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Fan-Beam Reconstruction Methods

BERTHOLD K. P. HORN

Abstract—-In a previous paper a technique was developed for finding
reconstruction algorithms for arbitrary ray-sampling schemes. The
resulting algorithms use a general linear operator, the kernel of which
depends on the details of the scanning geometry. Here this method is
applied to the problem of reconstructing density distributions from
arbitrary fan-beam data. The general fan-beam method is then special-
ized to a number of scanning geometries of practical importance. In-
cluded are two cases where the kernel of the general linear operator can
be factored and rewritten as a function of the difference of coordinates
only and the superposition integral consequently simplifies into a con-
volution integral. Algorithms for these special cases of the fan-beam
problem have been developed previously by others. In the general
case, however, Fourier transforms and convolutions do not apply, and
linear space-variant operators must be used, As a demonstration, details
of a fan-beam method for data obtained with uniform ray-sampling
density are developed.

REVIEW

N a previous paper [1], a technique was developed for find-
]Iing reconstruction algorithms applicable to arbitrary ray-

sampling schemes. This general method was applied to the
problem of reconstruction from parallel-beam data with un-
even spacing between rays and uneven spacing between projec-
tions. The resuits were based on Radon’s famous integral {2]

: ——l—j”]m (—l>—a— 1,8)dldo 1
for. 9= L Jo e 5 P& (1

where p(l, 8) is the density integral or ray sum measured along
the ray inclined 6 with respect to a vertical axis and passing
within a distance ! from the center of the region being scanned
(see Fig. 1). Further, f(r, ¢) is the density at the point with
polar coordinates (r, ¢) in this region, while t =1 - r cos (6 -~ ¢)
is the perpendicular distance between the ray and this point.

When ray sums in a given projection are spaced evenly in [,
and projections are spaced evenly in 8, a simple reconstruction
method can be found directly from (1) by approximating both
integrals by sums and approximating the partial derivative by
an appropriate first difference.

UNIFORM SCANNING COORDINATES

When spacing is uneven, it is helpful to introduce first new
raysampling coordinates £ and 7n, chosen so that successive
rays in a generalized projection correspond to evenly spaced
values of £, while successive projections correspond to evenly
spaced values of 7. Radon’s integral can then be transformed
to this new coordinate system using the Jacobian,
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and (1) becomes

1, ¢)——IJ-<- ~>——J(E n) d§ dn. 3)

It is possible to show that this can be rewritten as

» 2 o 2
o= [0 55 e @

It is not clear whether this forms a good basis for a reconstruc-
tion algorithm in the general case, since it seems to imply that
computations must be carried out across projections as well as
within projections.

GENERAL PARALLEL-BEAM METHOD

In the previous paper [1], the emphasis was on parallel-ray
scanning; and, in this case, [ is a function of ¢ only, while § is

a function of 7 only. The Jacobian then reduces to
Bl 30 )
T

and (4) simplifies as follows

=L _Lan) 130
1@, 9) 4ﬂ2f[J< ; aE) dg] o dn. ©)

Here ¢t =1-I', where I = I(£), while ' = I(§"), and £’ is the value
of £ associated with the ray that passes through the point
(r, #). The above can be conveniently split into an outer and
an inner integral

080
fr, ¢)—‘— g(&, n)—n dn N

' 1
s =-§— 8
g, m) jl(i) 1) oE p(E n) d§. (8)
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HORN: FAN-BEAM RECONSTRUCTION METHOD

l (i-1" beam | ith heamJ

If these integrals are approximated by sums, one obtains

1 '
9~ gjg;(s )86, )

; 10
G- 15 (10)

- (pij ~ P(i-1)j
g = - Z ij i 1);} .
i

This straightforward set of equations is one result of the analy-
sis in the previous paper [1, egs. (29), (40)]. Here 80;=00j+1 -
6',‘_, )/2 is the angular interval associated with the jth projec-
tion, while 1} = (l; +1;+1)/2 is the value of I corresponding to
the center of the ith beam. The left edge of the beam striking
the ith detector corresponds to I; and the right edge to lj+
(see Fig. 2). The density integral obtained from the ith de-
tector in the jth projection is pj;.

Finally, note that gj(§') has to be found by interpolation
from the discrete set of values {g,-rj]-. If linear interpolation is
to be used, one can work with the values g;'; and g(;'+1)j>
where

L <IE)<ljss. (11)

RELATION TO CONVOLUTION-BACKPROJECTION METHOD
By splitting the second sum and rearranging its terms, one
arrives at an alternate form (1, eq. (38)]
4 (i1 = I

gvr-=~———'— p.:- __._-_——,—-
1™ Gy 2y 8 3 S = =)

pi. (12)

That is, the sequence {g;} is obtained from the sequence {pij}
by a general linear operator. This is similar to a convolution
except that the weights or filter coefficients are spatially
variant.

One has only to fix the width of the detectors, at 51 say, to
be able to relate this result to the well-known convolutional-
backprojection method. In this case

4
S, g:n=4p;: - —_— . 13
18iY [ pi'y g,-:' a7 -1 Pf}} (13)

This amounts to convolution of {p,-f} with a filter function Fg,
where

4
aK? -1’

Fy = for k#0 and Fo=4. (14)

This happens to be the particular set of filter coefficients
popularized by Shepp and Logan [31.

My previous paper contains other formulations for this
problem as well as a simulation of the method for reconstruc-
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tion from ray sums collected with uneven spacing [1]. The
main point is that convolutions are inappropriate in the gen-
eral case and must be replaced by spatially varying operators
or superposition integrals.

RECONSTRUCTION FOR ARBITRARY RAY-SAMPLING
SCHEMES

In the general case, equation (4) does not seem to provide a
good starting point for analysis. Instead it is helpful first to
remove the partial derivative from Radon’s integral (1) by
partial integration. This has to be done carefully since the
inner integral is improper. The in tegrand is unbounded in any
neighborhood including 7 =1'. Cauchy’s principal value is

li .J.r_E ( l) g (1, 6 dI+JM ( l) i It B)df}
m — e oo A
el—vo o t/ ol p(.0) I'+e t afp .

(15)
Integrating by parts one obtains [1, eq. (8)]

am oo
fr,$)=— limJ F.()p(, 0)didd  (16)
4n° Jy €20 J_ o
where
Fe(r)={”62’ for |t1<e (17a)
-1/t%, for |il=e. (17b)

Introduction of the transformation to uniform scanning co-
ordinates (£, 7) now leads to

fr,®)=—= )&, ¢,n)dn

1
4w s

glr,¢,m= Eli_'rr:JFe(:)J{E, mp(§, 1) d&. (19)

This forms the basis for reconstruction methods for arbitrary
ray-sampling schemes. In this paper the concern will be with
techniques for reconstructing density distributions from ray
sums collected using fan beams (see Fig. 3). Modern ap-
paratus for computerized tomographic analysis typically
produces projection data in this form and there is a practical
need for accurate and rapid reconstruction methods for a
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variety of different schemes for sampling the fan beam. Such
methods had been found previously for two special geometries
[41-[6]. Here techniques will be developed that can be used
for arbitrary ray-sum collection schemes.

Before continuing to the fan-beam case, the reader may want
to consult an alternative analysis of the same general problem
[7] which could equally well form a starting point for this
paper.

SOURCE POSITIONS DISTRIBUTED AROUND THE
CIRCUMFERENCE OF A CIRCLE

Let the source be located at (D, w/2 +8), where D is the
radius of the circle (see Fig. 1). Let a ray be emitted in a
direction that makes an angle & with the source-to-origin line.
Clearly a and 8 are as good for specifying a particular ray as
1 and 6 are. For fan beams, these new parameters will be
more directly useful, and so the relationships between the two
sets of variables will be needed. From Fig. 1

I=Dsina and §=a+f (20)
a=sin"! (/D) and B=0 -sin” (/D). @

If £ and 7 are uniform scanning coerdinates, then it is natural
to let

a=a(f) and B=P(n) (22)

where a and § are continuous differentiable monotonic func-
tions of £ and 1. Then (see (2))

J=—— since —=0. (23)

Further, since 0 = a + f3,

ol 9a a8 aﬁ da 4
e 3% 1 a cosaag. 24)

Now J is a factor in the inner integral (19), but the first term
of the above product can clearly be brought out of the inner
integral and incorporated into the outer integral (18). The last
term of the product will depend on the way in which rays in a
fan are sampled. This corresponds to the placement of de-
tectors in the fan and depends on the scanning scheme used.
We will study several cases after developing a few more tools
that will be needed.

THE PERPENDICULAR DISTANCE FROM A POINT TO A
RAay ror FAN BEams

From the diagram (Fig. 4) we can develop a useful new way
of writing ¢, the distance between a given ray (a, ) and a
given point (7, ¢)

t=Ksin (a- o) (25)
where, by the cosine rule for triangles (see Fig. 5),
K% =¢* +D? +2rD sin (§ - ). (26)

Here o is the value of & corresponding to a ray from the
source which passes directly through the given point (r, ¢).
Note that K is simply the distance from the source to the
point (7, ¢) and thus clearly does not depend on . From the
diagram we can calculate & as follows (see Fig. 5):

Ksinda' =rcos (B~ ¢)
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and
Kcosa =D +rsin (B - ¢) 27
and so,
rcos(f-
tan ¢ = _reos(B-@) . (28)

[D +rsin (8- ¢)]

SoME PROPERTIES OF THE FILTERING FuNcTION
Note that if ¢ # 0, then

1
F, (Ct) e/c(t) (29)

This result can be easily checked by separately considering the
cases |ct| <€ and [ct| 2 €. From this it follows that

J F(ct)dt=0 (30)

and

oo

lim J‘ F.(ct)a(t) dt=i2 lir%J‘ F(t)a(t)dt. (31)
o ¢t es0 ) o

€0

Furthermore if |b(¢)| =
with respect to ¢

by > 0 is continuous and differentiable

limJ- Fe[b(t)t]a(t)dt=limJ- F(t) alt) dt.
e—0J_o €0 J_ b3(1)

(32)
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HORN: FAN-BEAM RECONSTRUCTION METHOD

These results are useful in deriving the general reconstruction
formula for fan-beam scanning schemes.

RECONSTRUCTION ALGORITHM FOR ARBITRARY
FanN-BEAM GEOMETRIES

Using the general result for reconstruction (18), (19) based
on Radon’s inversion formula [2] and using the expressions
for t and J just derived, we have

S [ -a—'ﬁd 33
f(”"”)‘wz g(r,¢,m 2% n (33)

! o
g, o, 7= li“LJFe[K sin (& - &)]D cos @ £ p(€, 1) d&.

(34)

According to a result just developed (31), the factor K can be
extracted from the argument of the filter function F. Since K
does not depend on « it can be further removed from the inner
integral (34) and placed into the outer integral (33). The inner
integral then no longer contains terms which depend explicitly
onr and ¢, only terms which are a function of ’. So the
above can be rewritten

1 ¢)=ng"(a’ Dk L an 35)
y 4q? ; on

i}
g'@',n) = lim ~I-FE[sin (¢- a)]D cos @ a—"; p(&, n) d&.
€0

(36)

From the fact that the inner integral is a function of o, and
not r and ¢ explicitly, we conclude that the reconstruction
algorithm can be arranged efficiently, That is, for all fan
beam schemes with source positions on the circuinference of
a circle and sampling of the fan independent of source posi-
tion, one need not explicitly calculate the contribution of each
ray to each point in the reconstruction.

We are now ready to develop specific reconstruction methods
for a variety of fan-sampling schemes. Some special schemes
will lead to simplifications which can be interpreted as pre-
multiplication, convolution and post-multiplication. In gen-
eral, however, the inner integral remains in the form of a
general linear operator or superposition integral.

UNIFORM SAMPLING ALONG A LINE AT RIGHT
ANGLES TO THE SOURCE-TO-ORIGIN LINE

Rays are sampled evenly in A (see Fig. 6), so it is natural to
let

(=X=Dtana 37
da 5
Dcosa _5 = cos” . (38)
Also,
sina= —E--“-
VD +¢7
and

cos@= (39)

D
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Fig. 6.

So
da D?.
D cos a— = W 1 (40)

Further, if we let o' be the value of « corresponding to the ray
through the point (r, ») and &' the corresponding value of £,
then

- L et E,
R e
and
D
cos o = ——— . 1)
So,
sin (@ - o) =sin & cos @' - sin &' cos & (42)
D
in Q= -§).  (43)
o (VD e PTas BB ot osmroas
Hence,
g"(¢', ) = lim jp [ 1 (& syl ]
L] = 1 (3 -
3
"D+ p(&, B) dE. (44)

We can move the multiplier of (£ - £') out of the filter func-
tion F to get

oot ' . ' D
g(E,ﬁ)=(D2+£2)gl_13}]JFE(E—£) e p(, B) d&.

VD? +§

(45)
Note that from (37) or (41)
¢ =Dtana (46)
and so
(D* +£?)=D? sec® o. (47)

Also, combining this with the term (1/K2) in the outer in-
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tegral one gets

(D +£?%) D? D?
= = 4
K? [K cosa']>  [D+rsin(f- ¢)]? L

and so, finally,
2

D
[D +7rsin (8- ¢)]?

1 Zﬂ JJ:J 1
[, =173 f ", B) dp (49)
0 .

4o

FHs - r D
g (\,B)= hmj Fe(A-X) p(A, B)d\
e—+0 J_ . +)\2

'IIIDZ
(50)

Here finally we have used the coordinate natural to this partic-
ular scanning scheme, namely A, the distance from the origin
at which the ray intersects the line drawn perpendicular to the
source-to-origin line.

It is important to note that in this case the argument of the
filter function F contains only the difference of the two pa-
rameters A and X. The above is thus almost like a convolution,
except that one has to pre-multiply the projection data p(A, )
by a factor depending on the position of the ray in the fan.
Similarly, the convolved data g'"” is used in the outer integral
after post-multiplication by a factor which depends on the posi-
tion of the point (r, ¢) in the fan currently being processed.

DISCRETE APPROXIMATION

Finally, we have to approximate these integrals by sums be-
cause in practice only a finite set of ray sums is available:

1 : D?
f(f,¢)~m ;gf(m (D +rsin (B - I 88;  (51)
&= 2 F; “D—*p-ﬁ?\ (52)

Sanitts snstoV/DEENE A8 37

Here

?\'=Dtana’=m. (53)
D +rsin (B - ¢)
In the above set of reconstruction equations, pij is the ith
ray sum in the jth fan, while 8 is the (fixed) interval between
intersection of successive rays with the line perpendicular to
the source-to-origin line. The angular interval associated with
a particular fan is 8;, where

8Bj = (Bjs1 ~ Bj-1)/2. (54)
The filter factors are

s el
K wen?

k#0 (55)

Fo=-2 ) F. (56)
k=1 .

As mentioned in the paper on which this analysis is based, the
weights wy are chosen to provide good numerical approxima-
tions for the singular integral. Typical choices are:

1) wg =2 for k even, wy = 0 for k odd
2) wy =4k*(4K% - 1)
3) wg=1.
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Note that the above operation can be viewed as a pre-
multiplication of the ray sums by D/[D? +A}1Y2, followed
by a convolution, with a final post-multiplication by sz[D +
rsin (B; - )]*. While the method is not strictly convolutional,
it can be conveniently viewed in this way. The above is one
of two special cases of the fan-beam problem that had pre-
viously been solved [4], [5]. An attempt was made here to
use similar notation to simplify comparison.

We ought to specify how g;(X) is found from g;;. As in
the previous paper [1], we approximate g);()\') by interpola-
tion. If we sample NV rays uniformly along a segment of length
L of the line at right angles to the source-to-origin line, then
8N =L/(N - 1), and the ith ray corresponds to

Ai=-L/2+i8A\ (57

Consequently, g;()\') is found by interpolation from g;'; and
8(i'+1)f where,

i'= (N +L/2)/5A]. (58)

In practice, of course, detectors would not be arranged on a
line passing through the scanned space. The geometric trans-
formations from a more distant linear detector array to posi-
tions on the line passing through the origin are fortunately
trivial (see Fig. 3). Such an array of equally wide detectors
positioned behind the object being scanned would have to
move in synchrony with the source, so as.to always remain
perpendicular to the source-to-origin line. There is great
interest in scanning schemes which can instead use a fixed
array of detectors. One such arrangement will be discussed
in the next section.

EVEN SAMPLING OF Rays IN FAN ANGLE

Even sampling of rays in fan angle a can be achieved easily
using a set of equally wide detectors arrayed on a sector of a
circle with center at the source position. Curiously equal
spacing of samples in fan angle can also be achieved when
these detectors are instead placed on a circle passing through
the source, with center at the origin (see Fig. 7). This follows
from the fact that the angle at the center is just twice the
angle at the source, and so equal angular spacing of detectors
when viewed from the origin corresponds to equal angular
spacing of detectors when viewed from the source. Such an
arrangement of detectors has an advantage in that the de-
tectors could remain stationary during scanning if the poten-
tial mechanical conflict between source and detectors could
be solved. In any case, it is natural here to let

E=aq. (59)
So,
oo
D cosa 5§= D cos a. (60)

Proceeding as in the previous section, we obtain from (35)
and (36),

Lisk (o astin
f(r,¢J=4—;f g, B)(1/K?)dp (61)
™ Jo

+mf2
g, B)= lim j Fe[sin (&~ @)]D cos ap(a, f)da

) w2

(62)
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where by (25),
K?=r2 +D? + 2rDsin (B - ¢). (63)
Next, we obtain the discrete approximation

1
+D? + 2D sin (B; - 9) 86

1 ,
9=~ s %Ig,-(a) >

(64)
8i'j= Z Fy_;D cos oypyiba (65)
i
where
o = tanl [_M] 66)
D+rsin(Bj-9) ]

Once again py; is simply the ith ray sum in the jth fan, while
da is the (fixed) angular interval between rays in the fan. The
angular interval associated with a particular fan 3; is as de-
fined before (40). The filter factors are

Wi

Fp=-————  k# 7

K7 sin? (k6a)’ 0 (67)

Fo=- 2 Fy. (68)
k#0

Finally, one needs to detail the interpolation procedure for find-
ing g;(«') from the discrete set of values g;7;. If IV rays are
sampled uniformly along an arc of angle A, then da=A4 /(N - 1).
The ith ray then corresponds to

a;=-A4/2+iba. (69)

Consequently, g]-(a') is found by interpolation from g;'; and
8(i'+1)j where

i'=1(a +4/2)/8al. (70)

This reconstruction method may be viewed as a pre-multiplica-
tion of the ray sums by D cos ¢;, followed by convolution, with
a final post-multiplication by 1/[r* +D? + 21D sin (f; - $)1.
This is the second special case of the fan-beam reconstruction
Problem which had been solved previously [5], [6].

Other fan-beam scanning geometries do not lead to such
Special case solutions however. Usually, a general linear opera-
tion g required. Fortunately, the method presented earlier
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allows one to treat arbitrary fan-beam scanning geometries.
We will study one in detail as an illustration.

A METHOD WITH UNIFORM SAMPLING DENSITY

Both of the scanning schemes discussed so far sample areas
near the origin less densely than they do areas near the edge
of the region of reconstruction. This can be seen when it is
remembered that the ray-sampling density is the inverse of the
Jacobian J [1] and that for fan-beam scanning (24)

o8 D oa -
= — a —_— . B
on cos Y (71)
Now for the first method (38)
Deosa | 3 (712
cosaji—| = o
Y cos )
while for the second method (66)
o
D cosa 5— =D cosa. (73)

The result of this variation in sampling density is that recon-
structions will have somewhat better resolution in outlying
regions (particularly in the radial direction, less so in the
tangential direction). While this effect is not very pronounced
for fans that are fairly narrow, it is still of interest to investi-
gate schemes providing uniform sampling density. That is,

= 1.
D cosa 74
If thlS equatlon 18 lllteglated one flnds

E—I—DSIIIOL (;5)

This means that rays are spaced evenly in their perpendicular

distance ! from the origin (see Fig. 8). No convenient arrange-

ment of equally wide detectors will provide for sampling of

the fan in this fashion, but clearly detectors of varying width

arranged on either a straight or curved line can be used. Their

width will increase with distance from the central detector.
Now note that

sin (@ - &) =sin a cos &' - sin &' cos & (76)
sin (a —va') =cos ¢ (tan @ - tan a')cosa 7
TRy £l I S 1
sin (- )= D N/ N o

" /DZ _ &2

D

where E' = D sin . Processing as before (using (35) and (36)),
we get

I S p?
f(r,<¢>)—4—772_f0 £CP s -9

B (19)

+D I I
"l" = 1 F _
FERm J—D ) <\/D2 -17 /D*- z’2>

7 p(,B)dl. (80)

o -1
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The following identity was used for the outer integral
i D* £ D4 % D2
K? D*-1'"" K™*cos*d [D+rsin(B-9)1*°
(81)

Note that here !’ is the value of ! for the ray inclined &' to
the source-to-origin line (see Fig. 8)

I"'=Dsind. (82)

(This use of I' differs from that in the parallel ray scanning
schemes presented in the previous paper [1].)
Once again, a discrete approximation is required

2

[D +rsin (B; - $)]?

! :
fr, )~ = 2 &) 86 (83)
I

1
g'j= 2 Fyy -1 pyjbl (84)
i i
where
Dr cos (; = @Y
I'=Dsina' = el . (85)
\Vr? +D? + 21D sin (B;-9)
The filter factors are
Wi ;
Fp;=- T ; T =3 “of i#Fi (86)
\vDT-17 VD7-1%
Fyp==- ), Fpy. (87

i#i'

In this case, then, as for most scanning schemes, a general
linear operator rather than a modified convolution must be
used. The methods presented here permit the derivation of
algorithms to deal with these problems. Note, by the way,
that here the factors of sin (& - &') were split up in a similar
fashion to that of the first two examples. This is not strictly
necessary, since all three components can be accomodated as
part of the filter function F.(I, ") or Fy';, if so desired.

ANOTHER METHOD
The existence of an elegant method for reconstruction from
parallel-beam data (equations (7) and (8) or (9) and (10))
which uses derivatives of projection data and does not de-
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pend on arbitrary filter coefficients leads one to search for a
similar expression for fan-beam reconstruction. Starting from
the general form (4) does not seem to lead to such a result.
Instead one may apply partial integration to the form of the
inner integral shown in (36)

w2
g'(e/, )= lim J- F.[sin (a- &)1 p(a, B)D cos & da.
€—0 _",2

(88)

If one lets sin & = €, then

o'-8
L r l
g (o, m) = lim I:J. -—— . p(e, B)D cos a du
€=0 | J_q sin”® (- «)

1 a'+8
ey J‘ pla, B)D cos ada
€ Ja'-5

+7f2 1
+ -——p(a, B)D cos a daf. (89
fus n? a)p( B ] (89)

o
Or,
SR (a- o) D cos &
g'(e/,n) = lim f == - p(a, B) ; da]
=0 | J_ap sin® (- @) cos (- o)
26 pri?
+=5 p(, B)D cos o' + lim [J
€ €20 | Jo'+s
cos (- o D cos o
N T(—;) p(a, ) ————-da|. (90)
sin® (¢-a) cos (- a)

That is,

-5
cos &
cos (@ - «') -

D
[si_n @id) p(e, B)

a8 D Sor (. 8) cos-a ] e
_J-_ sin (- @') O R\ cos (& - )

w2

+ 2 pla, B) cos o' +[ - p(a, B)

8 sin (& - o)

cos & 3xi _.J'H"‘|r2 D 10:
cos (@- )] gus Jaws sin (@-a’) da

cos &
i s 91
[p(a, ﬁ) T {a_ a,)] 43 ( )
As & = 0 this becomes simply
+mf2
D 3 cos &
J—m sin (- o) da ["(“* B 7= a,}] da. (92)
To summarize,
10,9)=— J‘” el
r, ) =—r:
H) 4,"_2 3 g a:ﬁ Kz(r, ¢’ 5) (93}

F._...._
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(94)
where, as before,
K% =r? +D? + 2D sin (B - ¢) (95)
. rcos(f-¢)
tana = ___[D FpRprT (96)
The discrete approximation is
1 A D _
f(r, ¢} o 4?1_2 Izg;(a ) Kz(r, ¢’ ﬁ!) aﬁj‘ (97}
cos (a;)

g == 2. [p(ﬂfh ()]

sin (o; - ;) cos (&} - @jr)
cos (@j_;) ]

cos (@, - ;') =)

= p(ml‘—is B}
Here a; corresponds to the left edge of the ith detector, while
@;,; marks its right edge (see Fig. 9). The ray sum seen by
the ith detector is p;; and its center is at ;.

CONCLUSION AND SUMMARY
The formulas for reconstruction from ray sums obtained by
arbitrary sampling schemes were specialized to a system utiliz-
ing fan beams originating from sources on the circumference

1623

of a circle. It was found that one need not calculate the con-
tribution of each ray sum to each point explicitly, but that the
calculation does involve the application of a general linear
operator. In special cases, this linear operator becomes space
invariant by a manipulation of the integrals, and the super-
position integral simplifies into a convolution. Two examples
of this were shown, both corresponding to previously known
solutions to the fan-beam reconstruction problem for partic-
ular ray collection geometries,

To illustrate the utility of the new method, however, a third
case was considered where the simplification does not occur.
Previous techniques for finding reconstruction methods based
on Fourer transforms cannot deal with it. Details of an
algorithm were developed. The utility of the new methods
for finding algorithms for arbitrary fan-beam scanning schemes
is therefore apparent. The introduction of uniform scanning
coordinates in particular is of great importance in finding re-
construction methods for the general case.
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