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Abstract
A 3π algorithm is obtained in which all the derivatives are confined to a detector
array. Distance weighting of backprojection coefficients of the algorithm
is studied. A numerical experiment indicates that avoiding differentiation
along the source trajectory improves spatial resolution. Another numerical
experiment shows that the terms depending on the non-standard distance
weighting 1/|x − y(s)| can no longer be ignored.

1. Introduction

Using redundant data is important in spiral CT. It leads to the reduction of motion and sampling
artefacts, efficient use of the applied dose, etc (Bontus et al 2001, Köhler et al 2002). In
Katsevich (2003, 2004) a theoretically exact shift-invariant FBP-type algorithm for spiral CT
was proposed that allows one to use redundant data. A closely related quasi-exact algorithm
was proposed in Bontus et al (2003a, 2003b). The algorithms operate in the 3π mode and
require a detector array, which is about three times as large as that required for 1π algorithms
(see, e.g., Proksa et al (2000), Katsevich (2002)). This aspect of 3π algorithms is very
important in medical applications of CT. The reason is that as the number of detector rows and
gantry rotation speed continue to increase, 1π algorithms will reach their limitation. Consider
a next generation 64 slice scanner, whose gantry makes three revolutions per second. Using
table 1 of Noo et al (2003) we see that maximum detector utilization with a 1π algorithm is
achieved when the table feed equals 6.58 cm per rotation. This translates into the table speed
of about 20 cm s−1, which is too high for many patients. 3π algorithms will allow one to slow
the table down, but still maintain high detector utilization.

Similarly to the 1π case (see Katsevich 2002), 3π algorithms also admit two versions.
Version 1 requires differentiation along the source trajectory. In version 2 all derivatives are
confined to the detector array. Since detector sampling is usually much finer than sampling
of the source trajectory, it is reasonable to expect that the second version will provide better
spatial resolution. The main purpose of this paper is to derive the second version of the 3π

algorithm of Katsevich (2004) and to investigate how the resulting backprojection coefficients
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depend on distance weighting. We show that similarly to the 1π case two weights are needed
to backproject the filtered cone beam projections: 1/|x − y(s)| and 1/|x − y(s)|2. Here
|x − y(s)| denotes the distance from the focal point y(s) to the reconstruction point x. A
preliminary numerical experiment presented in the paper indicates that the second version of
the 3π algorithm provides better spatial resolution (at least, in the current implementation).
Another numerical experiment shows that, as opposed to the 1π case (see Katsevich et al
2003), the terms depending on the non-standard distance weighting 1/|x −y(s)| can no longer
be ignored.

Note that the numerical implementations of the two versions of the 3π algorithm have
not been optimized. In particular, all convolutions are performed with respect to the polar
angle γ . This is the most obvious approach, but its downside is the need for excessive
interpolation, which results in reduced spatial resolution. Recently, F Noo, J Pack and
D Heuscher proposed a very efficient and accurate method of implementing version 1 of
the 1π algorithm of Katsevich (2002) (see Noo et al 2003). One of the features in their
approach is that the convolutions are performed with respect to a ‘native’ coordinate on the
detector. This and other improvements resulted in a significant increase in efficiency, spatial
resolution and overall image quality. It is quite clear that most of these ideas can be applied to
version 1 of the 3π algorithm. The application of the ideas to version 2 of the 3π algorithm
is more challenging. Thus, finding optimal implementations of the two versions of the 3π

algorithm and a detailed investigation of their numerical performance will be the subject of
future research. The purpose of the numerical experiments presented in this paper is only to
demonstrate that version 2 of the 3π algorithm works and, given comparable implementations,
appears to provide better spatial resolution than version 1.

2. The 3π algorithm

First we introduce the necessary notations. Let

C := {y ∈ R
3 : y1 = R cos(s), y2 = R sin(s), y3 = s(h/2π), s ∈ R} h > 0 (2.1)

be a spiral, and U be an open set strictly inside the spiral:

U ⊂ {
x ∈ R

3 : x2
1 + x2

2 < r2
}

0 < r < R. (2.2)

S2 is the unit sphere in R
3, and

Df (y, β) :=
∫ ∞

0
f (y + βt) dt β ∈ S2 (2.3)

β(s, x) := x − y(s)

|x − y(s)| x ∈ U, s ∈ R (2.4)

that is Df (y, β) is the cone beam transform of f . Also, ẏ(s) := dy/ds. For β ∈ S2, β⊥

denotes the great circle {α ∈ S2 : α · β = 0}. In what follows it is assumed that r/R < 0.618.
Suppose that the x-ray source is fixed at y(s0) for some s0 ∈ R. Since the detector array

rotates together with the source, the detector plane depends on s0 and is denoted by DP(s0).
It is assumed that DP(s0) is parallel to the axis of the spiral and is tangent to the cylinder
y2

1 + y2
2 = R2 (cf (2.1)) at the point opposite to the source. Thus, the distance between y(s0)

and the detector plane is 2R (see figure 1). Introduce coordinates in the detector plane as
follows. Let the d1-axis be perpendicular to the axis of the spiral, the d2-axis be parallel to it
and the origin coincide with the projection of y(s0). Project stereographically the upper and
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Figure 1. Stereographic projection of the spiral onto the detector plane.

Figure 2. Detector plane with various projections and important lines shown.

lower turns of the spiral onto the detector plane as shown in figure 1. This gives the following
parametric curves:

d1(s) = 2R
sin(s − s0)

1 − cos(s − s0)
d2(s) = h

π

s − s0

1 − cos(s − s0)

ρ + 2π(j − 1) � s − s0 � 2πj − ρ j � 1 or

ρ + 2πj � s − s0 � 2π(j + 1) − ρ j � −1

(2.5)

where ρ is determined by radius of support of the object: ρ = 2 cos−1(r/R) (cf (2.2)).
These curves are denoted by �j , j = ±1,±2, . . . (see figure 2). L0 is the projection of the
spiral tangent, and Lcr

±2 are lines parallel to L0 and tangent to �±2, respectively. Lcr
−1,1 is

the line tangent to both �1 and �−1. The quantity � is determined as the unique solution of
tan � = �,π < � < 3π/2 (cf Katsevich 2004).

Let x̂ denote the projection of x. Sometimes we will write x̂(s) to emphasize that the
location of x̂ on DP(s) depends on the source position y(s). As is well known, x̂(s) is between
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Figure 3. Family L0 of filtering lines parallel to the spiral tangent (left-hand panel) and family L1
of filtering lines tangent to �±1 (right-hand panel).

�−1 and �1 if and only if s ∈ I 1π (x). Here I 1π (x) := [b1π (x), t1π (x)] is the 1π parametric
interval of x. The region on the detector bounded by �−1 and �1 is known in the literature as 1π

or Tam–Danielsson window (Tam 1995, Tam et al 1998, Danielsson et al 1997). In a similar
fashion, the region between �−2 and �2 is called the 3π window (Katsevich 2004). Let I 3π (x)

be the parametric interval such that x̂(s) is inside the 3π window if and only if s ∈ I 3π (x). The
corresponding section of the spiral is denoted by C3π (x). It is shown in Proksa et al (2000)
and Katsevich (2004) that I 3π (x) is either a single interval I 3π (x) = [

b3π
1 , t3π

1

]
or consists of

three subintervals I 3π (x) = ∪3
i=1

[
b3π

i , t3π
i

]
(here we use the notation slightly different from

that of Katsevich (2004).
Now define three families of filtering lines. The first family, which consists of lines

parallel to L0, is denoted by L0 (see figure 3, left-hand panel). The second family, which
consists of lines tangent to �±1, is denoted by L1 (see figure 3, right-hand panel).

Let ψ(t) be any smooth function with the properties ψ(0) = 0, ψ ′(t) > 0, t ∈ R. Define
the family of lines L2 by requesting that any given L ∈ L2 has three points of intersection
with �±1 ∪ �±2: s1, s2, s3, and these points satisfy

{
s1 − s = ψ(s3 − s2) s + 2π < s3 < s + 4π

s2 − s3 = ψ(s − s1) s − 4π < s3 < s − 2π.
(2.6)

The requirement that s1, s2, s3 belong to a line reduces the number of degrees of freedom from
three to two. Equation (2.6) further reduces this number to one. Consequently, the lines L ∈ L2

can be parametrized by only one parameter. One can use, for example, s3, 2π < |s3| < 4π .
The location of the intersection points depends on where s3 is and is illustrated in figure 4.
Top half of the family L2 that is obtained by choosing ψ(t) = t in (2.6) is shown in figure 5.
One has that x̂ → Lcr

2 implies L → Lcr
2 . Similarly, x̂ → Lcr

−2 implies L → Lcr
−2.

Figure 6 summarizes which filtering lines are used depending on where x̂ is inside the 3π

window, provided that x̂ is above L0. If x̂ is below L0, then the filtering lines are obtained
from figure 6 using symmetry about the origin.

Given x and a source position y(s), s ∈ I 3π (x), find a filtering line L ∈ Lk, k = 0, 1, 2,
containing x̂. The point and line determine the plane 	(s, x). Let uk(s, x) be the unit vector
perpendicular to 	(s, x) and pointing up (i.e. in the direction of the spiral motion). Denote
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Figure 4. Four possible locations of a line L2 ∈ L2 used in the algorithm. Left-hand panel
illustrates the cases 2π < s3 − s < 2� and 2� < s3 − s < 4π . Right-hand panel illustrates the
cases −4π < s3 − s < −2� and −2� < s3 − s < −2π .

Figure 5. Top half of the family L2 that is obtained by choosing ψ(t) = t in (2.6).

ek(s, x) = β(s, x)×uk(s, x). As follows from the construction (see figure 6), vectors ek(s, x)

and uk(s, x) depend only on s and β(s, x). The 3π algorithm is given by the formula

f (x) = − 1

4π2

∫
I 3π (x)

1

|x − y(s)|
M(s,β(s,x))∑

m=1

Fm(s, β(s, x)) ds

Fm(s, β) := cm(s, β)

∫ 2π

0

∂

∂q
Df (y(q),�km

(s, β, γ ))|q=s

dγ

sin γ

�k(s, β, γ ) := cos γβ + sin γ ek(s, β).

(2.7)

If x̂ is between �1 and �−1, then M(s, β(s, x)) = 3 (see figure 6, two bottom panels). In this
case k1 = 0 (i.e. a line from L0 is used) and k2 = k3 = 1 (i.e. two lines from L1 are used).
If x̂ is between �1 and �2 or between �−1 and �−2, then M(s, β(s, x)) = 1 (see figure 6,
three top panels). In this case k1 = 0 when x̂ is between Lcr

2 and Lcr
−2 (a line from L0 is

used), and k1 = 2 when x̂ is outside the two lines (a line from L2 is used). The corresponding
backprojection coefficients cm are also given in the figure. As is easily seen, (2.7) defines a
convolution-based filtered backprojection algorithm.

3. The second version of the 3π algorithm

In this section, we will continue the convention that subscript k = 0, 1, 2 indicates the family
of filtering lines using which the corresponding quantity is computed. Denote



2134 A Katsevich

Figure 6. An illustration of how to choose filtering lines (shown as dashed lines) and the
corresponding backprojection coefficients cm in various cases when x is projected above L0.

�1k(s, β) =
∫ 2π

0
Df (y(s),�k(s, β, γ ))

dγ

sin γ

�2k(s, β) =
∫ 2π

0

(∇uk(s,β)Df

)
(y(s),�k(s, β, γ )) cot(γ ) dγ

�3k(s, β) =
∫ 2π

0

(∇uk(s,β)Df

)
(y(s),�k(s, β, γ )) dγ

�4k(s, β) =
∫ 2π

0

(
∂

∂γ
Df (y(s),�k(s, β, γ ))

)
dγ

sin γ
k = 0, 1, 2.

(3.1)

Here ∇uDf denotes the derivative of Df with respect to the angular variables along the
direction u:

(∇uDf )(y(s),�) = ∂

∂t
Df

(
y(s),

√
1 − t2� + tu

)∣∣
t=0 � ∈ u⊥. (3.2)
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Denote also

µ1k(s, x) = ∂

∂s

1

|x − y(s)| µ2k(s, x) = β ′
s(s, x) · uk(s, x)

|x − y(s)|
µ3k(s, x) = (ek)

′
s(s, x) · uk(s, x)

|x − y(s)| µ4k(s, x) = β ′
s(s, x) · ek(s, x)

|x − y(s)| .

(3.3)

Here β ′
s = ∂β/∂s and e′

s = ∂e/∂s.
Integrating by parts with respect to s in (2.7) similarly to Katsevich (2002), we obtain

an inversion formula in which all the derivatives are performed with respect to the angular
variables.

f (x) = − 1

4π2




N3π (x)∑
i=1

c2(s, β)�12(s, β)

|x − y(s)|

∣∣∣∣∣∣
s=t3π

i (x)

s=b3π
i (x)

−
∫

I 3π (x)

M(s,β)∑
m=1

cm(s, β)

4∑
j=1

µjkm
(s, x)�jkm

(s, β) ds


 β = β(s, x)

(3.4)

where N3π (x) equals either 1 or 3, depending on how many subintervals I 3π (x) consists of.
Let us recall that (3.4) is obtained by substituting the identity

∂

∂q
Df (y(q),�(s, x, γ ))|q=s = ∂

∂s
Df (y(s),�(s, x, γ )) − ∂

∂q
Df (y(s),�(q, x, γ ))|q=s

(3.5)

into (2.7) and integrating the first term by parts with respect to s. To avoid differentiating a
discontinuous function, we represent the integral over I 3π (x) as a sum of integrals over smaller
subsets of I 3π (x) such that all functions in (2.7) are continuous inside these subsets. By
construction, a discontinuity may occur when one of the following happens: x̂(s), s ∈ I 3π (x),
intersects �±1, L

cr
±2, L

cr
−1,1 or �±2.

Consider now each of these cases. When x̂(s) → �±1 from inside of the 1π window,
the two filtering lines L ∈ L1 through x̂(s) approach each other. Since the corresponding
backprojection coefficients are c2 = 2/3 and c3 = −2/3, the contributions of these filtering
lines cancel each other when x̂(s) ∈ �±1. Consequently, the corresponding boundary term
that arises after integration by parts equals zero.

When x̂(s) intersects Lcr
2 , we have to switch from one family of filtering lines to another

(say, from L0 to L2). However, both the limiting filtering lines and the corresponding
backprojection coefficients are the same regardless of the direction from which x̂(s) approaches
Lcr

2 . Let s0 be such that x̂(s0) ∈ Lcr
2 . Our argument implies that the boundary terms which

arise after integration by parts on each side of s0 cancel each other. The same cancellation
occurs when x̂(s) intersects Lcr

−2.
When x̂(s) intersects Lcr

−1,1, the tangency point of one of the two filtering lines L ∈ L1

experiences a jump. As before, the limiting filtering lines and the backprojection coefficients
c3 (see two bottom panels of figure 6) are the same regardless of the direction from which x̂(s)

approaches Lcr
−1,1. Consequently, no boundary terms arise from this discontinuity as well.

Thus, boundary terms arise only when x̂(s) intersects �±2, i.e. when s coincides with
the boundary of I 3π (x). Because of this analysis, we can assume in what follows that all
quantities are locally continuous.
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Denote for convenience L := |x−y(s)|. For future references we state here the following
useful formulae:

µ1k = ∂

∂s

1

|x − y(s)| = β · ẏ(s)

L2
(3.6)

and

β ′
s(s, x) = ∂

∂s

x − y(s)

|x − y(s)| = −ẏ(s) + β(β · ẏ(s))

L
. (3.7)

Here and in what follows β = β(s, x). In this section we omit the subscript of ek and uk ,
because it will be clear from the context which family of filtering lines is discussed. From
(3.3), µ1k is independent of k and is determined using (3.6).

The remaining backprojection coefficients for lines L ∈ L0 are easy to find. Since the
filtering direction is parallel to the spiral tangent, we get

u(s, x) = ẏ(s) × β

|ẏ(s) × β| e = β × u = ẏ(s) − β(β · ẏ(s))

|ẏ(s) × β| . (3.8)

Using (3.7) and (3.8) we compute

β ′
s · u = 0 β ′

s · e = −|ẏ(s)|2 + (β · ẏ(s))2

L|ẏ(s) × β| = −|ẏ(s) × β|
L

. (3.9)

By construction, e ⊥ u, β ⊥ u and β ′ · u = 0 (see (3.7) and (3.8)). Therefore

e′
s · u = ÿ(s) · u

|ẏ(s) × β| . (3.10)

Next, pick a line L ∈ L1. Let st := st (s, x) be the point where the plane containing
x, y(s), and L is tangent to C3π (x). Denote

v(s, x) := (y(s) − x) × (y(st ) − x)δ. (3.11)

Here δ = +1 or δ = −1 to guarantee that v(s, x) always points along the spiral motion.
Clearly, u(s, x) = v(s, x)/|v(s, x)| and, using (3.7),

β ′
s · u = − ẏ(s) · u

L
β ′

s · e = − ẏ(s) · e

L
. (3.12)

Differentiation of (3.11) with respect to s gives

v′
s(s, x) =

[
ẏ(s) × (y(st ) − x) + (y(s) − x) × ẏ(st )

∂st

∂s

]
δ

= [ẏ(s) × (y(st ) − x)]δ + const v. (3.13)

Here we have assumed that δ is locally a constant (cf the remark preceding (3.6)). Therefore,

e · u′
s = {β × [−βL × (y(st ) − x)]} · {ẏ(s) × (y(st ) − x)}

|v|2

= L

|v|2 {(y(st ) − x) − β[β · (y(st ) − x)]} · {ẏ(s) × (y(st ) − x)}

= − L

|v|2 [β · (y(st ) − x)]β · {ẏ(s) × (y(st ) − x)}

= β · (y(st ) − x)

|v|2 ẏ(s) · {Lβ × (y(st ) − x)}

= [β · (x − y(st ))]
(v · ẏ(s))δ

|v|2 = [β · (x − y(st ))]
u · ẏ(s)

|v| δ. (3.14)
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To find the dependence of this coefficient on L, we transform it further

e · u′
s = [β · (Lβ + (y(s) − y(st )))]

u · ẏ(s)

|Lβ × (y(s) − y(st ))|δ

=
[

1 +
β · (y(s) − y(st ))

L

]
u · ẏ(s)

|β × (y(s) − y(st ))|δ. (3.15)

Consider now lines L ∈ L2. Let s1, s2 and s3 be the points found according to (2.6).
Denote similarly to (3.11):

v(s, x) := (y(s) − x) × (y(s1) − x)δ. (3.16)

Clearly, u(s, x) = v(s, x)/|v(s, x)| and, using (3.7),

β ′
s · u = − ẏ(s) · u

L
β ′

s · e = − ẏ(s) · e

L
. (3.17)

Denote also V := y(s) − x, V1 := y(s1) − x. Thus, assuming as before that δ is constant,

v′
s(s, x) =

[
(ẏ(s) × V1) + (V × ẏ(s1))

∂s1

∂s

]
δ. (3.18)

Starting with the definition of e, we get

e · u′
s = (β × v) · v′

s

|v|2 = − [V × (V × V1)] · [
(ẏ(s) × V1) + (V × ẏ(s1))

∂s1
∂s

]
|V | · |v|2

= [|V |2V1 − (V · V1)V ] · [(ẏ(s) × V1) + (V × ẏ(s1))
∂s1
∂s

]
|V | · |v|2

= |V |2V1 · (V × ẏ(s1))
∂s1
∂s

− (V · V1)V · [ẏ(s) × V1]

|V | · |v|2

= −|V |2ẏ(s1) · (V × V1)
∂s1
∂s

− (V · V1)ẏ(s) · [V × V1]

|V | · |v|2

= −
[|V |2 ∂s1

∂s
ẏ(s1) − (V · V1)ẏ(s)

] · v

|V | · |v|2 δ. (3.19)

Recall that |V | = L. To find the dependence of this coefficient on L, we transform it further

e · u′
s = −

[
L2 ∂s1

∂s
ẏ(s1) + (Lβ · (y(s1) − y(s) − Lβ))ẏ(s)

] · u

L · |Lβ × (y(s1) − y(s) − Lβ)| δ

= −
[

∂s1
∂s

ẏ(s1) + [(β · (y(s1) − y(s))/L − 1]ẏ(s)
] · u

|β × (y(s1) − y(s))| δ

= −
{(

∂s1
∂s

ẏ(s1) − ẏ(s)
) · u

|β × (y(s1) − y(s))| +
1

L

(β · (y(s1) − y(s))(ẏ(s) · u)

|β × (y(s1) − y(s))|

}
δ. (3.20)

The final step is to study how ∂s1/∂s depends on L. This will be done analogously to Katsevich
(2002). For convenience, introduce the quantities �i := si − s, s = 1, 2, 3. By construction,
we can regard �3 as a function of �1, and �1 = �1(s) (for the latter we assume x is fixed).
Since L contains x̂(s), we have (cf (27) in Katsevich (2002))

x̂2(s) − d2(�3)

x̂1(s) − d1(�3)
= x̂2(s) − d2(�1)

x̂1(s) − d1(�1)
=: m. (3.21)

Here (x̂1(s), x̂2(s)) are the coordinates of the projection of x onto DP(s), and (d1(�), d2(�))

are the parametric equations of �±1, �±2. Restricting |�| to (0, 2π) and (2π, 4π) gives �±1
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and �±2, respectively. Differentiation of (3.21) with respect to s yields
(x̂ ′

2(s) − d ′
2(�3)�

′
3�

′
1)(x̂1(s) − d1(�3)) − (x̂2(s) − d2(�3))(x̂

′
1(s) − d ′

1(�3)�
′
3�

′
1)

(x̂1(s) − d1(�3))2

= (x̂ ′
2(s)− d ′

2(�1)�
′
1)(x̂1(s)− d1(�1)) − (x̂2(s)− d2(�1))(x̂

′
1(s)− d ′

1(�1)�
′
1)

(x̂1(s)− d1(�1))2

(3.22)

where �′
3 = d�3(�1)/d�1 and �′

1 = d�1(s)/ds. Simplification of (3.22) gives
1

x̂1(s) − d1(�3)
((x̂ ′

2(s) − d ′
2(�3)�

′
3�

′
1) − m(x̂ ′

1(s) − d ′
1(�3)�

′
3�

′
1))

= 1

x̂1(s) − d1(�1)
((x̂ ′

2(s) − d ′
2(�1)�

′
1) − m(x̂ ′

1(s) − d ′
1(�1)�

′
1)). (3.23)

Solving for �′
1 we get

�′
1 = (x̂ ′

2(s) − mx̂ ′
1(s))(1 − a)

�′
3(d

′
2(�3) − md ′

1(�3)) − a(d ′
2(�1) − md ′

1(�1))
(3.24)

where

a := x̂1(s) − d1(�3)

x̂1(s) − d1(�1)
. (3.25)

As follows from figure 4 and (2.6), �3 is an increasing function of �1. Assuming the contrary,
we get from figure 4 that s3 − s2 gets smaller when s1 − s is increased, which contradicts
the assumption ψ ′ > 0. Hence �′

3 > 0. Using figure 4 again it is now easy to see that the
denominator in (3.24) is not zero when x̂ is between Lcr

2 and �2 or between Lcr
−2 and �−2.

As follows from Katsevich (2002), x̂ ′
1,2(s) = A1,2(β) + B1,2(β)/L. Clearly, all other

quantities in (3.24) do not depend on L. Since ∂s1/∂s = 1 + �′
1(s), combining (3.24) with

(3.20) proves that

e · u′
s = A +

B

L
(3.26)

for some A and B that do not depend on L.
Let us now summarize the obtained results. We have

µ20 = 0 µ30 = ÿ(s) · u0

|ẏ(s) × β|
1

L
µ40 = −|ẏ(s) × β|

L2

µ2k = − ẏ(s) · uk

L2
µ3k = Ak

L
+

Bk

L2
µ4k = − ẏ(s) · ek

L2
k = 1, 2.

(3.27)

Here Ak and Bk are some quantities that depend only on s and β(s, x). Combining (3.4) with
(3.27) we see that most of the terms are backprojected using the factor L−2. However, the
boundary term and the terms containing �3k are backprojected using both L−1 and L−2.

Comparing (2.7) with (3.1) and (3.4) we see that version 2 requires only about two times
more filtering than version 1. First, µ20 = 0. Second, calculation of �3k involves simple
integration, which is an O(N) operation. In contrast, computation of a convolution using FFT
requires O(N log2 N) operations. With N � 1024, the computational expense of integration
is much smaller compared with that of convolution. Similarly, �1k can be computed from
�4k using integration. From (3.27), version 2 requires two backprojections. However, most
of the computational expense (e.g., projecting x onto the detector, computing the distance
|x − y(s)| etc) is shared by the two backprojections. Finally, version 2 requires calculation
of the boundary terms. For a given x, these terms are computed only when the current source
position is close to the boundary of I 3π (x). Hence, the associated computational expense is
not significant. This argument allows us to estimate that version 2 should not be more than
two times slower than version 1.
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Figure 7. Reconstruction of the nine-ball phantom using version 1 of the 3π algorithm. Grey level
window—[−0.5, 0.5].

Figure 8. Reconstruction of the nine-ball phantom using version 2 of the 3π algorithm. Grey level
window—[−0.5, 0.5].

4. Numerical experiments

Version 1 of the algorithm is based on equation (2.7). Let Df (s, d1, d2) denote the cone beam
data on the flat detector array, and �(s, d1, d2) be the unit vector pointing from the source at
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Figure 9. The difference between the results in figures 7 and 8. Grey level window—[−0.5, 0.5].

Figure 10. Complete reconstruction of the clock phantom. Grey level window—[0.95, 1.05].

y(s) towards the point on the detector with coordinates (d1, d2). Then one has (see (86) in
Noo et al (2003)):

∂

∂q
Df (y(q),�(s, d1, d2))

∣∣∣∣
q=s

= ∂Df (s, d1, d2)

∂s
+

d2
1 + (2R)2

2R

∂Df (s, d1, d2)

∂d1

+
d1d2

2R

∂Df (s, d1, d2)

∂d2
. (4.1)
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Figure 11. Reconstruction of the clock phantom without �3k terms. Grey level window—
[0.95, 1.05].

Figure 12. The combined image of �3k terms. Grey level window—[−0.004, 0.011].

Here we have used that the source–detector distance is 2R. The actual derivative ∂/∂q was
computed in the code using a finite-difference approximation of (4.1) (see (87) in Noo et al
(2003)). Version 2 of the algorithm is based on equation (3.4).

To compare the two versions of the 3π algorithm we performed an experiment with a
nine ball phantom. Each ball has density 1 and radius 20 mm. The centres of the balls
are 140 mm away from the isocentre. Additional simulation parameters are presented in
table 1. Reconstruction results are shown in figure 7 (version 1) and figure 8 (version 2). The
difference between the results (version 1 minus version 2) is shown in figure 9. The grey
level window is [−0.5, 0.5] in all the figures. In each figure top panel shows xy cross-section,
middle panel–xz cross-section and the bottom panel–yz cross-section. As one can easily see
from the results, integration by parts results in increased noise and spatial resolution.
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Table 1. Simulation parameters in the nine ball experiment.

R (radius of the spiral) 600 mm
h (pitch of the spiral) 66 mm
Detector pixel size in each direction
(as projected to isocentre) 0.575 × 0.5 mm2

Number of detector rows 256
Number of detectors per row 750
Number of source positions per rotation 900

Table 2. Simulation parameters in the clock phantom experiment.

R (radius of the spiral) 570 mm
h (pitch of the spiral) 46 mm
Detector pixel size in each direction
(as projected to isocentre) 0.75 mm
Number of detector rows 128
Number of detectors per row 745
Number of source positions per rotation 1160

To investigate if the terms containing �3k can be omitted from the reconstruction we
performed an experiment with the clock phantom. The phantom is a superposition of a
cylinder with radius 240 mm and two sets of balls. The first set consists of 12 balls with radius
24 mm, that are placed on a spiral with radius 192 mm and pitch 28.8 mm. The second set
consists of 12 balls with radius 12 mm, that are placed on a spiral in the opposite direction with
radius 120 mm and pitch 28.8 mm. The cylinder has density 1, and the balls have density 2.
Additional simulation parameters are presented in table 2. Complete reconstruction is shown
in figure 10. Reconstruction without the �3k terms is shown in figure 11. One can see some
low frequency darkening artefact in the area between the isocentre and the ball in the 8 o’clock
position. The combined image of all �3k terms is shown in figure 12. Pixel values of that
image are within the range [−0.003, 0.01]. The results demonstrate that the �3k terms cannot
be ignored, as opposed to the 1π case (Katsevich et al 2003).
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Bontus C, Köhler Th and Proksa R 2003b A quasiexact reconstruction algorithm for helical CT using a 3-PI acquisition
Med. Phys. 30 2493–502
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