ON A PROBLEM OF I. M. GEL’FAND

A. A. KIRillov

Let there be given a curve K in n-dimensional (real or complex) space. The set of all straight lines which intersect K is an n-dimensional (real or complex manifold M. To every rapidly decreasing and indefinitely differentiable function $f(x)$ on the original space we can associate a function $\hat{f}(m)$ or the manifold M: $\hat{f}(m)$ is equal to the integral of $f(x)$ along the line $m \in M$. We show that the function $f(x)$ can be recovered from $\hat{f}(m)$ if and only if the curve K intersects almost all hyperplanes $(\xi, \xi') = 0$. In the case where the order of the intersection is the same for almost all hyperplanes it turns out to be possible to give an explicit formula expressing $f(x)$ from $\hat{f}(m)$. This result answers a question posed by I. M. Gel’fand in [1].

In the following we restrict ourselves to the case of the complex space C^n (for real space the same formulas hold with obvious changes). Let the curve K be given in parametric form by $x = \phi(\lambda)$, where λ is a complex parameter. We denote by $g(\alpha, \lambda)$ the integral of $f(x)$ on the line passing through the point $\phi(\lambda)$ in the direction of the vector α:

$$g(\alpha, \lambda) = \int f(\phi(\lambda) + t\alpha) \, dt \, d\bar{t}.$$ (1)

Our problem is to recover the function $f(x)$, knowing $g(\alpha, \lambda)$. We denote by $G(\beta, \lambda)$ the Fourier transform of the function $g(\alpha, \lambda)$ with respect to the variable α.* Then

$$G(\beta, \lambda) = \int g(\alpha, \lambda) e^{iR(\alpha, \beta)} \, d\alpha \, d\bar{\alpha} = \int f(\phi(\lambda) + t\alpha) e^{iR(\alpha, \beta)} \, dt \, d\alpha \, d\bar{\alpha} =$$

$$= \int f(\phi(\lambda)) e^{iR(\phi(\lambda), \beta)} \, d\tau \, d\tau' \, d\xi \, d\bar{\xi} =$$

$$= \int f(\phi(\lambda)) e^{iR(\phi(\lambda), \beta)} \, d\tau \, d\tau' \, d\xi \, d\bar{\xi} = \int \hat{f}(\beta) \, d\tau \, d\tau' \, d\xi \, d\bar{\xi},$$

where $\hat{f}(\beta)$ is the Fourier transform of the function $f(x)$. We introduce the functions $\Phi(\beta, \gamma) = \hat{f}(\beta) | \tau |^{2n-1}$ and $F(\beta, \omega) = \int \Phi(\beta, \gamma) e^{-iR(\omega, \gamma)} \, d\tau \, d\bar{\tau}$.

The above computations show that

$$G(\beta, \lambda) = F(\beta, (\phi(\lambda), \beta)).$$ (2)

It is clear that the functions f and F, just like the functions g and G are connected by an invertible transform. So it suffices to study the connection between F and G. The relation (2) shows that if we know the function G, we can determine the value $F(\beta, \omega)$ only in case we have $(\phi(\lambda), \beta) = \alpha$ for some λ. This condition means that the curve K intersects the hyperplane $(\alpha, \beta) = \omega$.

Thus, in order to be able to get the function F back from G (and thereby get f back from g) it is necessary and sufficient that K should intersect almost every hyperplane in the case of a plane curve in real three-dimensional space this result was obtained earlier by I. Ya. Vahutinskii.

Assume now that the curve K intersects almost all hyperplanes in exactly l points. This condition is satisfied, for example, if K is an algebraic curve. For almost every β we can divide the domain of the parameter λ in l parts $\Lambda_1, \ldots, \Lambda_l$ in such a way that for $\lambda \in \Lambda_i$, the range of $\omega = (\phi(\lambda), \beta)$ is almost the whole complex plane. Now we use the expression of G through F:

*The function $g(\alpha, \lambda)$ is homogeneous: $g(t\alpha, \lambda) = |t|^{-2}g(\alpha, \lambda)$. So its Fourier transform is a homogeneous generalized function (see e.g. [2], Chapter 3).

**It is easy to see that for $\beta \neq 0$ this integral converges since f is a rapidly decreasing function.
\[f(x) = (2\pi)^{-2n-2} \sum_{\lambda \in \Lambda} G(\beta, \lambda) e^{i \Re \theta (\beta - x)} \frac{D(\omega, \omega)}{D(\lambda, \lambda)} d\beta d\bar{\beta} d\omega d\bar{\omega} \]

and substitute into it the expression (2) of \(F \). We obtain
\[f(x) = (2\pi)^{-2n-2} \sum_{\lambda \in \Lambda} g(\alpha, \lambda) e^{i \Re \theta (\beta - x)} \left(\left| \frac{\partial \omega^2}{\partial x} \right| - \left| \frac{\partial \omega^2}{\partial \lambda} \right| \right) d\alpha d\bar{\alpha} d\beta d\bar{\beta} d\lambda d\bar{\lambda} = \]
\[= \frac{1}{(2\pi)^{-2n-2}} \sum_{\lambda \in \Lambda} Dg(x - \varphi(\lambda), \lambda) d\lambda d\bar{\lambda}, \]

where
\[Dg(x, \lambda) = \sum \left(\frac{\partial \phi_i}{\partial x} \frac{\partial \phi_j}{\partial \lambda} - \frac{\partial \phi_i}{\partial \lambda} \frac{\partial \phi_j}{\partial x} \right) \frac{\partial^2 g(\alpha, \lambda; x)}{\partial x_i \partial x_j}. \]

In the case of an algebraic curve \(\varphi \) depends analytically on \(\lambda \). Therefore \(\partial \phi_i / \partial \lambda = 0 \), and the operator \(D \) has the simpler expression
\[D = \sum \frac{\partial \phi_i}{\partial x} \frac{\partial \phi_j}{\partial \lambda} - \frac{\partial \phi_i}{\partial \lambda} \frac{\partial \phi_j}{\partial x}. \]

Our formula
\[f(x) = \frac{1}{(2\pi)^{-2n-2}} \int Dg(x - \varphi(\lambda), \lambda) d\lambda d\bar{\lambda}, \quad \text{(3)} \]

admits a simpler geometric interpretation: In order to find the value \(f(x) \) we have to know the integral of the function on the lines passing through the point \(x \) (and intersecting \(K \)), and on the lines close to these.

Formula (3) can be rewritten without using the parametric representation of the curve. We note that on the curve \(x = \varphi(\lambda) \) the differential form \(\frac{\partial \phi_i}{\partial \lambda} d\lambda d\bar{\lambda} \) coincides with \(dx_i d\bar{x}_j \). Thus, denoting by \(h(x, \alpha) \) the integral of the function \(f \) along the line passing through the point \(x \) in the direction \(\alpha \), we get
\[f(x) = \frac{1}{(2\pi)^{-2n-2}} \sum R h(\varphi - x, \lambda) dx_id\bar{x}_j. \quad \text{(4)} \]

In the case where \(K \) is a "hyperbola" in \(\mathbb{C}^3 \) given by equations \(z_1, z_2 = 1, z_3 = 0 \), formula (4) was found by I. M. Gel’fand \[1\].

Moscow State University

Received 6/OCT/60

BIBLIOGRAPHY

Translated by:
Adam Korányi