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RECOVERY OF A COMPACTLY SUPPORTED FUNCTION
STARTING FROM ITS INTEGRALS OVER LINES
INTERSECTING A GIVEN SET OF POINTS IN SPACE
uDcC 517

I. M. GEL'FAND AND A. B. GONCHAROV

In this note we investigate the following problem of integral geometry. Let the integrals
be given of some function p(z) = p(z1,T2,3), concentrated in a fixed fnite volume V
of space, over rays emanating from points of a set M in space (i.e., sources of X-ray
radiation are situated at points of the set ).

1) For what kind of mutual arrangement of M and the region V' is it possible to recover
the function?

2) How can the function p(z;, 2, z3) be found effectively in those cases where it is
possible in principle?

Here we give a solution for this problem in which the compact support of the function
p(z) plays an essential role. In fact, it can be shown that if one does not restrict oneself
to functions of compact support but considers, for example, all integrable functions, then
the problem is solvable only when the sources are arranged along some line. In this case it
at once reduces to a plane Radon problem: it suffices to consider planes passing through
the line of the sources.

We note that the solution of the analogous problem in the complex space G2, when
integrals of the function are given on complex lines intersecting a complex (algebraic)
curve in C3, is already well known (see [1]). The first problem of this kind, in which a
family of complex lines in C? intersecting a plane curve of the second order is considered,
was solved by Gel'fand and Naimark in 1947. This problem lies at the basis of the theory
of infinite-dimensional unitary representations of the Lorentz group [3]. Our method is
similar to the method of [3].

In the complex case the situation is considerably simplified, namely, the problem
always has a solution (compact support of the function p is not required), and there
exists a simple local inversion formula.

Real problems of integral geometry are the subject of the paper of Gel'fand and
Gindikin [4].

In tomography the three-dimensional structure of an object which is described by a
material density function p(z;, 2, z3) is recovered from a set of “X-ray pictures.” More
precisely, each source generates a beam of X-rays which passes through the object and
is later recorded on a screen. As a result we obtain integrals of the density function over
the rays along which the X-radiation propagates.

One can assume that the source generates a beam of rays emanating from some point
of space (recently the “size” of this point has successfully been reduced to 10 microns).
Until now in tomography it was possible to neglect the fact that the source was located
at a finite distance from the object, and assume that we were dealing with parallel pencils
of rays. Thus the resulting mathematical problem reduced to the Radon problem.

However, if we wish to investigate the microstructure of the object, it becomes essential
that the source be located at a finite distance from it. As a result we arrive at the necessity
of investigating the above-described problem of integral geometry.
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I. Relation between the Radon transform and integrals over lines passing
through a point. Let

Peorp) = f p()6((w, ) — p)dBa,

where w = (wy,w2,ws) and |w| = 1, be the Radon transform of the function p(z). We
assume that

(Ry,p)(a% a) = [p(xo +ta)dt

is the integral of p(z) over the line with direction vector a = (a1, e2,a2), |a| = 1, passing
through the point z0.

LEMMA 1.

(1 (e =‘f ([ 2t do) av

par = @ |b] = 1, and db s an average over all unit vectors b orthogonal to the

7. 44y reduce (1) to the inversion formula for the Radon transform in the plane.
' e the pi"me passing through the point x¥ perpendicular to the vector a.
op:} qver all lines perpendicular to this plane; as a result we get a function
: Let us denote by (I.0 .p)(b,p), where (b,a) = 0 and | = 1,
n ,_Epn over the line perpendicular to the vector b and located at a

; culared with respect to the standard Euclidean measure on the line.
i pl[b, p) is the Radon transform of I o (p) in the plane Il;o 5. By
the u:vvrsmu for mula (see [1]) we have

I b, (b,
(2 (120,00)(2°) flbl 1 f{ = p) p
) (ba)=0
We yiote that by definition
{f0,00)(2°) = (R1p)(2%a),  (I0,ap)(b,P) = plb,p + (2°,B)).

Substituting into (2), we obtain equality (1). Lemma 1 is proved.

We set
) (5:00)0) = | Loz b
LEMMA 2.
i (R1p)(2% a)
(4) (Szop}(b] _v[al i (b ajz d*a

where d2a is an average over all unit vectors.

PROOF. (Sgop)(b) is an even function on the unit sphere consisting of terminal points
of the vectors b. Formula (1) signifies that (R p)(z?, b) is obtained as a result of averaging
this function over the great circle on the sphere perpendicular to the vector a. We must
recover an even function on the sphere, knowing its integrals over great circles. This
problem reduces to the inversion problem for Radon transforms in the projective plane
([5), Chapter II, §1.7). Formula (4) is a consequence of formula 2.16 in [3].
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II. The main result.

1. We have thus shown that integrals of functions over lines passing through z° de-
termine the integrals (S,0p)(b) (see (4)) and in turn are determined by these integrals.

Below in subsection 2 we shall indicate conditions on the mutual arrangement of a set
M and a region V which allow us to find the Radon transform of a function p starting
from the integrals (S;0p)(b) (where 2% € M and [l = 1). Then, using the Radon
transform inversion formula [1], we shall find the unknown function p(z):

]' 1
ple) =~z [ Bl (0.2)) b,
where d?b is the average over all unit vectors b.

2. We fix a vector b. We denote by Po(V) (po(M)) the projection of the region V' (the
set M) on the line z = Ab () is a parameter on this line).

The problem of determining p(b,p) starting from S,o0p reduces to solution of the
singular integral equation

.
) an=-f B0D,

where () := (S;0p)(b) and A = (z%,0) € Ps(M). In particular, for example, j(b,p) is
uniquely determined from S,op if and only if equation (5) has exactly one solution.

PROPOSITION 1. If the set (M) contains a line segment (which we denote by I(b))
having no points in common with po(V), then the function A(b,p) is uniquely determined
by the integrals (R, p)(2°, a).

PROOF. The funection gy(}) is analytic in A for A € C\ps(V) since the integrand is
different from 0 only for p € (V).

Using the Sokhotskii-Plemelj formula [7], we obtain from (5)
% hli_r.rio(so()h +1da) — (A1 = iXo)) = —impl (b, Ay),

where A\; = ReX and A; = Im ). Since #(b,p) =0 as p — +o0,

P
6.0 == [ peaan.
—eo
The proposition is proved.
THEOREM. If for any vector b the set po(V) is a line segment and is contained in
(or coincides with) py(M), then the funetion can be found effectively starting from its

wntegrals over lines intersecting M .

PROOF. Let a (B) be the coordinate of the leftmost (respectively, rightmost) point
of py(M). We must solve the singular integral equation

8 5 (b,
== 2000 g,

We cite the final answer [7):

' qa . 8 ©op(A) dA
(b.p) = V(o —a)(p f’”f& VO=aA-Bh-p)
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Hetce, if one sets p = (b, =), then

(zJ——if ( 2p-a—6 n(A) dA
P 78w iy \Vlp-0)p—B) \/(/\—u()\ BY(A—»)

—/(p—a)(p- f 7 £o(A) dX )d%.

a)(A - B)(A - p)

EXAMPLE. If V is a ball of radius R with center at (0,0,0), then as M one can take
two semicircles of radius R + e, the centers of which lie at (0,0,0): one of them lies in
the plane 23 = 0, its endpoints located at (0, R +¢,0) and (0, —(R + €),0), while the
second is in the plane z; = 0 with endpoints at (0,0, R + €) and (0,0, —(R + &)).

We are grateful to D. A. Popov, who drew our attention to the timeliness of the
problem solved by us for X-ray tomography.
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