back-projected into 
the 2D-surface instead of into the 3D-volume as in PI-SLANT. This results in 
inconsistency between the actual ray-paths for projection and back-projection. To find 
out if such a strategy is viable we designed a variation of PI-SLANT we call PI-2D. 
Here, the back-projection in the last step means back-projection into the two-
dimensional PI-surface even if the original projection rays are far from perfectly 
embedded in the PI-surface. From the reconstruction experiments to be shown below, 
we draw the conclusion that 3D back-projection along the original rays as in PI-SLANT 
is a superior technique. Unfortunately, 3PI- and other n-PI-methods are not applicable 
to slanted ramp-filtering. 
 
5. PI-FAST 
 
 Although the ramp-filtering inconsistency is significantly reduced in PI-SLANT 
compared to PI-ORIGINAL it is not reduced to zero. Full consistency would require 
two-dimensional filtering, but further reduction of inconsistency might still be possible 
with 1D ramp-filtering. The projection data collected by the virtual PI-detector form a 
3D-data set ),,( tsp θ , a kind of 3D-sinogram. Each object point delivers contributions 
to ),,( tsp θ  along a 3D-curve, which projected onto the ),( tθ -plane is a perfect 
sinusoid. For each object point in the reconstructed volume the back-projection we are 
employing is faithfully accumulating the filtered projection data along the same 
individual 3D-curves.  
 Figure 4 is a projection of ),,( tsp θ  along theθ -axis, which illustrates how the 
projection of the non-planar PI-surface tilts and bends as it moves from entrance to exit. 
The points of the PI-surface are dispersed in the vertical direction, mostly so for 

045=θ and 0135 . The dispersion makes the ramp-filter exchange signal energy between 
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object points in different PI-surfaces, a sign of remaining inconsistency in PI-SLANT. 
In the PI-FAST-algorithm we attempt to diminish this interaction by letting the ramp-
filtering as well as the Back-Projection (BP) operate in the 3D-projection space 

),,( tsp θ . 
 Fast back-projection is a technique, which is simple to understand in the 2D-case, 
(see for instance Brandt et al 1999). Rather than injecting tiny contributions into all 
voxels for each projection (detector-driven BP), or summing along the full length of one 
sinusoid at a time (voxel-driven BP), fast back-projection accumulates limited sets of 
projection data in the sinogram along short sinusoid segments. These short segments are 
called links. In the next step we sum these link values (with interpolation) into longer 
links etc, until we have obtained the sums along all full-length sinusoids of interest, 
which means the image is done. It can be shown that the complexity of )( 3NO  for 

traditional back-projection can be reduced to )log( 2 NNO  with fast back-projection, 
which renders this method the epithet fast.  
 Figure 5 shows how fast back-projection makes it possible to postpone the ramp-
filtering in 2D FB. In Fig.5a) the circles indicate projection data in the sinogram. The 
slanted lines indicate seven links of length five. Traditional ramp-filtering with a 
convolution kernel )(tg  followed by back-projection takes place with the upper formula 
for link-computation in Figure 5. However, as long as the links are parallel this 
computation is identical to the formula below where we sum (back-project) first and 
ramp-filter afterwards. In the 2D-case, there is no point in doing this. The complete set 
of links in Fig.5b) are all in plane and all projection data should interact with each other 
in this manner anyway. In the 3D-case, however, the corresponding link structure is 
three-dimensional. Two different sets of parallel links such as in Figure 5b) might not 
be in-plane but slightly oblique to each other as they follow the slopes of different PI-
surfaces.  
 The 3D-link structure for a PI-surface is embedded in the ),,( tsθ -space and can 
be precompiled in detail (Turbell 2001). At entrance and exit (top and bottom of Figure 
4) the 3D-structure of a PI-surface is thinned down to sheet, while it has a certain 
thickness in between. This is where PI-FAST makes a difference and the two formulas 
in Figure 5 take on different values. This algorithm consists of the following six 
procedures. The links to be used in PI-FAST are of intermediate length covering a 
limited portion of the θ -interval of π  radians. 

 
1) Pre-weighting of detector data with the cosine of the cone angle 
2) Rebinning to obliquely parallel projection data on the virtual detector 
For all PI-surfaces  

3) Back-projection 1: Accumulating link values over (typically) 16 angles  
    4) Ramp-filtering the sets of link values 
    5) Backprojection 2:  Accumulating the final pixel values  
6) Resampling the pixel values of the PI-surfaces in the z-direction to the Cartesian 
grid.   
 

6. Experiments 
 

 We conducted six experiments with parameters for geometry, reconstruction, and 
presentation given by the following table. The detector element size (1.56 mm, also used 
for the reconstruction grid) is measured on the virtual detector at rotation center (2.4 mm 
on the physical detector). This resolution is only half of what is customary but sufficient 
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for comparison of artifacts. In Experiment 1, presented in Figures 6 and 7, we apply the 
above four PI-methods to the Clock and the Shepp-Logan phantoms, respectively. The 
Clock phantom has some features common with a human body, while the well-known 
3D Shepp-Logan phantom bears some similarity to a human head with interior low 
contrast features.  The clock phantom consists of an object cylinder with 0 HU on a 
background of  -1000 HU. Inside are two sets of spheres with 400 HU arranged in a 
clockwise fashion and gradually offset in the z-direction. For image quality evaluation 
in Figure 6 we also show the same slice (thickness 1.56mm) reconstructed with the 
“golden standard” 2D FB, as well as a PI-ORIGINAL slice reconstructed in full 
resolution (Exp. 0) and slice thickness 0.79mm. In Experiments 2 - 5, presented in 
Figure 8, we employ the Clock phantom only. The purpose is to demonstrate the 
sensitivity to higher fan and cone beams.  
 

   Exp. 0 Exp 1  Exp.2  Exp.3  Exp.4  Exp.5 
 

Helix radius R 570 mm 570 mm 760 mm  400 mm 760mm 400 mm 
Pitch P  81.25 mm 81.25 mm 187.5 mm  100 mm 381.25 mm 200 mm 
Field of view 400 mm 400 mm  400 mm  400 mm 400 mm 400 mm 
Fan angle  54.20±  54.20±  026.15±  030±  026.15±  030±  
Cone angle  004.2±  004.2±  051.3±  058.3±  015.7±  013.7±  
# views per turn  1024  512  512  512   512  512 
# detector rows 52  26  60  32  122  64 
# elem. per row 511  255  255  255  255  255 
Element size 2278.0 mm  2256.1 mm  2256.1 mm  2256.1 mm  2256.1 mm  2256.1 mm  

Voxel size  3378.0 mm  3356.1 mm  3356.1 mm  3356.1 mm  3356.1 mm  3356.1 mm  
Slice thickness 0.78 mm mm  56.1  mm  56.1   mm  56.1  mm  56.1  mm  56.1  
Reconstr. grid 512x512 256x256 256x256 256x256 256x256 256x256 
 
7. Discussion and Conclusions 
 
 See Fig. 6. Clearly, we can never expect to get better image quality than the 2D 
reconstructed result from parallel projections shown in the upper left. PI-original 
contains some steak artifacts and some shadows below some spheres. Still, the image 
quality is vastly better than PI-2D. We attribute the special type of strong “skewing” 
artifacts in the PI-2D to the inconsistent back-projection geometry.  PI-SLANT, and 
even more so PI-FAST, have less shadow and streak artefacts than PI-ORIGINAL.   
 Full grid and detector resolution was applied in the PI-ORIGINAL-reconstruction 
in Exp. 0. with the result at top right in Fig. 6.  The full detector resolution at the virtual 
detector is 22  78.0 mm , which increases to 22 2.1 mm  on a physical source-centered 
detector array at the distance 870 mm.  
 The size of the cross-cut disks in Figure 6 seems to match the golden standard for 
all methods except in two cases. The large sphere at 10 o’clock and the small sphere at 5 
o’clock are sliced just at the top and in these cases the disks become enlarged in most of 
the 3D-reconstructed images. The reason is that all 3D-methods involve vertical 
interpolation on the detector, which creates extra smoothing of edges. In he full 
resolution PI-ORIGINAL the smoothing/enlargement is proportionally smaller. This 
seems to be the most significant difference between the two images at top center and 
right in Fig. 6.  
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 All methods are doing remarkably well for the Shepp-Logan phantom in Figure 7, 
in spite of the narrow gray-level window of HU 20± . From a glance at the more 
artifact-ridden images to follow in Figure 8, we conclude that the Shepp-Logan 
phantom is just too easy.   
 The geometry in the experiments 2, 3, 4, and 5 (Figure 8) are chosen to find out 
how gracefully the four PI-methods are degrading for increased cone and fan angles. 
Clearly the image quality ranking from worse to best is here PI-2D, PI-ORIGINAL, PI-
SLANT and PI-FAST. The PI-2D-method is doing quite badly for these more 
demanding geometries. PI-ORIGINAL suffers from shadow artifacts. Some shadows 
are also visible in PI-SLANT and PI-FAST, although to a much lesser extent. The two 
upper rows (same cone angle, different fan angles) are almost identical and so are the 
two lower ones. We conclude that the quality hinges primarily on the cone-beam angle 
and to a much lesser extent on the fan angle. This is far from evident, since the PI-
surfaces are quite planar for small fan angles, which could be expected to pay off in less 
artifacts for non-exact methods. 
 For which cone angle ranges are then these methods practically useful? Clearly, 
precise image quality measures and much more exhaustive experiments are required to 
answer this question. However, we believe that the strong artifacts for PI-2D in Figure 6 
(cone angle 02±  only) makes these methods less uninteresting. We believe this forecast 
also holds for related methods using nutated surfaces or planes such as (Heuscher 1999) 
and (Larson et al 1998) as well as for all SSRB-techniques (Noo et al 1998). 
Inconsistency between projection and back-projection geometry is not recommendable. 
PI-ORIGINAL should give better images and is probably simpler to implement than 
these 2D-back-projection methods. PI-SLANT is not quite as simple but delivers 
somewhat better images. Hence, this method should be practically useful well beyond 
the cone angle range of 02± , at least for fast scanning and medium image quality 
imaging. The PI-FAST holds out even better for the rather extreme geometries in Figure 
8. Unfortunately, this method issignificantly more complicated than the other PI-
methods and, in spite of its name, it is also slower.  
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Figure 4. Projections of one PI-surface in
nine consecutive phases of rotation 

Figure 1. a) The TAM-window mapped onto the 
helix b) Rebinned PI-method geometry. Note the 
rectangular shape of the planar virtual detector  

Figure 2.  The local Fourier domain of a
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out by source movements from A to B 
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Fig. 7. Exp. 1. PI-ORIGINAL, PI-2D, PI-SLANT, PI-FAST. Upper row: xy-slice. Lower row: xz-slice.   
Far right: No artefacts for truncated long objects (holds for all PI-methods). Grey-level interval: HU 20±  

Figure 6. Experiment 1. Clockwise from upper left: 2D filtered back-projection, PI-ORIGINAL, PI-
ORIGINAL with full resolution (Exp. 0), PI-FAST, PI-SLANT, PI-2D. Gray-level interval HU50±  
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Fig. 8. From top : )5.3,15( 00 == κγ , )5.3,30( 00 == κγ , )7,15( 00 == κγ , )7,30( 00 == κγ  
From left : ORIGINAL, 2D, SLANT, FAST. Grey-level interval: HU50±  
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