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Abstract. Proposed is a theoretically exact formula for inversion of data
obtained by a spiral CT scan with a 2-D detector array. The detector array
is supposed to be of limited extent in the axial direction. The main property
of the formula is that it can be implemented in a truly filtered backprojection
fashion. First, one performs shift-invariant filtering of a derivative of the cone
beam projections, and, second, the result is back-projected in order to form
an image. Compared with an earlier reconstruction algorithm proposed by
the author, the new one is two times faster, requires a smaller detector array,
and does not impose restrictions on how big the patient is inside the gantry.
Results of numerical experiments are presented.

1. Introduction

Spiral computed tomography (CT) involves continuous data acquisition through-
out the volume of interest by simultaneously moving the patient through the gantry
while the x-ray source rotates. Spiral CT has numerous advantages over conven-
tional CT and is now a standard medical imaging modality. In the past decade it be-
came clear that spiral CT can be significantly improved if one uses two-dimensional
detector arrays instead of one-dimensional ones. This lead to the development of
scanners with multiple detector rows. At the present time, scanners with four and
eight detector rows are commercially available. It appears that as the technology ad-
vances further, scanners with even higher number of detector rows will emerge. On
the other hand, accurate and efficient image reconstruction from the data provided
by such scanners is very challenging because until very recently there did not exist
a theoretically exact and efficient reconstruction formula. Several approaches for
image reconstruction have been proposed. They can be classified into two groups:
theoretically exact and approximate. See [TD00] for a recent review of available
algorithms. Most of exact algorithms are based on computing the Radon transform
for a given plane by partitioning the plane in a manner determined by the spiral path
of the x-ray source [Tam95, Tam97, KS97, SNS+00]. Even though exact algorithms
are more accurate, they are computationally quite intensive and require keeping
considerable amount of cone beam projections in memory. Approximate algorithms
are much more efficient (see e.g. [KND98, NKD98, DNK00, B+00, KSK00, Kat02]
for several most recent techniques), but produce artifacts, which can be significant
under unfavorable circumstances.

In [Kat01b, Kat01a] the first theoretically exact inversion formula of the filtered
backprojection (FBP) type was proposed. The formula can be numerically imple-
mented in two steps. First, one performs shift-invariant filtering of a derivative of
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the cone beam projections, and, second, the result is back-projected in order to
form an image. The price to pay for this efficient structure is that the algorithm
requires an array wider than the theoretically minimum one. Also, the algorithm
is applicable if radius of support of the patient inside the gantry is not too big (not
greater than ≈ 0.62× radius of gantry).

In this paper we propose an improved algorithm which is still theoretically exact
and of the filtered back-projection type, but has fewer drawbacks. First, in the
new algorithm there is no restriction on the size of the patient as long as he/she
fits inside the gantry. Second, the new algorithm requires a smaller detector array
than the old one. For example, if r and R denote radius of the patient and radius
of the gantry, respectively, then in the case r/R = 0.5 the area of the detector
array required for the old algorithm is 1.93Amin, and for the new one – 1.21Amin.
Here Amin denotes the theoretically minimal area. Third, the new algorithm is two
times faster than the old one.

In Section 2 we derive the inversion formula. In Section 3 its proof is given, and
in Section 4 we show that the resulting algorithm is of the FBP type and present
results of three numerical experiments.

2. Inversion formulas

First we introduce the necessary notations. Let

C := {y ∈ R
3 : y1 = R cos(s), y2 = R sin(s), y3 = s(h/2π), s ∈ I}, I := [a, b],

(2.1)

where h > 0, b > a, be a spiral, and U be an open set strictly inside the spiral:

U ⊂ {x ∈ R
3 : x21 + x22 < r2, a(h/2π) < x3 < b(h/2π)}, 0 < r < R,(2.2)

S2 is the unit sphere in R
3 , and

Df (y,Θ) :=
∫ ∞

0
f(y + Θt)dt, Θ ∈ S2;(2.3)

β(s, x) :=
x − y(s)
|x − y(s)| , x ∈ U, s ∈ I ; Π(x, ξ) := {y ∈ R

3 : (y − x) · ξ = 0},(2.4)

that is Df (y, β) is the cone beam transform of f . Given (x, ξ) ∈ U × (R3 \ 0), let
sj = sj(ξ, ξ ·x), j = 1, 2, . . . , denote finitely many points of intersection of the plane
Π(x, ξ) with C. Also, ẏ(s) := dy/ds.

As was shown in [D+97, DNK00], any point strictly inside the spiral belongs
to one and only one PI segment. Recall that a PI segment is a segment of line
endpoints of which are located on the spiral and separated by less than one pitch
in the axial direction (see Figure 1). Let s = sb(x) and s = st(x) denote values of
the parameter corresponding to the endpoints of the PI segment containing x. We
will call IPI(x) := [sb(x), st(x)] the PI parametric interval. The part of the spiral
corresponding to IPI(x) will be denoted CPI(x).

Choose any ψ ∈ C∞([0, 2π]) with the properties

ψ(0) = 0; 0 < ψ′(t) < 1, t ∈ [0, 2π].(2.5)

Suppose s0, s1, and s2 are related by

s1 =

{
ψ(s2 − s0) + s0, s0 ≤ s2 < s0 + 2π,
ψ(s0 − s2) + s2, s0 − 2π < s2 < s0.

(2.6)
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Figure 1. Illustration of a PI line

Since ψ(0) = 0, s1 = s1(s0, s2) is a continuous function of s0 and s2. (2.5) and (2.6)
imply s1 �= s2 unless s0 = s1 = s2. In order to avoid unnecessary complications,
we will assume in what follows

ψ′(0) = 0.5; ψ(2k+1)(0) = 0, k ≥ 1.(2.7)

If (2.7) holds, then s1 = s1(s0, s2) is a C∞ function of s0 and s2. Conditions (2.5)
and (2.7) are very easy to satisfy. One can take, for example, ψ(t) = t/2, and this
leads to

s1 = (s0 + s2)/2, s0 − 2π < s2 < s0 + 2π.(2.8)

Denote also

u(s0, s2) =
(y(s1) − y(s0)) × (y(s2) − y(s0))
|(y(s1) − y(s0)) × (y(s2) − y(s0))|

sgn(s2 − s0), 0 < |s2 − s0| < 2π,

u(s0, s2) =
ẏ(s0) × ÿ(s0)
|ẏ(s0) × ÿ(s0)|

, s2 = s0.

(2.9)

Using (2.5), (2.6), and the property that s1 − s0 and s2 − s0 are always of the same
sign, we find

u(s0, s2) =
ẏ(s0) × ÿ(s0) + O(s2 − s0)
|ẏ(s0) × ÿ(s0) + O(s2 − s0)|

, s2 → s0.(2.10)

Hence, u(s0, s2) is a C∞ vector function of its arguments. Also u(s0, s2) · e3 > 0.
Indeed, assume without loss of generality that s0 = 0 and consider the case 0 <
s1 < s2 < 2π. Using (2.1),

u(s0, s2) · e3 =
R2

c
[(cos(s1) − 1) sin(s2) − sin(s1)(cos(s2) − 1)]

=
4R2

c
sin(s1/2) sin(s2/2) sin((s2 − s1)/2) > 0,

(2.11)

where c > 0 is the denominator in (2.9). The cases −2π < s2 < s1 < 0 and
s1 = s2 = 0 can be considered similarly.
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Fix x ∈ U and s0 ∈ IPI(x). Find s2 ∈ IPI(x) such that the plane through
y(s0), y(s2), and y(s1(s0, s2)) contains x. More precisely, we have to solve for s2
the following equation

(x − y(s0)) · u(s0, s2) = 0, s2 ∈ IPI(x).(2.12)

It is shown below (see (3.10) and the argument around it) that such s2 exists, is
unique, and depends smoothly on s0. Therefore, this construction defines s2 :=
s2(s0, x) and, consequently, u(s0, x) := u(s0, s2(s0, x)). Our main result is the
following theorem.

Theorem 1. For f ∈ C∞
0 (U) one has

f(x) = − 1
2π2

∫
IP I(x)

1
|x − y(s)|

∫ 2π

0

∂

∂q
Df (y(q),Θ(s, x, γ))

∣∣∣∣
q=s

dγ

sin γ
ds,(2.13)

where e(s, x) := β(s, x) × u(s, x) and Θ(s, x, γ) := cos γβ(s, x) + sin γe(s, x).

Comparing (2.13) with the results of [Kat01b, Kat01a] we see that the recon-
struction formula of [Kat01b, Kat01a] consists of two integrals, each of which is
analogous to (2.13). Therefore, the algorithm proposed in this paper is two times
faster than the older one.

Integrating by parts with respect to s in (2.13) we obtain an inversion formula
in which all the derivatives are performed with respect to the angular variables.

f(x) = − 1
2π2

{[
1

|x − y(s)|

∫ 2π

0
Df (y(s),Θ(s, x, γ))

dγ

sin γ

]∣∣∣∣
s=st(x)

s=sb(x)

−
∫
IP I(x)

(
∂

∂s

1
|x − y(s)|

)∫ 2π

0
Df (y(s),Θ(s, x, γ))

dγ

sin γ
ds

−
∫
IP I(x)

β′
s(s, x) · u(s, x)

|x − y(s)|

∫ 2π

0
(∇u(s,x)Df)(y(s),Θ(s, x, γ)) cot(γ)dγds

−
∫
IP I(x)

e′
s(s, x) · u(s, x)

|x − y(s)|

∫ 2π

0
(∇u(s,x)Df )(y(s),Θ(s, x, γ))dγds

−
∫
IP I(x)

β′
s(s, x) · e(s, x)

|x − y(s)|

∫ 2π

0

(
∂

∂γ
Df (y(s),Θ(s, x, γ))

)
dγ

sin γ
ds

}
.

(2.14)

Here β′
s = ∂β/∂s, e′

s = ∂e/∂s, and ∇uDf denotes the derivative of Df with respect
to the angular variables along the direction u:

(∇uDf )(y(s),Θ) =
∂

∂t
Df (y(s),

√
1 − t2 Θ + tu)

∣∣∣
t=0

, Θ ∈ u⊥.(2.15)
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3. Proof of Theorem 1

Let x ∈ U be fixed. Consider the integral with respect to γ in (2.13):

∫ 2π

0

∂

∂q

∫ ∞

0
f(y(q) + t(cos γβ(s, x) + sin γe(s, x)))

∣∣∣∣
q=s

1
t sin γ

tdtdγ

=
∫

R2

∂

∂q
f(y(q) + u)

∣∣∣∣
q=s

1
u · e(s, x)

du

=
1

(2π)3

∫
R3

f̃(ξ)
∫

R2

∂

∂q
e−iξ·(y(q)+u)

∣∣∣∣
q=s

1
u · e(s, x)

dudξ

=
1

(2π)3

∫
R3

f̃(ξ)(−iξ · ẏ(s))e−iξ·y(s)
[∫

R

e−iξ1u1du1

∫
R

e−iξ2u2
du2
u2

]
dξ

=
1

(2π)3

∫
R3

f̃(ξ)(−iξ · ẏ(s))e−iξ·y(s)2πδ(ξ1)(−iπsgnξ2)dξ

=
−|x − y(s)|

4π

∫
R3

f̃(ξ)(ξ · ẏ(s))e−iξ·y(s)δ(ξ · (x − y(s)))sgn(ξ · e(s, x))dξ.

(3.1)

Here we have assumed without loss of generality that the ξ1-axis is parallel to
β(s, x), and the ξ2-axis is parallel to e(s, x). In regularizing the divergent integrals
in (3.1) it is essential that supp f is strictly inside the spiral and separated from
the ray u1 ≤ 0, u2 = 0. Pick any δ1 ∈ C∞

0 (R), δ1 (t) ≥ 0,
∫
δ1(t)dt = 1, and define

δε(t) = ε−1δ1(t/ε). Replacing δ and sgn by δε and sgnε = sgn ∗ δε, respectively, in
(3.1) we get

A(s, x) = lim
ε→0+

∫
R3

f̃(ξ)(ξ · ẏ(s))δε(ξ · (x − y(s)))sgnε(ξ · e(s, x))e−iξ·y(s)dξ,(3.2)

where A(s, x) is the last integral in (3.1). Substituting into (2.13) we get

(Bf)(x) =
1

(2π)3

∫
IP I(x)

lim
ε→0+

Aε(s, x)ds,(3.3)

where Aε(s, x) is the integral on the right in (3.2). Since it is not known at this
point that the right-hand side of (2.13) equals f(x), we denoted it (Bf)(x).

Since f̃ ∈ S(R3 ) and x − y(s) ⊥ e(s, x), it is easy to see that Aε(s, x) is uni-
formly bounded with respect to s ∈ IPI(x) as ε → 0+. Hence, using the Lebesgue
dominated convergence theorem and changing the order of integration

(Bf)(x) =
1

(2π)3
lim
ε→0+

∫
R3

f̃(ξ)Gε(x, ξ)dξ,

Gε(x, ξ) :=
∫
IP I(x)

(ξ · ẏ(s))δε(ξ · (x − y(s)))sgnε(ξ · e(s, x))e−iξ·y(s)ds.
(3.4)

Clearly, Gε(x, ξ = 0) = 0. We will show that |Gε(x, ξ)| < c, ξ �= 0, for some c > 0
and all ε > 0. Indeed, let s = qk ∈ IPI(x), q1 < q2 < . . . , be the roots of the
equation ξ · ẏ(s) = 0. Obviously the number of such roots is uniformly bounded
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with respect to ξ ∈ R
3 \ 0. Say, there are no more than K roots. Then,

|Gε(x, ξ)| ≤
∫
IP I(x)

δε(ξ · (x − y(s)))|ξ · ẏ(s)|ds

≤
(∫ q1

sb

+
K−1∑
k=1

∫ qk+1

qk

+
∫ st

qK

)
δε(ξ · (x − y(s)))(ξ · ẏ(s))ds sgn(ξ · ẏ(q∗k)),

(3.5)

where q∗
k is the midpoint of the corresponding interval of integration. Each term in

the summation in (3.5) is bounded because∫ qk+1

qk

δε(ξ · (x − y(s)))(ξ · ẏ(s))ds sgn(ξ · ẏ(q∗k))

≤
∫ t=ξ·y(qk+1)

t=ξ·y(qk)
δε(ξ · x − t)dt sgn(ξ · ẏ(q∗

k)) ≤
∫

δε(ξ · x − t)dt = 1,
(3.6)

and (3.5), (3.6) imply |Gε(x, ξ)| < K + 1.
It is clear that any plane through x intersects CPI(x) at least at one point.

Introduce the following sets:

Crit(x) ={ξ ∈ R
3 \ 0 : Π(x, ξ) contains y(sb(x)), y(st(x)) or

Π(x, ξ) is tangent to CPI(x)} ∪ {0},
Ξ1(x) ={ξ ∈ R

3 : ξ �∈ Crit(x) and Π(x, ξ) ∩ CPI(x) contains one point},
Ξ3(x) =R

3 \ {Ξ1(x) ∪ Crit(x)},
Ξψ(x) ={ξ ∈ R

3 : ξ = λu(s, x), s ∈ IPI(x), λ ∈ R}.

(3.7)

Recall that u(s, x) was defined above Theorem 1. By construction, the sets Crit(x),
Ξ1,3(x) are pairwise disjoint, their union is all of R

3 , Crit(x) and Ξψ(x) have
Lebesgue measure zero, and Ξ1,3(x) are open.

Take any ξ �∈ Crit(x) ∪ Ξψ(x). An easy calculation based on the change of
variables t = ξ · y(s) as in (3.6) shows

lim
ε→0+

Gε(x, ξ) = e−iξ·xB(x, ξ),

B(x, ξ) =
∑

sj∈IP I(x)

sgn(ξ · ẏ(sj)) sgn(ξ · e(sj , x)).(3.8)

Recall that sj = sj(ξ, ξ · x), j = 1, 2, . . . , denote parameter values corresponding to
points of intersection of the plane Π(x, ξ) with the spiral and are found by solving
ξ · (x−y(s)) = 0. Here we have used that ξ · (x−y(sj)) = 0 implies ξ · ẏ(sj) �= 0 and
ξ · e(sj , x) �= 0. Indeed, if ξ · ẏ(sj) = 0, then Π(x, ξ) is tangent to CPI(x) at y(sj)
and ξ ∈ Crit(x). If ξ · e(sj , x) = 0, then together with ξ · β(sj , x) = 0 this implies
ξ ∈ Ξψ(x). In both cases we get a contradiction. This argument implies also that
B(x, ξ) is locally constant in a neighborhood of any ξ �∈ Crit(x) ∪ Ξψ(x).

We now study the function B(x, ξ). Recall that x ∈ U is fixed. By construction,
Gε(x, ξ) ∈ C∞(R3 ). Since eiξ·xGε(x, ξ) → B(x, ξ), ε → 0, on R

3 \{Crit(x)∪Ξψ(x)}
and the sets Crit(x),Ξψ(x) have Lebesgue measure zero, B(x, ξ) is measurable (cf.
[Lan93], p. 125). Moreover, B(x, ξ) ∈ L∞(R3 ) because the functions Gε(x, ξ) are
uniformly bounded on R

3 as ε → 0. Thus, in order to finish the proof we have to
show that B(x, ξ) = 1 for almost all ξ ∈ R

3 .
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Figure 2. Stereographic projection from the source onto the de-
tector plane DP (s0)

Figure 3. Illustration of the detector plane DP (s0)

Suppose first that the x-ray source is fixed at y(s0) for some s0 ∈ IPI(x). Project
stereographically the upper and lower turns of the spiral onto the detector plane as
shown in Figure 2. Since the detector array rotates together with the source, the
detector plane depends on s0 and is denoted DP (s0). It is assumed that DP (s0)
is parallel to the axis of the spiral and is tangent to the cylinder y21 + y22 = R2 (cf.
(2.1)) at the point opposite to the source. Thus, the distance between y(s0) and
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the detector plane is 2R. In order to make Figure 2 more readable, the detector
plane is drawn slightly away from the spiral. Introduce coordinates in the detector
plane as follows. Let the d1-axis be perpendicular to the axis of the spiral, and the
d2-axis be parallel to it. This gives the following parametric curves:

d1(s) = 2R
sin(s − s0)

1 − cos(s − s0)
, d2(s) =

h

π

s − s0
1 − cos(s − s0)

,

∆ ≤ s − s0 ≤ 2π − ∆ or ∆ − 2π ≤ s − s0 ≤ −∆,

(3.9)

where ∆ is determined by the radius of support of the patient: ∆ = 2 cos−1(r/R)
(cf. (2.2)). The top and bottom curves are denoted Γtop and Γbot, respectively
(see Figure 3). Let x̂ denote the projection of x. Since s0 ∈ IPI(x), x̂ is projected
into the area between Γtop and Γbot. Equations (3.9) imply that the curves Γbot
and Γtop are strictly convex. Also, Γtop approaches L0 from above as s → s+0
(in this case d1(s) → +∞), Γbot approaches L0 from below as s → s−

0 (d1(s) →
−∞). L0 denotes the intersection of the plane containing y(s0) and parallel to
ẏ(s0), ÿ(s0), with the detector plane. LPI denotes the intersection of the plane
containing x, y(s0), y(sb(x)), and y(st(x)) with the detector plane. Note that if
Γbot and Γtop are intersected by a vertical line (i.e., parallel to the d2-axis), then
the difference between values of the parameter s at the two points of intersection is
exactly 2π. By assumption, st(x) − sb(x) < 2π. Therefore, LPI has positive slope
in Figure 3.

Figure 4. The family of lines L(s2) is shown. L(s0, x) denotes
the line in that family which passes through x̂

Consider a one-parametric family of planes Π(s2) passing through y(s0), y(s2),
and y(s1(s0, s2)). Intersections of these planes with the detector plane DP (s0)
produces a family of lines L(s2) (see Figure 4). By construction, either s0 < s1 < s2,
or s2 < s1 < s0, or s0 = s1 = s2. Therefore, if s0 < s1 < s2, L(s2) intersects Γtop at
two points. If s2 < s1 < s0, L(s2) intersects Γbot at two points. And, by continuity,
L(s2) = L0 if s0 = s1 = s2. Suppose, for example, that x̂ is located above L0.
Selecting s2 = st(x) , it is clear that L(s2 = st(x)) passes above x̂ (see line L1 in
Figure 4). On the other hand, taking s2 sufficiently close to s0, s2 > s0, L2(s2) will
pass below x̂ (see line L2 in Figure 4). Therefore, there exists at least one s2 > s0
such that x̂ ∈ L(s2). This line will be denoted L(s0, x). Suppose there are two
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values s2, s
′
2, 0 < s′

2 < s2 < st(x) such that x̂ ∈ L(s2) and x̂ ∈ L(s′
2). Since x̂ is

below Γtop, this implies

0 < s1 < s′
1 < s′

2 < s2, s1 := s1(s0, s2), s′
1 := s1(s0, s′

2).(3.10)

From (2.6), ∂s1/∂s2 = ψ′(s2 − s0) > 0, that is s2 > s′
2 implies s1 > s′

1, and this
contradicts (3.10). Hence, there exists a unique s2, s0 < s2 < st(x), such that
x ∈ Π(s2). The case when x̂ appears below L0 can be considered similarly. If
x̂ ∈ L0, then the unique solution is s2 = s0.

To prove that s2 = s2(s0, x) depends smoothly on s0 we first consider the case
when s0 is such that s2(s0, x) and s0 are close. According to the preceding discussion
this happens when s0 → š(x), where š(x) ∈ IPI(x) is the unique value such that
the plane through y(š(x)) and parallel to ẏ(š(x)), ÿ(š(x)) contains x. It is easily
seen that such š(x) exists and is unique. To simplify the notations, we can assume
without loss of generality that š(x) = 0. Thus,

x = y(0) + aẏ(0) + bÿ(0), b > 0.(3.11)

The condition b > 0 follows from x ∈ U . Taking into account terms of the first
order of smallness and using (2.7), we find analogously to (2.10):

u(s0, s2) =
[ẏ(s0) × ÿ(s0)] + [ẏ(s0) × ...

y (s0)] s2−s0
2 + O((s2 − s0)2)∣∣[ẏ(s0) × ÿ(s0)] + [ẏ(s0) ×

...
y (s0)] s2−s0

2 + O((s2 − s0)2)
∣∣ , s2 → s0.

(3.12)

Substituting (3.11) and (3.12) into (2.12), implicitly differentiating the resulting
equation with respect to s0, and then setting s0 = 0 gives

{b ÿ(0) · (ẏ(0) × ...
y (0))}

[
1 +

(∂s2/∂s0) − 1
2

]
= 0.(3.13)

Since the expression in braces is not zero, we find

∂s2(s0, x)
∂s0

∣∣∣∣
s0=š(x)

= −1.(3.14)

Suppose now s0 ∈ (sb(x), st(x)), s0 �= š(x). Instead of solving (2.12) for s2, we
can find the appropriate line L(s2) in Figure 4 which contains x̂. Let (x̂1(s0), x̂2(s0))
be the coordinates of x̂ on the detector plane DP (s0). Obviously, these coordinates
depend smoothly on s0. Consider, for example, the case when x̂ appears above L0.
Then s0 < s1 < s2. The equation for s2 is

x̂2(s0) − d2(s2 − s0)
x̂2(s0) − d2(s1 − s0)

=
x̂1(s0) − d1(s2 − s0)
x̂1(s0) − d1(s1 − s0)

.(3.15)

To simplify the notations, after all differentiations have been carried out the depen-
dence of x̂1,2 on s0 will be dropped and it will be assumed without loss of generality
that s0 = 0. Multiplying (3.15) out, taking into account s1 − s0 = ψ(s2 − s0), and
differentiating with respect to s0, we obtain an equation in which ∂s2/∂s0 is mul-
tiplied by:

κ :=d′
1(s2)(x̂2 − d2(s1)) + d′

2(s1)ψ
′(s2)(x̂1 − d1(s2))

−d′
2(s2)(x̂1 − d1(s1)) − d′

1(s1)ψ
′(s2)(x̂2 − d2(s2)).

(3.16)
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In view of the implicit function theorem we have to show κ �= 0. Dividing by
x̂1 − d1(s1) �= 0 and using (3.15), transforms (3.16) to

d′
1(s2)

[
x̂2 − d2(s2)
x̂1 − d1(s2)

− d′
2(s2)

d′
1(s2)

]
+ ψ′(s2)d′

1(s1)
x̂1 − d1(s2)
x̂1 − d1(s1)

[
d′
2(s1)

d′
1(s1)

− x̂2 − d2(s2)
x̂1 − d1(s2)

]
.

(3.17)

Interpreting the ratios in brackets in (3.17) as slopes, we see that the two expressions
in brackets are positive (cf. Figure 4). Using that d′

1(s1,2) < 0, ψ′ > 0, and
x̂1 > d1(s1,2) (again cf. Figure 4), we prove κ �= 0. κ remains bounded away from
zero even if s0 → sb(x). In this case x̂ → Γtop and, in the limit x̂ = (d1(s2), d2(s2)),
where s2 = st(x), (3.17) becomes

d′
1(s2)

[
d2(s2) − d2(s1)
d1(s2) − d1(s1)

− d′
2(s2)

d′
1(s2)

]
< 0,(3.18)

where we have used (3.15). The case when x̂ appears below L0 can be treated
similarly.

Figure 5. Detector plane with various lines through x̂ shown

Consider various lines through x̂ (see Figure 5). Ltan denotes the line through x̂
and tangent to either Γtop if x̂ is above L0, or - Γbot if x̂ is below L0. In both cases
the point of tangency should fall inside the PI-parametric interval and, therefore,
is unique. The corresponding parameter value will be denoted stan. If x̂ ∈ L0, by
continuity Ltan = L0. L′

0 is the line through x̂ and parallel to L0. Finally, L(x, ξ) is
the intersection of Π(x, ξ) � y(s0) with the detector plane. Clearly, there is one-to-
one correspondence between the planes Π(x, ξ), where ξ satisfies ξ · (x− y(s0)) = 0,
and the lines L(x, ξ). The lines LPI , Ltan, and L′

0 split the detector plane into three
conical regions: Dj , j = 1, 2, 3. If x̂ ∈ L0, then Ltan = L0 and D2 collapses into
an empty set. If L(x, ξ) ⊂ D1, Π(x, ξ) ∩ CPI(x) contains only one point - y(s0).
If L(x, ξ) ⊂ D2, there are three points of intersection of Π(x, ξ) with CPI(x). If
x̂ is above L0, they correspond to values of the parameter s = a, b, c that satisfy
a = s0 < b < c < st(x). Recall that in this region the slope of L(x, ξ) is smaller
than that of L0. If x̂ is below L0 the situation is essentially the same. The only
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difference is that L(x, ξ) ⊂ D2 implies that parameter values at the three points of
intersection of Π(x, ξ) with CPI(x) satisfy sb < a < b < c = s0. If L(x, ξ) ⊂ D3
(an example of such a line is shown in Figure 5), then again there are three points
of intersection of Π(x, ξ) with CPI(x), and sb(x) < a < b = s0 < c < st(x). This
argument shows that if ξ ∈ Ξ1 (i.e. when CPI(x) ∩ Π(x, ξ) consists of one point),
then L(x, ξ) ⊂ D1. If ξ ∈ Ξ3, then CPI(x) ∩ Π(x, ξ) consists of precisely three
points and L(x, ξ) ⊂ D2 or D3.

In order to compute the value of the sum in (3.8) we need a simplifying argument.
Let ξ̂ be a nonzero vector in the detector plane DP (s0) perpendicular to L(x, ξ)
and pointing into the same half-space as ξ, that is ξ · ξ̂ > 0. Fix any nonzero
vector e ∈ R

3 perpendicular to β(s0, x), and let L be the line in the intersection of
Π(x, β(s0, x) × e) with the detector plane. Analogously, ê denotes a vector in the
detector plane parallel to L and with the property e · ê > 0. We claim that

sgn(ξ · e) = sgn(ξ̂ · ê).(3.19)

Indeed, let d0 be the unit vector perpendicular to the detector plane and pointing
from the source position y(s0) towards the detector (e.g., d0 = ÿ(s0)/|ÿ(s0)|). This
implies β(s0, x) · d0 > 0. It is easy to check that

ξ̂ = d0 × (ξ × d0), ê = d0 × (e × β(s0, x)).(3.20)

Therefore,

ê · ξ̂ = (ξ × d0) · (e × β(s0, x)) = (β(s0, x) · d0)(e · ξ),(3.21)

and (3.19) follows. In (3.21) we have used that β(s0, x) · ξ = 0. Similarly,

ξ · ẏ(s0) = ξ̂ · ẏ(s0)(3.22)

because d0 · ẏ(s0) = 0. Combining (3.19) and (3.22) gives

sgn(ξ · ẏ(s0)) sgn(ξ · e(s0, x)) = sgn(ξ̂ · ẏ(s0)) sgn(ξ̂ · ê(s0, x)).(3.23)

For convenience, vectors ẏ(s0) and ê(s0, x) are shown in Figure 4.
Let us discuss how ẏ(s0) and ê(s0, x) should be drawn in Figure 4. By construc-

tion, ẏ(s0) is parallel to the detector plane, that is d0 · ẏ(s0) = 0. Therefore, we
should draw ẏ(s0) parallel to L0 and pointing upward (i.e., ẏ(s0) · e3 > 0). Let e1
be the unit vector in the direction of the d1-axis. Then e1 = d0 × e3 (see Figures 2
and 4) and

ê(s0, x) · e1 =
{
d0 × [e(s0, x) × β(s0, x)]

}
· {d0 × e3} = e3 · [e(s0, x) × β(s0, x)]

= e3 · [(β(s0, x) × u(s0, x)) × β(s0, x)]

= [(β(s0, x) × u(s0, x)] · [β(s0, x) × e3] = u(s0, x) · e3 > 0,

(3.24)

where we have used that e3 · d0 = 0, β(s0, x) · u(s0, x) = 0 (by construction), and
(2.11). Therefore, ê(s0, x) should point to the right as shown in Figure 4. Note
that if x̂ ∈ L0, then L(s0, x) = L0, ê(s0, x) and ẏ(s0) are parallel and point in the
same direction.

To compute B(x, ξ) we have to consider several cases.
I. ξ ∈ Ξ1(x). Since in this case Π(x, ξ) ∩ CPI(x) consists of only one point, say

y(s0), L(x, ξ) ⊂ D1 and sgn(ξ̂ · ê(s0, x)) = sgn(ξ̂ · ẏ(s0)). Hence, from (3.8) and
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(3.23):

B(x, ξ) = sgn(ξ · ẏ(s0)) sgn(ξ · e(s0, x)) = 1, ξ ∈ Ξ1(x).(3.25)

Figure 6. Top half of the detector plane projected from y(a)

II. ξ ∈ Ξ3(x) \ Ξψ(x). In this case there are three points in Π(x, ξ) ∩ CPI(x)
corresponding to sb(x) < a < b < c < st(x).

II.1. Consider the detector plane DP (a), where a is the smallest value of the
parameter among the three points. Since y(a) is the lowest point of intersection
and there are two more points in Π(x, ξ) ∩ CPI(x), the line L(x, ξ) intersects the
part of Γtop corresponding to a < s < st(x) at two points (see Figure 6).

II.1.a. If c < s2(a, x), then L(x, ξ) passes between L(a, x) and Ltan. This case
is illustrated by Figure 6. Consequently,

sgn(ξ̂ · ẏ(a)) = sgn(ξ̂ · ê(a, x)) and sgn(ξ · ẏ(a)) sgn(ξ · e(a, x)) = 1.(3.26)

II.1.b. If c > s2(a, x), then L(x, ξ) passes between L(a, x) and L′
0. Conse-

quently,

sgn(ξ̂ · ẏ(a)) = −sgn(ξ̂ · ê(a, x)) and sgn(ξ · ẏ(a)) sgn(ξ · e(a, x)) = −1.(3.27)

The case c = s2(a, x) need not be considered because this leads to

{y(s0), y(s2), y(s1(s0, s2))} ∈ Π(x, ξ),(3.28)

which contradicts the assumption ξ �∈ Ξψ(x).
II.2. Consider the detector plane DP (b). Since y(b) is the middle point of

intersection, L(x, ξ) passes through D3 because it has to intersect both Γtop and
Γbot at s = c, b < c < st(x) and s = a, sb(x) < a < b, respectively. Therefore,

sgn(ξ̂ · ẏ(b)) = sgn(ξ̂ · ê(b, x)) and sgn(ξ · ẏ(b)) sgn(ξ · e(b, x)) = 1.(3.29)

II.3. Consider the detector plane DP (c). Since y(c) is the highest point of
intersection and there are two more points in Π(x, ξ) ∩ CPI(x), L(x, ξ) intersects
the part of Γbot corresponding to sb(x) < s < c at two points.

II.3.a. Suppose the triple {a, b, c} is such that case II.1.a occurs. This implies
that L(x, ξ) in the DP (c)-plane is between L(c, x) and L′

0 as shown in Figure 7.
Indeed, otherwise we get (see Figure 8):

s′
2 < a < b < s′

1 = ψ(c − s′
2) + s′

2, s′
2 := s2(c).(3.30)
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Figure 7. Correct location of the line L(x, ξ), which is compatible
with case II.1.a. Bottom half of the detector plane is shown

Figure 8. The arrangement of lines shown here is incompatible
with case II.1.a. Bottom half of the detector plane is shown

Case II.1.a occurs if

s1 = a + ψ(s2 − a) < b < c < s2, s2 := s2(a).(3.31)

From (3.30), (3.31),

a + ψ(s2 − a) < ψ(c − s′
2) + s′

2, s′
2 < a < c < s2.(3.32)

Since 0 < ψ′ < 1,

a + ψ(s2 − a) > s′
2 + ψ(s2 − s′

2) > s′
2 + ψ(c − s′

2),(3.33)

and this contradicts (3.32). Therefore,

sgn(ξ̂ · ẏ(c)) = −sgn(ξ̂ · ê(c, x)) and sgn(ξ · ẏ(c)) sgn(ξ · e(c, x)) = −1.(3.34)

II.3.b. Suppose the triple {a, b, c} is such that the case II.1.b occurs. Analo-
gously, this implies that the image of L(x, ξ) in the DP (c)-plane is between L(c, x)
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and Ltan and

sgn(ξ̂ · ẏ(c)) = sgn(ξ̂ · ê(c, x)) and sgn(ξ · ẏ(c)) sgn(ξ · e(c, x)) = 1.(3.35)

Let us now summarize. If ξ ∈ Ξ1(x), B(x, ξ) = 1 from (3.25). If ξ ∈ Ξ3(x) \
Ξψ(x), there are three points of intersection: sb(x) < a < b < c < st(x). Contri-
bution of the middle point y(b) to the sum in (3.8) equals one, and contributions
of the points y(a), y(c) cancel each other (see (3.26) and (3.34), (3.27) and (3.35)).
Since the sets Crit(x) and Ξψ(x) have measure zero, the proof is finished.

4. Practical implementation and numerical experiments

In this section we discuss efficient implementations of inversion formulas (2.13)
and (2.14). Consider (2.13) first. It is clear from (2.12) that s2(s, x) actually
depends only on s and β(s, x). Therefore, we can write

u(s, β) := u(s, s2(s, β)), e(s, β) := β × u(s, β), β ∈ S2,

Ψ(s, β) :=
∫ 2π

0

∂

∂q
Df (y(q), cos γβ + sin γe(s, β))

∣∣∣∣
q=s

1
sin γ

dγ,

f(x) := − 1
2π2

∫
IP I(x)

1
|x − y(s)|Ψ(s, β(s, x))ds.

(4.1)

Fix s2 ∈ [s − 2π + ∆, s + 2π − ∆], s2 �= s, and let Π(s2) denote the plane through
y(s), y(s2), and y(s1(s, s2)). If s2 = s, Π(s2) is determined by continuity and
coincides with the plane through y(s) and parallel to ẏ(s), ÿ(s). The family of lines
L(s2) obtained by intersecting Π(s2) with the detector plane is shown in Figure 4.
By construction, given any x ∈ U with β(s, x) parallel to Π(s2), s2 used here is
precisely the same as s2 found by solving (2.12). Since e(s, β) · β = 0, |e(s, β)| = 1,
we can write (with abuse of notation):

β = (cos θ, sin θ), e(s, β) = (− sin θ, cos θ), β, e(s, β) ∈ Π(s2).(4.2)

Therefore,

Ψ(s, β) =
∫ 2π

0

∂

∂q
Df(y(q), (cos(θ + γ), sin(θ + γ)))

∣∣∣∣
q=s

1
sin γ

dγ, β ∈ Π(s2).(4.3)

Equation (4.3) is of convolution type and one application of Fast Fourier Transform
(FFT) gives values of Ψ(s, β) for all β ∈ Π(s2) at once.

Equations (4.1) and (4.3) imply that the resulting algorithm is of the filtered-
backprojection type. First, one computes shift-invariant filtering of a derivative of
cone beam projections using (4.3) for all s2 ∈ [s−2π+∆, s+2π−∆] (cf. Figure 4).
The second step is backprojection according to (4.1). Since ∂/∂q in (4.1) and (4.3)
is a local operation, each cone beam projection is stored in memory as soon as it
has been acquired for a short period of time for computing this derivative at a few
nearby points and is never used later.

Comparing (2.13) and (2.14) we see that (2.14) admits absolutely analogous
filtered-backprojection implementation. Moreover, since no derivative with respect
to the parameter along the spiral is present, there is never a need to keep more
than one cone beam projection in computer memory at a time.

Consider now the requirements on the detector array imposed by the algorithm.
Clearly, they depend on the function ψ in (2.6). In the experiments described below
ψ(t) = t/2 and s1(s0, s2) is given by (2.8). From the discussion preceding (4.2) we
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Figure 9. Dashed segments are segments of lines L(s2) located
between Γl and Γr

conclude that given any line L(s2), s2 ∈ [s−2π+∆, s+2π−∆], its segment located
between Γl and Γr should be inside the detector array. These segments are shown
in Figure 9. Thus, the left and right boundaries of the required detector array are
still Γl and Γr, but the new top and bottom boundaries are determined using the
envelopes of the lines L(s2). In Figure 9 these boundaries are denoted Γ̌top and Γ̌bot.
As is seen, the detector array required for the algorithm (its area is denoted Aalg)
is not much greater than the theoretically minimum one. The latter is bounded by
Γtop and Γbot and its area is denoted Amin. The ratio of the areas Aalg/Amin grows
as r/R → 1, but slowly. For example, Aalg/Amin = 1.209, 1.230, and 1.255 when
r/R = 0.5, 0.6, and 0.7, respectively. The case r/R = 0.7 is shown in Figure 9.
For comparison note that if r/R = 0.5 the algorithm of [Kat01b, Kat01a] requires
a detector array with area 1.93Amin.

Consider L(s2) corresponding to the largest possible value s2 = s + 2π − ∆ (cf.
Figure 3). Since s1 = (s + s2)/2 = s + π − ∆/2 < s + π, this line intersects Γtop to
the right of the d2-axis and, therefore, intersects Γr above the point corresponding
to s2 = s − 2π + ∆. Hence, the entire segment of this line located between Γl and
Γr is inside the detector array and there is no restriction on how big the set U
can be inside the spiral as long as r/R < 1. This is in contrast with the inversion
algorithm proposed in [Kat01b] (see also [Kat01a]). In the earlier algorithm one
has to know the cone beam data along all lines tangent to Γtop and Γbot at points
between Γl and Γr. Therefore, if r/R is close to one (∆ is close to zero), the line
tangent to Γtop at stan = s + 2π − ∆ intersects Γr below the point corresponding
to s − 2π + ∆, thereby increasing significantly the required detector array.

Consider now three numerical experiments. Parameters of the data collection
protocols are given in Table 1. Reconstructions in Experiment 1 are done using
(2.13), and reconstructions in Experiments 2 and 3 are done using (2.14). The
axial span of the detector array in Experiment 2 is slightly bigger than that in
Experiment 1 (despite h being equal in both cases) because to use (2.14) we need a
little extra space for computing derivatives of the data with respect to the angular
variables.
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Experiment number 1 2 3
R (radius of the spiral) 3
h (pitch of the spiral) 0.5 0.5 1.0

axial span of the detector array 0.70 0.72 1.44
transverse span of the detector array 4.26

number of detector rows 50 50 200
number of detectors per row 500

number of source positions per one turn of the spiral 1500 1000 1000

Table 1. Parameters of the data collection protocols

Results of Experiments 1, 2, and 3 are shown in Figures 10, 11, and 12, re-
spectively. Left panels of these figures show the 3-D low contrast Shepp phantom
(see Table 1 in [KMS98]). Top half demonstrates a vertical slice through the re-
constructed image at x1 = −0.25, and bottom half - the graphs of exact (dashed
line) and computed (solid line) values of f along a vertical line x1 = −0.25, x2 = 0.
We used the grey scale window [1.01, 1.03] to make low-contrast features visible.
Right panels of these figures show the disk phantom, which consists of six identi-
cal flattened ellipsoids (lengths of half-axes: 0.75, 0.75, and 0.04, distance between
centers of neighboring ellipsoids: 0.16). Again, top half demonstrates a vertical
slice through the reconstructed image at x1 = 0, and the bottom half - the graphs
of exact (dashed line) and computed (solid line) values of f along a vertical line
x1 = 0, x2 = 0.
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Figure 11. Experiment 2: Reconstruction formula (2.14), h = 0.5
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Figure 12. Experiment 3: Reconstruction formula (2.14), h = 1.0


