Advanced single-slice rebinning for tilted spiral cone-beam CT
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Future medical CT scanners and today’s micro CT scanners demand cone-beam reconstruction
algorithms that are capable of reconstructing data acquired from a tilted spiral trajectory where the
vector of rotation is not necessarily parallel to the vector of table increment. For the medical CT
scanner this case of nonparallel object motion is met for nonzero gantry tilt: the table moves into a
direction that is not perpendicular to the plane of rotation. Since this is not a special application of
medical CT but rather a daily routine in head exams, there is a strong need for corresponding
reconstruction algorithms. In contrast to medical CT, where the special case of nonperpendicular
motion is used on purpose, micro CT scanners cannot avoid aberrations of the rotational axis and
the table increment vector due to alignment problems. Especially for those micro CT scanners that
have the lifting stage mounted on the rotation table (in contrast to setups where the lifting stage
holds the rotation table), this kind of misalignment is equivalent to a gantry tilt. We therefore
generalize the advanced single-slice rebinning algorithm (ASSR), which is considered a very prom-
ising approach for medical cone-beam reconstruction due to its high image quality and its high
reconstruction speed [Med. Phys. 27, 754-772 (2000)], to the case of tilted gantries. We evaluate
this extended ASSR approach (which we will denote as ASSR™, for convenience) in comparison to
the original ASSR algorithm using simulated phantom data for reconstruction. For the case of
nonparallel object motion ASSR™ shows significant improvements over ASSR, however, its com-
putational complexity is slightly increased due to the broken symmetry of the spiral trajectory.
© 2001 American Association of Physicists in Medicine. [DOI: 10.1118/1 .1373675]
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I. INTRODUCTION

CT scans with tilted gantries are performed daily in a clinical
routine. In contrast to sequence scans and single-slice spiral
scans the use of modern multislice spiral scanners requires
new reconstruction concepts to compensate for the fact that
the rotational axis of the gantry deviates from the axis of
table increment by the gantry tilt angle 7. Although special
z-interpolation algorithms that account for the gantry ftilt
problem in an approximate way have recently been devel-
oped for four-slice CT scanners' there are no specific algo-
rithms yet to be used at higher cone angles and none that
incorporate the gantry tilt without applying approximations.

We therefore generalize the approximate cone-beam re-
construction algorithm ASSR  (Advanced single-slice
rebinning?), a very promising candidate for medical CT,*
to the case of tilted gantries. For convenience, we will denote
this new extension as ASSR* (ASSR plus gantry tilt). Al-
though the necessary changes require a complete reformula-
tion of the reconstruction problem, the basic idea remains the
same: the spiral trajectory is approximated by a set of over-
lapping and optimally tilted reconstruction planes along
which data of a virtual parallel scanner are synthesized from
the measured cone-beam data via rebinning and recon-
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structed with a standard two-dimensional (2-D) reconstruc-
tion technique (e.g., filtered backprojection, Fourier recon-
struction, or iterative methods).>® The stack of resulting
tilted images is interpolated along the table increment direc-
tion d (d interpolation) to yield the volume on the desired
x-y-d-grid.” As usual, the z axis is defined to be perpendicu-
lar to the x-y plane (scan plane) and coincides with the rota-
tional axis of the scanner.

All advantages of the original ASSR algorithm remain for
ASSR™: The images are of high quality, 2-D reconstruction
software or hardware can be used for ASSR* and the formu-
lation as a rebinning approach allows us to incorporate scan-
ner misalignments directly into the reconstruction without
the need for an intermediate resampling of the data.” These
misalignmens may include tilted or skewed detectors and
even distorted detectors, as it is the case with image intensi-
fiers. Above all, the gantry tilt is equivalent to a misaligned
table increment axis and, consequently, corresponding cases
are explicitly covered with ASSR*. In the case of 7=0,
ASSR™ is equivalent to ASSR; the d interpolation reduces to
a z interpolation.

In this paper we will present the theoretical derivations
necessary to adopt ASSR to the case of nonperpendicular
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table motion. Since all manipulations, including those that-
differ between ASSR and ASSR™, are numerically per-
formed with high precision without additional resampling, it
turns out that all image quality parameters and figures of
merit (e.g., slice sensitivity profiles, image noise, resolution,
etc.) remain the same as for the original ASSR. Thus, we
will not present corresponding results. The reader is rather
referred to Ref. 2.

Il. MATERIALS AND METHODS

The notation used here conforms with Ref. 2 as far as
possible. The projection angle is called « and will be used to
parametrize the complete spiral trajectory, and thus we have
a e R. The angle within the fan is given by B; the detector’s
z coordinate is denoted as b. For the flat panel detectorused
for our derivations we have the corresponding coordinates
and v. The ray geometry in 2-D parallel geometry is param-
etrized by & for the ray’s distance to the origin and 1 for its
angle. Figurc 1 shows the in-plane geometry of the cylindri-
cal detector scanner.

Each planar dataset to be rebinned will be centered about
a certain angular position aj that we call the reconstruction
position. Notations and definitions used throughout this pa-
per are given below. Most of them depend on the current
reconstruction position ay. For convenience, this depen-
dency is not explicitly stated. The reader should be aware of
the implicit dependence on ay.

The coordinate system used is matched to the scanner’s
gantry: the z axis coincides with the rotational axis, and x
and y are perpendicular to z to give an orthonormal coordi-
nate base. The table increment is given in this base as a
vector d. Its length d is the value that is called the table
increment per rotation in medical CT. In general, this choice
of coordinates is optimal for the development of reconstruc-
tion algorithms, although in common CT terminology the
vector d is referred to as the “‘z axis.”

a the R plane’s distance to the origin;

a projection angle, a € R;

wp projection angle about which the reconstruction
is centered;

B, b detector coordinates for the cylindrical detector;

cos € length correction factor to account for the angle

€ between the measured ray and the virtual ray
used for reconstruction; see Eq. (12);

d, 7, k the table increment vector per 360° rotation and
angles to parametrize d; see Eq. (3);

o fan angle, ® =2 sin™'(Ry,/Rp);

"n the length correction factor to allow the virtual

scanner to be defined in the horizontal x-y plane
instead of the R plane; see Eq. (9);

m the normal vector of the plane containing both
the measured ray and the corresponding ap-
proximated ray in the R plane; see Eq. (10);

n, vy @ the normal vector of the current R plane and
angles to parametrize n; see Eq. (5);
0 the origin of the current R plane; see Eq. (6);
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Fig. 1. Coordinate system of a cylindrical detector scanner projected into
the x-y plane. The rays arc described by the angle 8 within the fan and the
rotation angle « of the gantry in fan geometry. The corresponding param-
cters in parallel (i.e., rebinned) geometry and & and .

p(e,u,v) the measured projection data at (a,u,v);

p(3,6) rebinned projection data;

r coordinate vector,

X,
r={Y|;
Z

r(u,v) coordinates of detector (u,v); see Eq. (2);

r(a,u,v) beam vector defined as r(a,u,v)=r(u,v)
—s(a);

R the reconstruction plane, defined as R:n-r—a
=0:

Rp the distance from detector to center of rotation
(z axis), in our case 435 mm;

Rg the distance from the focus to the center of ro-
tation (z axis), in our case 570 mm;

Ry the radius of the field of measurement (FOM),
in our case 250 mm;

Rpp distance from focus to detector, Rpp=Rp
+Rp;

S slice thickness;

s(a) the spiral focus trajectory; see Eq. (1);

D, € beam parameters in parallel geometry. They de-
scribe a parallel beam through o+ £§()) with
direction 3();

u, detector coordinates for the flat detector;

v

, 7 unit vector pointing from o toward the parallel
beam (9, &) and vector pointing along the beam
direction. See Eq. (8);

F normal vector of the plane containing the hori-

zontal virtual ray (3, £) and its projection along

d onto the reconstruction plane, £ = X d;

average deviation of the focus from the recon-

struction plane;

a mean
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window setting of the reconstructed images in
HU. C is the window center, W the window
width.

(C/W)

Spiral cone-beam data were simulated using a dedicated
x-ray simulation tool (ImpactSim, VAMP GmbH, Mohren-
dorf, Germany) and the same scanner geometry (correspond-
ing to the Siemens SOMATOM Volume Zoom) as in Ref. 2.
Phantom definitions were taken from the world-wide phan-
tom data base at http://www.imp.uni-erlangen.de/forbild. All
reconstruction algorithms were implemented on a standard
PC with dedicated image reconstruction and evaluation soft-
ware (ImpactlR, VAMP GmbH, Mohrendorf, Germany); re-
construction time is below 5 s per image on a 450 MHz
Pentium CPU with 256 MB of memory.

lil. ADJUSTING THE RECONSTRUCTION PLANE

Our derivations will be based on a flat detector geometry
that can be easily transformed to cylindrical detector coordi-
nates necessary to describe the medical CT scanner used for
the simulations.” The spiral focus trajectory s(a) and the
detector position r(u,v) are given as

sin @ =
= —cos Bt
Ma)=Re| “esaldor, M
—sin @ cos & 0 2
r(u,v)=Rp| cosa | +u sine | +p| 0] +d—.

(2)

A plot illustrating the geometry is given in Fig. 2 for the case
d|z.

Below we will use the following representations of the
table increment vector:

d sin 7Cos K
d=| d, | =d| sintsink |. (3)
d; cos T

In medical CT the angle 7 is the gantry tilt angle and the
value of « is 90° corresponding to tilting the gantry about the
x axis of the scanner.

We now want to find a reconstruction plane R, defined as
R:nr—a=0, with n?=1 that optimally fits to a given 180°
segment centered about the reconstruction position ay of the
spiral trajectory. Therefore, we simply minimize the mean
square distance to the spiral source trajectory, i.e., we mini-
mize

g 1 g+ w2 >
A ——J- da[ns(a)—al”.
[4

mean
™ vp— Wl

This can be achieved by regarding the derivative with respect

fo a:

apt w2
J- da[n-s(a)—a]=0.

ap— w2

From there follows a as
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FiG. 2. Cone-beam coordinate system. The vector d is the table increment
vector, e is the rotation angle, and Rg, Rp, Ry, arc the distances of the
focal spot, of the detector, and of the edge of the FOM, respectively, to the
center of rotation.

sin ag
apR
a=n+| —Rp| —cosap|+d-—
™ 0 27

Inserting this result into the minimization integral gives

1 [agtwi2

A== da[n-As(a)]’,
m tr"—arIZ
with
sin ag
ap
As{a}=s{a}—;RF —cosap | —d—

20

To determine the normal vector n we need to integrate the
mixed components of As. Thus we define the symmetric 3
X3 matrix S as

1 ap+ w2
S da[As(a)][As(a)];,
T Jag—an2
such that A2, =n"-S-n. The explicit expressions are
48728, = m2d,d, +24R}(m* —4) + 96R rd, cos arp

+96R} cos 2 arg,
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48728 = w2d d,+ 48R p(d | sin ag+d, cos ag)
+ 96Ri— sin2eay,

4878 y=2d d5+ 48R pd; cos ey,

48728y, = 1 dydy+ 24R 1w —4) + 96R pd sin ag
—96R%.cos2ay,

4812 Syy= w2 dydy+ 48R pd sin arg,

48728 y,=md;d;.

The constraint n>=1 can be incorporated into the minimiza-
tion equation using the Langrange method, i.e., by adding
A(n?—1) to the integral. The solution then yields the eigen-
value problem

S-n=An. )

Multiplying n” to the left shows that A, =\ and, conse-
quently, n must be the eigenvector to the smallest of the
three eigenvalues. Equation (4) cannot be reasonably solved
analytically. The solution will be performed numerically by
evaluating the characteristic polynomial of S and solving for
the eigenvector corresponding to the smallest zero of this
characteristic polynomial.

In the tilted spiral A ., and the relative orientation of the
R planes (relative with respect to the reconstruction position
arg) will vary slightly as a function of ay. These variations
increase with increasing gantry tilt, but even for gantry tilt
angles of up to 30° the relative deviation from the mean
value turns out to be in the order of 1073, Although we did
not do so one can, in principle, neglect the impact of the
gantry tilt on the calculation of the R plane.

Since the reconstruction plane is now determined for a
given reconstruction position @y, we can start with the re-
binning procedure where we assume the R plane’s normal
vector to be represented as

sin y cos ¢
n=/| sinysing |, (5)
cos y

IV. RECONSTRUCTION

Our aim is to synthesize data corresponding to the rays
(9,8) of a parallel scanner that rotates in the x-y plane. The
projection of the virtual scanner’s rays along the table incre-
ment vector d corresponds to a parallel scanner with a non-
equidistant sampling rotating in R; its line integrals can be
taken from the measured cone-beam data by appling only
tiny approximations. The advantage of having a virtual scan-
ner rotating in the x-y plane is that reconstructions of data
thereof yield the images on the correct x-y grid and interpo-
lations in these two dimensions can be avoided when com-
puting the final volume in Cartesian coordinates. (In contrast
to Ref. 2, we avoid having two different rotating coordinate
systems, for convenience.)
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Our virtual parallel scanner shall be centered about the
intersection of the table increment line dR and the recon-
struction plane, i.e., about the origin,

o=d—. (6)

Moreover, this virtual parallel scanner must allow us to re-
construct the images in world coordinates, i.e., correspond-
ing to a rectangular grid parallel to the x-y plane, centered
about 0. The problem is to optimally synthesize a ray (9, §)
of angle & and distance £ (from o) in the x-y plane using the
available cone-beam data. The images resulting from a 2-D
reconstruction of these parallel data represent the attenuation
values along the reconstruction plane but shall already have
the correct x and y coordinates such that image domain in-
terpolations to gain images parallel to x and y remain to be
done in the d direction only (note that images shall be cen-
tered about the & and not the z axis). A graphical version of
the requirements is depicted in Fig. 3(a) showing the hori-
zontal plane of the virtual parallel scanner, some discrete
samples thereon, and the tilted R planes with the correspond-
ing samples.

To solve the task we start from the ray (9,£) in the x-y
plane and calculate its projection along the table increment
vector d onto the reconstruction plane [see Figs. 3(a) and
3(b)]. This can be formulated as the intersection of the R
plane n-r—a=0 with the plane

(9Xd)-(r—££-0)=0, (™)

which is spanned by the virtual parallel ray (i) and the table
increment vector. Thereby, we have introduced the unit vec-
tor £ pointing from o to the ray (9,£) and the ray’s direction
vector

cos
E=H9)=| sin® |,
0
—sin 9 ®)
p=n(3)=| cosV |, with EXy=z
0

The situation is illustrated in Fig. 3(b), where the lines (i),
(ii), and (iii) correspond to the parallel rays in the x-y plane,
to their projection onto the reconstruction plane, and to the
measured ray, respectively.

For convenience, we will further use the abbreviation

g' = nx d,

which can be precomputed and stored for all 9’s of interest.
Using & +£=d, and £-0=0 allows us to reformulate the
plane (7) as

& r=4d;.

The line of intersection (ii) of both planes is perpendicular
to their normal vectors n and & and thus has the direction
nX¢'. Since the transformation from parallel raw data in the
R plane to the data finally used for reconstruction in the
horizontal plane must be exact, we have to apply a length
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Fic. 3. (a) The 2D plot illustrating the interpolations along d for four arbitrarily selected R planes. The points to be reconstructed and the parallel rays to be
synthesized correspond to the solid circles. The hollow circles depict the geometry of the virtual parallel scanner that is living in the x-y plane to remain
constant from R plane to R planc. (b) A given ray in parallel coordinates (i} is projected along d onto the R plane, resulting in the virtual ray (i) assumed to
be available for reconstruction. The corresponding measured ray (jii) will be found by intersecting the source trajectory with a planc containing (ii) and the
normal vector n of the reconstruction plane R. The detector coordinates of (iii) arc given by minimizing the mean distance of the ray from the R planc.
Although the origin of the x-y plane coincides with the origin of the R plane we have moved them apart for illustration purposes and, consequently, 0 appcars

twice.

correction to the transformed values. At first go, one would
assume the cosine of the angle between the vector nX£' and
the vector 7 to be the correct factor. However, this would be
true only if the tilted ray was projected orthogonally into the
horizontal plane. Here, we rather deal with a projection along
d. This requires a more complicated length correction that is
illustrated in Fig. 4.
From there it becomes clear that the length correction
ratio /'/! can be calculated by regarding the vector sum
X¢

n
U'np+d=l—%7.
4 [nXE]

Multiplying by &' Xd yields
I (nXE)EXd)
I [nX&|ap(&Xd)

o n-d d(cos y cos 7+ cos( k— @)sin ysin 7)
InX¢'| InX¢'|

(9)

T,y

il '

R

FiG. 4. The length correction /1 from tilted geometry to horizontal geom-
ctry must take the direction d into account.
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This value must be multiplied to the rebinned parallel data
prior to 2-D reconstruction.

A. Focus position

The measured ray to be used, i.e., line (iii) of Fig. 3(b),
must lie on a plane through s(«), which is parallel to n and
intersects R in the virtual ray (ii). This plane is given as
nX(& Xn):[r—s(a)]=0, to which we will further refer as

m[r—s(@)]=0 with m=nX(& Xn)=¢ —(n-&)n.
(10)

Thus, we seek for the angle « that solves the linear system,
& r=¢d cos T,
nr=a,
m-r=m-s( ).

As one can easily see from the definition of m, the determi-
nant of the system is 0. Subtracting the first equation from
the last and adding n-£’ times the second equation to the last
equation zeros the latter, leaving the transcendental equation,

m-s( @) — &d cos 7+ (n-&' )a=0,

which determines the focus position a. To solve it we must
bring it into the more practical form



1038 KachelrieR et al.: Tilted spiral cone-beam CT

[44

dR [ sin(@— &)cos® ycos 7+ A(a)]+ m°d,)7_

= £d cos 7—(n-¢')a,
with
A(a)=sin(a@— @)cos(k— F)sin ycos ysin 7
—cos(a— ¢@)sin(9— ¢)sin’® y cos 7.
This can be solved using Banach’s theorem when being re-

written, using 8= 97— a, as

-8
dRA(9— B)+ m-qu;—— &d cos 7+ (&' )a

.=
=sin
P dR - cos® ycos T

s

using two to three fixed point iterations in 8 only. From «
= 19— B the focus position « is determined.

This step is the decisive step in tilted spiral reconstruc-
tion. If the focus position was derived by neglecting the gan-
try tilt, severe artifacts would occur.

B. Detector coordinates

The remaining task to solve is to compute the optimal
detector coordinates (u,v) for a given source position s(a)
and a given reconstruction plane R:n-r—a=0. This will be
achieved if the mean distance of the respective ray [emerging
from s(@) and ending at the detector at r(u,v)] from the
reconstruction plane is zero. However, we must correct for
the fact that the detector’s distance R, to the center of rota-
tion generally differs from the focus distance R . Thus we
simply regard s(@)+(2Rp/Rpp)r(e,u,v) as the ending
point of the ray and demand for the distances of the starting
and scaled ending point to have opposite sign:

[n-s(e)—a]+

n-| s(a)+ -—r(a,u,v) | —al|=0,
RFD

or, cquivalently,

ner(a,u,v)= @[a—n's(a)}_

X, (11a)

Since the ending point r(u,v) of the ray must lie on the
plane m-[r—s(a)]=0 [see Eq. (10)], we further obtain
m-r( a,u,v)=0. (11b)

Duc to m= &' —(n-£ )n, adding n-£' times Eq. (11a) to Eq.
(11b) gives

Ry
£ r(eu,0)=—2[a—n-s(a)](n-g).

X, (11c)

Taking (11a) and (11c) and simplifying yields

u cos( @— ¢@)sin y+uv cos y

= RL!D [e—n-s(a@)]+ Rppsin(a— @)sin y,
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u cos(a— ¥)cos 7—v cos(k— F)sin T

%[a— n-s(a)](n-&)d "'+ Rpp sin(a— F)cos 7.
F

These equations are linear in ¥ and v and can be solved by
straightforward inversion.

C. Length correction

Since the virtual rays that are going to be used for recon-
struction and their corresponding measured rays differ by a
small angle €, we must apply a length correction to yield the
correct virtual projection values from the measured attenua-
tion. Fortunately, we already know the sine of the angle of
the ray r(a,u,v) used for reconstruction and the virtual ray
assumed to be available for reconstruction: it is given by Eq.
(11a). Thus, the correction factor to be applied simply is

n-r(a,u,v) :
COS €= 1— T
VR7p+u?+v?

R.sz[lﬂ—n-s(af]l]2

[t D 2
Ri(Rip+u*+v?) (12

D. Reconstruction position and d interpolation in the
image domain

Since the principles of selecting the reconstruction posi-
tions ap and the principles of the image domain interpolation
remain the same as in the case for nontilted gantries the
reader is referred to Ref. 2 for details. Since the relative
location of the R planes only changes slightly for each ag
there is no reason to analyze a more complicated selection of
the reconstruction increment or to develop other interpola-
tion methods. A qualitative description of the procedure is
given in the following.

The reconstruction positions ay are selected equidistanta-
lly spaced with a spacing of Aay. The value of Aay is
chosen small enough to ensure that the maximum distance of
two adjacent R planes within the FOM plus the mean devia-
tion (R /Rp)A pean Of the focal trajectory and the R plane
(projected onto the edge of the FOM is smaller than the
collimated slice thickness S. This assures S to be the lower
limit of achievable z resolution.”

The d interpolation is done with a filter approach, for
example, using a triangular filter in the d direction. The
width of the filter can be chosen to meet certain requirements
on the resolution; here, however, we use S as the filter’s
width only. Since the synthesized data and the reconstructed
images have already the correct in-plane coordinates for d
filtering, only pixels of the same index of adjacent R planes
are addressed for d interpolation. The number of interpola-
tions is thus reduced to a minimum.

V. SUMMARY OF THE RECONSTRUCTION
PROCEDURE

To reconstruct a complete volume, we must perform the
following steps for each reconstruction position ag .
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FiG. 5. A comparison of ASSR and ASSR™" at a gantry tilt angle of 30°. Here, it becomes obvious that neglecting the gantry tilt yields unacceptable images.
&

(0/200).

(i) Calculate the optimal R planc.
(ii) For ecach deap+[—m,7)
[— 3Ry ,3R /] rebin as follows:

and each ¢£e

» Calculate the length correction /'/ between rays in
R and those in the x-y plane.
« Compute the focus position « as a function of 9
and £
Compute the detector coordinates (#,v) as a func-
tion of U, £ and a.
From «, u, and v calculate the length correction
cos € to account for the angle between the physical
ray and its correspondent ray in the reconstruction
plane.
If other misalignments than the gantry tilt, e.g., a
perspective transformation, must be corrected for,
compute the corresponding new coordinates «” and
v', otherwise use u' =u and v' =v. This may also
include the transformation to cylindrical detector
coordinates.
Assign p(9,£)=(I"/I)cos ep(a,u’,v") to build up
the parallel sinogram. Since the measured data are
discrete, this requires an interpolation in the coor-
dinates «, u, and v. Although more sophisticated
methods may be adequate, we usc a simple trilinear
interpolation.

(iii) Reconstruct the 2-D data p(9,£) to yield the object

cross scction along the current R plane.

The remaining step is to do the 4 interpolation of a stack
of reconstructed, tilted images. Since we have taken care that
the parallel gecometry remains constant in the x-y plane for all
@y by consequently using geometric projections along d
only, this procedure will not require us to interpolate be-
tween neighboring pixels of one image. The ¢ interpolation
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rather takes place between adjacent tilted images and only
accesses pixels of the same index.

VI. RESULTS

Although evident, we first want to explicitly emphasize
the necessity of the generalization ASSR* in comparison to
ASSR when using data obtained with a tilted gantry. There-
fore, Fig. 5 shows reconstructions of the thorax phantom
with 7=30° performed (a) with ASSR disregarding the fact
that the gantry was tilted and (b) with ASSR™, which pro-
perly takes 7 into account. Clearly, only ASSR™ achieves
optimal image quality for all situations and, clearly, the rc-
constructions neglecting the gantry tilt are not of diagnostic
value.

The performance of the generalized version ASSR* is
slightly reduced as compared to the former ASSR algorithm.
The reason is that the weights needed for rebinning cannot
be stored into lookup tables that typically rely on the spiral
rotational/translational symmetry. This symmetry allows us
to compute tables for onc @y only and usc the tables for
other reconstruction positions since any angular increment is
equivalent to a translation in z. If 7#0 this equivalence does
not hold anymore, the symmetry of the spiral is broken and
the table generation would have to be performed for cach ap
(modulo 360°), which would require too much memory.
However, we only observed a decrease of 10% in reconstruc-
tion speed, which we regard as acceptable.

To evaiuate the ASSR* performance we have performed
the same experiments as for ASSR.? As expected, the results
achieved with the new algorithm do not differ from the stan-
dard ASSR approach. The image noise values, the MTF
(modulation transfer function) and the SSPs (slice sensitivity
profiles) remain the same, even when tilting the gantry as
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TasLe I The number of detector slices M used for reconstruction as a
function of the table increment valuc and the gantry tilt angle. The slice
thickness used is =1 mm; the fan angle of 52° covers a 500 mm FOM.

d 7=0° =107 7=130°
16 mm 12 12 10
96 mm 69 68 61

much as 7=30°. This is no surprise, sincc the number of
interpolations has not increased as compared to ASSR. The
main difference is that the rays are selected slightly more
sophisticated to account for the broken symmetry due to the
nonperpendicular table motion.

Of course, care has to be taken about how the table incre-
ment values have been defined. A given absolute table incre-
ment value o yields a z component of  cos 7, and thus the
degree of overlap varies with the gantry tilt. For example, a
scan with d=96mm will result in a = component of dy
~83 mim when scanning with 7=230°.
quired detector slices will go down with increasing gantry tilt
as well. In this example the scanner tilted by 30° utilizes
A =61 detector slices {assuming S=1 mm) whereas the
simulated scan with 7=0° and d=96mm needs M=069
slices. The pitch value is p=d;/MS=1.4 for both cases.
These correspond to a full body FOM of 500 mim diameter
and a fan angle of ®=52°. The complete values for all
simulations performed are given in Tabie 1.

Reconstructed images allow us to compare the images
qualitatively and to cvaluate the artifact content. We
have simulated data corresponding to spirai scans with
d=16mm and 96 mm with gantry tilts of 7=0°, 10°, and
30°. The polar angle & was chosen as 90° to correspond to a
tiit about the x axis. The resuits, however, appiy to arbitrary
polar angles since « only introduces a relative angular shift
of the scan. Figure 6 shows the qualitative behavior of ASSR
and ASSR™. Due to the different orientation of the primary,
rcconstructed scetions, it has become necessary to depict ob-
lique muitipianar reformations (tiited by —7), which then
show the same slicc as for the case 7=0. As cxpcected, there
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are no significant differences between the extended approach
and standard ASSR. This indicates that ASSR” is quantita-
tively and qualitatively equivalent to ASSR and, in addition,
also allows us to reconstruct data for 7# 0. The amount of
ganiry iili used does noi influcnce ihe image quality.

A precise inspection of these six images, however, reveals
slight differences. Especially the artifact behavior around the
four ribs in the ¢ =96 mm data seems to vary. And the two
ribs—they appear as small triangles at the bottom of the
images—emerging directly below the vertebra scem to be
depicted inconsistently. The expianation is that those arti-
facts depend on the absolute tube angle and thus on the gan-
try angle at scan start (a fact that has already been observed
and demonstrated for ASSR?). Additionaily, the images for
7#0 represent MPRs and not the primary reconstructed
slice. Although care has been taken when computing these
MPRs, the depicted siices are of slightly different effective
thickness and, consequently, objects partially reaching into
the slice (such as the two ribs) will be depicted inconsis-
tentiy. And third, artifacts, such as streaks, tend to stay
within the primary reconstructed slice. These slices corre-
spond to the R planes and, consequently, are followed by d
interpoiation that suppresses the artifacts due to the combi-
nation of different primary slices. This combination by d
interpolation differs for the axial slices and the MPRs, which
explains the siight different artifact behavior of the images.
Apart from these well-understood effects there are no differ-
ences between ASSR images for =0 and 7#0.

Vii. DISCUSSION

We have extended the applicability of the advanced
single-slice rebinning approach to the case of tilted gantries.
The generaiized aigorithm ASSR™ combines the advantages
of the standard ASSR approach with the ability to use data
from scans with nonparallel object motion. As an extension
of ASSR, ASSR" is a promising candidate for future medi-
cal CT image rcconstruction. It achicves high image quality
with optimal computational performance. ASSR" can be
used for all spiral trajectories, including gantry tilt.

ASSR*, 7 = 10°, MPR

Fic. 6. A comparison of a section of the thorax phantom for various gantry tilts. Due to the different primary sections, the computation of an MPR for the
tilicd reconstruction is nccessary to show the same planc for all cascs. Primary sections for the tilted raw data arc shown in Fig. 5. ((/200).
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As a side effect, ASSR* seems well suited for micro CT
applications as well. Since the algorithm is formulated as a
rebinning algorithm, it allows for arbitrary misalignment cor-
rections, such as perspective transformations or simple shifts
and rotations of the detector without loss of resolution. The
most complicated misalignment to correct for, i.e., the case
of a noncoinciding rotational and translational axis, is explic-
itly taken into account and thus solved by ASSR™ without
introducing additional approximations. Thus, all misalign-
ments can be accounted for without additional interpolation
and resampling steps.

Because ASSR* in its present form does not allow for
arbitrary pitch values, there have been investigations to gen-
eralize the standard ASSR algorithm to this case using spiral
interpolation techniques.® Alternatively, it may appear more
promising to loosen the restriction on the R planes and allow
greater deviations from the spiral trajectory: accepting less
restrictive approximations would additionally allow us to
make better use of the available detector area in cases of low
pitch. Modifications of ASSR toward the case of arbitrary
pitch have been recently published.® Extending ASSR* to
the case of arbitrary pitch values is under current investiga-
tion and will allow us to cover all spiral scan modes in use
today.

In conclusion, ASSR is able to perform high quality re-
constructions for today’s multislice scanners as well as for
future cone-beam scanners. All quantitative measures such as
image noise, resolution, etc. remain the same as for the gold
standard single-slice spiral CT. We have shown reconstruc-
tions using simulated data corresponding to up to 69 simul-
taneously measured slices without significant artifacts and
without a significant increase in reconstruction time. The
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next generation of medical CT scanners is likely to have up
to 16 simultaneous measured slices or more. We assume that
the future of medical CT image reconstruction is likely to be
of ASSR type.
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