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Abstract| Proposed is a theoretically exact formula for

inversion of data obtained by a spiral CT scan with a 2-

D detector array. The detector array is supposed to be of

limited extent in the axial direction. The main property of

the formula is that it can be implemented in a truly �ltered

backprojection fashion. First, one performs shift-invariant

�ltering of a derivative of the cone beam projections, and,

second, the result is back-projected in order to form an im-

age. Another property is that the formula solves the so-

called \long object problem". Limitations of the algorithm

are discussed. Results of numerical experiments are pre-

sented.

I. Introduction

In the past decade it became clear that spiral CT can be

signi�cantly improved if one uses two-dimensional detector

arrays instead of one-dimensional ones. However, accurate

and e�cient image reconstruction from the data provided

by such scanners is very challenging because there does not

exist a theoretically exact and e�cient reconstruction for-

mula. Several approaches for image reconstruction have

been proposed. They can be classi�ed into two groups:

theoretically exact and approximate. See [1] for a recent

review of available algorithms. Most of exact algorithms

are based on computing the Radon transform for a given

plane by partitioning the plane in a manner determined by

the spiral path of the x-ray source [2], [3], [4], [5]. Even

though exact algorithms are more accurate, they are com-

putationally quite intensive and require keeping consider-

able amount of cone beam (CB) projections in memory.

Approximate algorithms are much more e�cient (see e.g.

[6], [7], [8], [9] for several most recent techniques), but

produce artifacts, which can be signi�cant under unfavor-

able circumstances. Despite the progress achieved in recent

years, it appears that no algorithm which would be both

e�cient and theoretically exact have been proposed in the

literature so far.

In this paper we propose the �rst theoretically exact in-

version formula for Spiral CT which is truly of the �ltered

backprojection (FBP) type. This means that the formula

can be numerically implemented in two steps. First, one

performs shift-invariant �ltering of a derivative of the CB

projections, and, second, the result is back-projected in or-

der to form an image. The price to pay for this e�cient

structure is that the algorithm requires an array wider than

the theoretically minimum one. Also, the algorithm is ap-

plicable if radius of support of the patient inside the gantry

is not too big (not greater than � 0:62� radius of gantry).
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Clearly, this limitation is not a big problem in many cases:

for example, when one scans the head or an extremity of a

patient.

II. Inversion formula

First we introduce the necessary notations. Let

C := fy 2 R
3 : y1 = R cos(s); y2 = R sin(s); y3 = s(h=2�);

s 2 Ig; I := [a; b];

(1)

where h > 0; b > a, be a spiral, and U be an open set

strictly inside the spiral:

U � fx 2 R
3 : x21 + x

2
2 < r

2
; a(h=2�) < x3 < b(h=2�)g;

(2)

0 < r < R, S2 is the unit sphere in R3 , and

Df (y; �) :=

Z
1

0

f(y + �t)dt; � 2 S
2
; (3)

�(s; x) :=
x� y(s)

jx� y(s)j
; x 2 U; s 2 I; (4)

�(x; �) := fy 2 R
3 : (y � x) � � = 0g; (5)

that is Df (y; �) is the CB transform of f . Given (x; �) 2

U�(R3 n0), let sj = sj(�; � �x); j = 1; 2; : : : , denote �nitely

many points of intersection of the plane �(x; �) with C.

Also, _y(s) := dy=ds.

As was shown in [10], [8], any point strictly inside the

spiral belongs to one and only one PI segment. Recall

that a PI segment is a segment of line endpoints of which

are located on the spiral and separated by less than one

pitch in the axial direction. Let s = sb(x) and s = st(x)

denote values of the parameter corresponding to the end-

points of the PI segment containing x. We will call

IPI (x) := [sb(x); st(x)] the PI parametric interval. The

part of the spiral corresponding to IPI(x) will be denoted

CPI (x). Also, inside the PI parametric interval there exists

s0 = s0(x) such that the plane through y(s0) and parallel

to _y(s0); �y(s0), contains x.

Fix x 2 U . It is clear that any plane through x intersects

CPI (x) at least at one point. Introduce the following sets:

Crit(x) =f� 2 R3 n 0 : �(x; �) contains y(sb(x)); y(st(x))

or �(x; �) is tangent to CPI (x)g [ f0g;

�1(x) =f� 2 R
3 : � 62 Crit(x) and �(x; �) \ CPI(x)

contains one pointg;

�3(x) =R
3
n f�1(x) [ Crit(x)g:

(6)



By construction, the sets Crit(x);�1;2(x) are pairwise dis-

joint, their union is all of R3 , Crit(x) is closed and has

Lebesgue measure zero, and �1;2(x) are open.

Let e1(s; x) denote a unit vector in the plane through

y(s) and spanned by �(s; x); _y(s) subject to the conditions

that e1(s; x) is perpendicular to �(s; x) and e1(s; x) � _y(s) >

0.

Given y(s); s 2 (sb(x); st(x)) n fs0(x)g, �nd stan 2

IPI (x); stan 6= s, such that the plane through x; y(s), and

y(stan) is tangent to CPI (x) at y(stan). For the excep-

tional values s 2 fsb(x); st(x); s0(x)g, stan is determined

by continuity. This construction de�nes a continuous func-

tion stan = stan(s; x). One can show that s = s0(x) implies

stan = s0(x).

Similarly, let e2(s; x) be a unit vector in the plane

through x; y(s), and tangent to CPI(x) at y(stan(s; x)). We

require also that e2(s; x) is perpendicular to �(s; x). This

determines a continuous vector-valued function e2(s; x) up

to a sign. The �nal requirement to eliminate ambiguity is

e1(s; x) = e2(s; x) when s = stan = s0(x).

For f 2 C
1

0 (U) and k = 1; 2 de�ne

(Bkf)(x) := �
1

2�2

Z
IPI(x)

1

jx� y(s)j

�

Z 2�

0

@

@q

Df (y(q); cos �(s; x) + sin ek(s; x))

����
q=s

�
d

sin 
ds:

(7)

Our main result is the following theorem.

Theorem 1: The operators Bk; k = 1; 2, can be written

in the form

(Bkf)(x) =
1

(2�)3

Z
R3

Bk(x; �) ~f (�)e
�i��x

d�; (8)

where for each x 2 U , Bk(x; �) 2 L
1(R3 ) with respect to

� and

B1(x; �) =

(
1; � 2 �1(x);

3; � 2 �3(x);
B2(x; �) =

(
1; � 2 �1(x);

�1; � 2 �3(x):

(9)

Since the set Crit(x) has Lebesgue measure zero, (9)

immediately implies the following inversion formula.

Corollary 2: Under the assumptions of Theorem 1,

f =
1

2
(B1f + B2f): (10)

An important feature of the double integral in (7) is that

for each x 2 U the integral with respect to s is con�ned only

to the theoretically minimal portion of the spiral IPI (x).

This implies that inversion formula (10) solves the so-called

\long object problem" (see [8] for a de�nition).

III. Practical implementation and numerical

experiments

In this section we discuss e�cient algorithms for com-

puting B1;2f . Fix any y(s0) on the spiral. It is assumed

that the detector plane is parallel to the axis of the spiral

and is tangent to the cylinder y21 + y
2
2 = R

2 (cf. (1)) at

the point opposite to the source. Thus, the distance be-

tween y(s0) and the detector plane is 2R. Stereographic

projections of the upper and lower turns of the spiral onto

the detector plane are denoted by �top and �bot, respec-

tively (see Figures 1 and 2). Let L0 denote the common

asymptote of �top and �bot. The parameter � shown in

these �gures is determined by the radius of support of the

patient: � = 2 cos�1(r=R) (cf. (2)).

Fix now any � 2 S
2. By construction, all points x 2

U such that �(s; x) = � will generate the same vectors

e1(s; x) and e2(s; x). Denoting the corresponding vector-

valued functions by e1(s; �) and e2(s; �), rewrite Bkf; k =

1; 2, as follows:

(Bkf)(x) := �
1

2�2

Z
IPI(x)

1

jx� y(s)j
	k(s; �(s; x))ds;

	k(s; �) :=

Z 2�

0

@

@q

Df (y(q); cos � + sin ek(s; �))

����
q=s

�
1

sin 
d:

(11)

Suppose �rst k = 1. Let �(!); ! 2 R, denote the family of

planes containing y(s) and parallel to _y(s). Intersections

of �(!) with the detector plane generate a family of lines

L(!) parallel to L0 (see Figure 1). Fix any � 2 �(!). By

construction, vectors cos � + sin e1(s; �); 0 �  < 2�,

belong to the same plane �(!). Here, for convenience, we

think of vectors �; e1(s; �), and their linear combinations

as if they are attached to y(s). Let � be a polar angle in

�(!). Since e1(s; �) � � = 0; je1(s; �)j = 1, we can write

(with abuse of notation):

� = (cos �; sin �); e1(s; �) = (� sin �; cos �);

�; e1(s; �) 2 �(!):
(12)

Therefore,

	1(s; �) =

Z 2�

0

@

@q

Df (y(q); (cos(� + ); sin(� + )))

����
q=s

�
1

sin 
d; � 2 �(!):

(13)

Equation (13) is of convolution type. Hence, one appli-

cation of Fast Fourier Transform (FFT) to the integral in

(13) gives values of 	1(s; �) for all � 2 �(!) at once.

Calculation of B2f can be arranged in a similar way.

Fix stan 2 [s � 2� + �; s + 2� � �]; stan 6= s, and let

�(stan) denote the plane through y(s); y(stan), and con-

taining _y(stan). If stan = s, �(stan) is determined by

continuity and coincides with the plane through y(s) and

parallel to _y(s); �y(s). The family of lines L(stan) ob-

tained by intersecting �(stan) with the detector plane is

shown in Figure 2. By construction, given any x 2 U

with �(s; x) 2 �(stan), stan used here is precisely the



Fig. 1. Illustration of the one-parametric family of lines L(!)

Fig. 2. Illustration of the one-parametric family of lines L(stan)

same as stan used in the de�nition of e2(s; x). Since

e2(s; �) � � = 0; je2(s; �)j = 1, we can write (with abuse

of notation):

� = (cos �; sin �); e2(s; �) = (� sin �; cos �);

�; e2(s; �) 2 �(stan):
(14)

Therefore,

	2(s; �) =

Z 2�

0

@

@q

Df (y(q); (cos(� + ); sin(� + )))

����
q=s

�
1

sin 
d; � 2 �(stan):

(15)

Equation (15) is of convolution type and one application of

FFT gives values of 	2(s; �) for all � 2 �(stan) at once.

Equations (11), (13), and (15) imply that the resulting

algorithm is of the �ltered-backprojection type. First, one

computes shift-invariant �ltering of a derivative of CB pro-

jections using (13) for all required !: !min � ! � !max

(cf. Figure 1), and using (15) - for all stan 2 [s � 2� +

�; s+ 2� ��] (cf. Figure 2). The second step is backpro-

jection according to the �rst equation in (11). Since @=@q

in (13) and (15) is a local operation, each CB projection

is stored in memory as soon as it has been acquired for a

short period of time for computing this derivative at a few

nearby points and is never used later.

This discussion shows that for the algorithm to work the

following two conditions must be satis�ed. First, the detec-

tor array should be large enough to contain the parallelo-

gram formed by the lines �l;�r and L(!min); L(!max). We

will call this parallelogram the parallelogram-shaped de-

tector array (PSDA) and its area will be denoted APSDA.

Thus, the size of the detector array required for the al-

gorithm is greater than the theoretically minimum one,

which is bounded by �l;�r and �top;�bot. Its area will

be denoted Amin. The ratio of the two areas is indepen-

dent of the pitch h, but grows as r ! R. For example,

APSDA=Amin = 1:53 if r=R = 1=3 and APSDA=Amin =

1:93 if r=R = 0:5. Second, the segments of lines tangent to

�top and �bot at s = s + 2� �� and s � 2� + �, respec-

tively, and located between �l and �r should be inside the

detector array. This requirement leads to the restriction

r=R � cos(�0=2) � 0:62, where �0 is the unique solu-

tion to the equation tan(2���) = 2��� on the interval

�=2 < � < �.

Consider now two numerical experiments. Parameters of

the data collection protocols are given in Table I.

Shepp disk

phantom phantom

R (radius of the spiral) 3

h (pitch of the spiral) 0.5

axial span of the detector array 1.02 0.96

transverse span of the

detector array 4.74 4.26

number of detector rows 50

number of detectors per row 500

number of source positions

per one turn of the spiral 1500

TABLE I

Parameters of the data collection protocols

In Figure 3 we show the results of reconstructing the 3-D

low contrast Shepp phantom (see Table 1 in [11]). In the

top panel we see a vertical slice through the reconstructed

image at x1 = �0:25, and in the bottom panel - the graphs

of exact (dashed line) and computed (solid line) values of

f along a vertical line x1 = �0:25; x2 = 0. We used the

grey scale window [1:01; 1:03] to make low-contrast features

visible.

In Figure 4 we see the results of reconstructing the disk

phantom, which consists of six identical attened ellipsoids

(lengths of half-axes: 0.75, 0.75, and 0.04, distance between

centers of neighboring ellipsoids: 0.16). In the top panel

we see a vertical slice through the reconstructed image at

x1 = 0, and in the bottom panel - the graphs of exact

(dashed line) and computed (solid line) values of f along a

vertical line x1 = 0; x2 = 0.

As one can see, the algorithm still su�ers from artifacts

that are due to discretization and/or sampling errors. How-



Fig. 3. Reconstruction of the 3-D Shepp phantom

ever, there are no artifacts that could be caused by non-

exactness of a reconstruction scheme. Such artifacts have

been theoretically studied and demonstrated numerically

in [9] in the case of one approximate reconstruction al-

gorithm. In numerical experiments presented in [9] these

artifacts appear as nearly horizontal lines tangent to the

ellipsoids.
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