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Abstract

This paper addresses image reconstruction in
cone-beam tomography from an arbitrary discrete set of
positions of the cone vertex. As a first step in the analysis
of the problem, we define some measures of how close a
discrete vertex set comes to satisfying Tuy’s condition [1].
Next, we propose three-rébinning algorithms which use
Grangeat’s formula [2] and Marr’s algorithm [3], and are
capable of accurate reconstructions. The first algorithm
is designed to accurately process cone-beam data finely
sampled along a vertex path satisfying Tuy’s condition.
- The second algorithm applies to pair-complete vertex
- sets. The third algorithm is suited to process any discrete

vertex set. The efficacy of the algorithms is illustrated
with reconstructions from computer-simulated data using
several vertex sets, including a set of randomly placed
vertices.

I. INTRODUCTION

The cone-beam (CB) reconstruction problem consists of
recovering a 3D image from line integrals diverging from
vertex points distributed about the object under study.
The terminology “vertex point” refers to the position of
the x-ray source in area CT or to the focal point of the
converging collimator in SPECT imaging. The set of line
integrals measured from one vertex point is called a CB
projection.

Usually, the vertex points are sampled along a
continuous or piecewise continuous trajectory called the
“vertex path”. Direct CB reconstruction algorithms
are based on the discretization of exact or approximate
analytical inversion formulae, which are derived assuming
that the CB projections are known for all points along
the vertex path. The main direct algorithms can be
classified as filtered ba,ckprOJectlon (FBP) methods or
Radon methods.

The most popular FBP method was proposed
by Feldkamp et al [4] who derived an algorithm for
approximate reconstruction of data sampled along a
circular vertex path. Tuy showed [1] that accurate
reconstruction is possible if the vertex. path is non-
tangentially intersected by any plane intersecting the
support of the object. Finch [5] established that Tuy’s
condition is also necessary for accurate reconstructions,
thereby demonstrating that a circular. vertex path is
insufficient in principle. Defrise and Clack [6], and Kudo

and Saito [7] derived in 1994 a FBP algonthm, which
yields accurate reconstructions from CB projections
sampled along any vertex path satisfying Tuy’s condition.

Radon methods rely on the estimation of an
intermediate function relating the CB data to plane

. integrals of the object. Different intermediate functions

were proposed by Tuy [1], Smith [8] and Grangeat [2].
Tuy’s algorithm was implemented by Zeng et al [9] for
a path consisting of one circle and two lines orthogonal
to the circle. Smith’s and Grangeat’s approaches were
investigated for a circular path [10] and a helical path
(11, 12, 13].

The vertex-path model of the CB problem is appealing
because Tuy’s condition can be used to describe a
complete dataset, and there are direct algorithms
available for reconstruction from complete data. However,
strict adherence to this model can be a limitation in
practical situations. First, it can be difficult to satisfy
Tuy’s condition. For example, in ‘SPECT imaging with
a CB collimator, the main concern is to optimize the
use of the detector surface without data truncation, and
the additional complication of positioning the detector
to satisfy Tuy’s condition can be prohibitive. Second,
the CB measurements might be acquired in such a
way that no natural vertex path can be defined. For
example, if patient motion were monitored during a CB
data acquisition, the vertex points could be viewed as a
set of irregularly distributed data points, for which no
satisfactory reconstruction algorithm currently exists.

In this paper, we consider CB projections measured
for an arbitrary discrete set of vertex points, which may
or may not result from the discretization of a vertex
path. Existing FBP methods are inherently linked to the
notion of a vertex path, and this is also true for Tuy’s
algorithm. The Radon methods based on Grangeat’s or
Smith'’s formula seem amenable to an implementation for -
general discrete vertex sets. Specifically, the CB data can
be used to evaluate the plane integrals of the object for
all planes containing the vertices. Assuming that a 3D
rebinning method can be devised which uses these values
to generate a regular sampling of plane integrals, the 3D
object can then be accurately reconstructed by applying
the inverse Radon transform.
~ The problem of CB tomography with discrete data
sets has already been investigated by Barrett and Gifford
[14]. The algorithm they proposed was based on a
decomposition of the 3D image using Fourier functions.
The projection-backprojection matrix resulting from
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this decomposition is nearly diagonal, and Barrett and
Gifford showed that good estimates of the image can

be obtained by simply backprojecting the data, and -

normalizing the result using the diagonal elements of the
projection-backprojection matrix. The approach we adopt
in this work is very different. Considering the Radon
method based on Grangeat’s formula, we firstly derive a

" rebinning algorithm which yields accurate reconstruction
“from CB data finely sampled along any vertex path

satisfying Tuy’s condition. Next, we - generalize the
approach and propose two rebinning algorithms which
are capable of accurate reconstructions from any discrete
vertex set. Omne of these methods was presented at
the 1996 IEEE Medical Imaging Conference.  The
more detailed description -here, including the other two
rebinning methods, -tonstitute a considerably extended
version of the Conference Record paper [15]. '
The organization of the paper is as follows. In
section II, the CB problem with discrete vertex .sets is
reviewed, and different parameters are defined which
measure how close a discrete vertex set comes to satisfying
Tuy’s condition. The Radon method based on Grangeat’s
formula is reviewed in section III, and the new rebinning
algorithms are presented in section IV. Section V is
devoted to simulations. Different computer-simulated
data sets are considered to show the ability of the
new rebinning -algorithms to process arbitrary discrete
vertex sets. A brief summary and discussion is given in
section VI. '

II. DISCRETE VERTEX SETS

A. CB reconstruction problem

We consider the problem of reconstructing a 3D object
represented by a function f(z) of compact support 2 from
CB projections measured for a discrete set of vertex points
{a;, a5,..., ay}. The CB projections

g(u,v,0;) = /om dt f (g; +te) (1)

are collected on a 2D detector located a distance D; from
the vertex point. The coordinates (u,v) on the detector
are defined with respect to unit orthogonal axes e, and e,),
and the point (u,v) = (0,0) is the projection of a; onto.
the detector. Each line integral g(u,v,a;) corresponds to
a line of direction

a=(ue, +ve, — Die,)/\/u? +v? + D? 2)

connecting the vertex point g; to some point (u,v) on the,
detector. The unit vector e, = ¢, X e, is normal to the
detector, and points from the detector towards the vertex
point (see figure 1). We assume that the CB projections
are not truncated, i.e each line issued from the vertex point

“and passing through the object meets the detector.

Fig. 1 CB acquisition geometry. The vertex point g, is distance
D; from the detector. Each location (u,v) defines with g, a
line of direction & along which the density of the object (not
shown) is summed, to give the CB projection g(a;, u, v).

B. Closeness to Tuy’s condition

No discrete set of vertices can satisfy Tuy’s condition
because almost all planes crossing the support Q of f(z)
do not contain any vertex. Different parameters can be
defined which give a measure of the degree to which a
discrete vertex set {g,, a,,..., ay} fails to satisfy Tuy’s
condition. In this work, we consider two approaches
referred to as “vertex pairs approach” and “single vertex
approach. .

1) Vertez pairs approach

We denote as pair-complete, a discrete vertex set such
that for any plane intersecting the support  of the object,
there are vertices lying on both sides of the plane. With
this approach, we consider that accurate reconstruction
can only be achieved from pair-complete vertex sets.

Given a pair-complete vertex set, we define ¢, as

the smallest distance such that any plane intersecting
! separates two vertices which are at most a distance
gp from each other. The parameter e, gives some
information on the spatial distribution of the vertex
points about the object: the smaller the value of &p,
the better the accuracy that can be expected from the
reconstructed image.

The discretization of a vertex path satlsfymg Tuy’s
condition leads t6 a pair-complete vertex set for which &p
is equal to the largest distance separating two consecutive
vertices.

2) Single vertex approach

Another approach to measure the degree to which a
discrete vertex set fails to satisfy Tuy’s condition consists
of calculating the smallest distance &, such that any plane
intersecting the object is within a distance & of some
vertex point. Mathematically, we have

€; = inf {8 >0 U Bc(a;) satisfies Tuy’s COndlthIl}
= 3)
where B, (g;) is the ball of radius ¢ centered on @;.




Vertex points sampled along a path satisfying Tuy’s
condition admit an &, at most equal to half the maximum
distance separating two adjacent points on the path.

Note that there is no single-vertex
corresponding to pair-complete. Also, the values &, and
gp are not generally related, other than by thé 1nequahty
€s < Ep/2.

IT1. RADON METHOD

The Radon method is analogous to the direct Fourier
method in parallel-beam tomography, and can be
summarized as follows. The CB data are first transformed
into the three-dimensional (3D) Radon domain, then in
a second step, image reconstruction is performed from
the Radon data by applying the 3D-Radon inversion
formula. In this work, we used Grangeat’s formula [2] to
transform the CB data so the relevant domain involves
the derivative of the Radon transform. For the second
step, a slight adaptation of Marr’s algorithm [3] was used
to complete the reconstruction. See [2, 3, 10, 16] for more
detailed descriptions of these concepts.

Each CB projection fills a subset of the Radon
domain, and these subsets overlap as more projections are
included. The result is a highly non-uniform sampling,
with gaps whose size and location depend on the
particular vertex set. Since the algorithm of Marr requires
a uniform sampling of the Radon domain, a suitable
interpolation scheme in the 3D Radon domain is required.

The accuracy of the reconstruction depends on the 3D
interpolation scheme and the distance €p Or €, for the
vertex set under consideration.

A. Radon transform

Let §. be some unit vector and ! some real number.
The 3D Radon transform Rf(6,1) of the image f(z) is
& function which associates to each pair (8,1) the integral
of f(z) on the plane II(6,) = {z| z - § = I} normal to the
direction @ and a distance ! from the origin.

R = [ f gy T (0

The inversion of the 3D Radon transform carn be performed
. in a stable way provided a complete sampling of the Radon
domain is available. The image f(z) can be reconstructed
at any point z €  provided its plane integrals are known
~ for all planes intersecting (.

B. Grangeat’s formula

Grangeat’s formula relates the CB projection data
g(u,v, ;) to the derivative of the Radon tra.nsform

For a fixed CB projection, consider a straight line £(s, 1)

(see figure 1) on the detector which makes an angle p with
I
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the v-axis and lies a_ das{'.ance s from the origin (u,v) = -
(0,0). Define gs(u,v,q;) as the scaled CB projection

i o o (u,v,4;)
1 JQ'
N +D§g :

and let r(s,p) represent the sum of gs(u,v,q;) along
L(s,p), so

9s(u,v,8;) = . (6)

r(s, 1) =f al gs(u,v,a;) (7
(u,v)EL(s,) i .

Grangeat showed that r(s, ) is related to the derivative
of Rf(8,1) where the plane II(¢,1) is defined by the vertex
point g; and the line £L(s, u). Specifically,

i _s$+D? o
BRI =75 5oriom)

)
where

9= (D; cosp,eu+D sinpe, +se,)/1\/s2+D? (9)
and

l=0-g (10)

Thus each projection is processed as follows: (i) pointwise
multiplication by D;/y/u?+v2+D? to obtain
gs(u,v,a;), (ii) forward projection in the detector plane’
to form the sinogram 7(s,u), (iii) differentiation of the
smogram rows (the s-direction) followed by a scaling by
(s + D?)/D?. The result yields Radon samples R'f(8, 1)
for planes I1(6, /) defined geometrically by the lines £(s, u)
and given explicitly by the formula for  and I above.

C. Marr’s algorithm

Marr’s algorithm provides an efficient FBP method
for inverting the Radon transform Rf(d,1), or the first
derivative of the Radon transform. The vector 8 is
parameterized using spherical coordinates

8 = (cos ¢ sinf,sin ¢ sinf, cos §) (11)

and the image f(z) is recovered by performing successive
2D backprojections over the variables § and ¢. Writing
z = (21,3, 3), we have

1.7 '
f(g) D d¢ p(ﬂﬁ,t, m3)!t=ml €08 p+x2 sin ¢ ~ (12)
2 Jo : . 4

Ie~[7 3]

t =—— [ df sinf —R'f(8,!
p(d), :$3) 2?‘-]0. 61R f(_ ) I=tsin 0423 cos §
. (13)
Observe that the derivative data R'f(6,1) needs to be
differentiated once, then backprojected onto a series of
vertjcal planes, one for each ¢, with vertical zz-axis
and transverse ¢-axis. The resulting function p(¢,t,zs)
is then regarded as a set of sinograms in ¢ and ¢, and
backprojected in horizontal planes (one for each z3) to
obtain f(z).
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IV. REBINNING ALGORITHMS

The Radon data R'f(8,1) obtained from the CB
projections must be rebinned into an array, called- the
Radon. array, of equally .spaced samples A, A¢, and
Al in preparation for Marr’s algorithm. The value
at a particular triple (6,¢,l) in the array is found by
interpolating from values on nearby planes obtained from
the CB projection data. The rebinning schemes described

“below differ from the methods of [10, 11, 12, 13] which

have all been developed for vertex sets corresponding to
specific vertex path.

A. Vertez-path algorithm

The interpolation scheme. presented in this section is
designed to process CB-projections finely sampled along
an arbitrary vertex path satisfying Tuy’s condition. The
vertex path consists of M <« N continuous path segments,
along which the N vertices g; are considered as ordered
samples along the path.. Except possibly for those 2M
values of i which correspond to segment endpoints, the
vertex points a; and g;,; form a pair of close vertices.

The values of the Radon array are calculated by
successively processing the CB projections along the
vertex path. Each pair of close vertices g; and g, is
used for estimating R'f for all planes which intersect
the line segment [a;,a;.,] connecting a; to @;y,. Let
I1(8,1) be such a plane. Using the method of section
IV.D, we firstly select two nearby planes ; and iy
which respectively contain the vertices a; and g;,. Next,
we apply Grangeat’s formula to the CB projections
gla;,u,v) and g(g;41,%,v), to calculate R'f(I1;) and
R'f(Il;41). Since the vertices are close together and
also close to TI(6,1), the Radon sample R'f(8,1) can be
accurately estimated as a linear combination of R'f(Il;)
and R'f(IT;41): '

Rf(81) = R'F(IL) +
w8, 1,8, a4) (R (fa) - RAL)) (1)
where

(15)

l—a;-

~— |

w(ﬁsgagfi:Q@.J,.l) = (a_ :
Qip1 — &

Note that (g;4, — a;) - 8 # 0 because II(9,1) intersects
[Qe:QH—l]- '

We observe that each plane integral is estimated
at least once because the vertex path satisfies Tuy’s
condition.  Usually, the Radon values R'f(8,l) are
calculated several times, corresponding to multiple

% intersections of T1(¢,) with the path. Different estimates

of the same plane integral are summed during the
rebinning process. A weighting array is generated which
counts the number of estimates for each plane, and the
Radon array is normalized after processing the last pair

of close vertices.

B. Vertez-pairs algorithm |
The vertex-pairs algorithm is designed to process CB

.data associated with any pair-complete discrete vertex

set. The principle of the rebinning scheme is the same g
the one used in the vertex path algorithm, namely plane
integrals are estimated using pairs of close vertices. Since
the vertex set is no longer considered as a set of ordered
points, the main problem consists of defining which pairg
of vertices should be processed to ensure all values of R'f
in the Radon array are estimated with good accuracy.

The pair-completeness of the vertex set ensures that
there exists some distance &, such that any plane through
the object is separated by two vertices at most a distance
g, from each other. Therefore, the Radon array can be
generated using all pairs of vertices within a distance ¢,
from each other. -

In practice, the distance €, may be inappropriate for
estimating planes which are normal to some particular
direction . Some directional property of the vertex set
needs to be included ‘during the rebinning process. We
begin by calculating for each direction 8 the smallest

~ distance £p(8) such that any plane through the object

with normal @ is separated by two vertices at most a
distance ,(8) from each other. Clearly, e5(8) < 5. Next,
we begin the rebinning process. We isolate each pairs of
vertex points within a distance &, from each other. Given
a fixed pair of such vertices g; and g, ¢ # j, we select the
directions @ for which the distance between g; and a; is
smaller than &,(f), and we estimate R'f for all planes
normal to any of these directions, and separating a; and
a;.

The estimation of R'f for a specific plane II(g,l) -

is carried out in the same way as for the vertex path
algorithm. Two nearby planes II; and II; are identified
which separately contain g; and g; (see section IV.D);
Grangeat’s formula is applied to the CB projections
gla;,u,v) and g(a;,u,v) to calculate R'f(II;) and
R'f(I1;); and R'f(8,1) is obtained by linear interpolation.

" Again plane integrals can be estimated several times so
the multiple estimates are summed and normalized by &
counting array after the last pair of close vertices has been
processed.

C. Single-vertez algorithm

The single-vertex algorithm is suited to process any
discrete vertex set. The basic idea is to consider each
direction § separately, and obtain values R'f(¢,l) in
the Radon array from CB projection data whose vertex
points lie within a distance A(g) from the plane I1(8,1).
The interpolating distance A() is defined in terms of the
particular vertex set. '

We begin by defining e5(¢) as the largest distance
between some plane through the object with normal g,
and the nearest vertex point to it. Mathematically,

i i - ' 6
53(_@). ;Sélfi{h?-lﬂh’” g; QI} (16)

S




where
={l|]i=0 -z, z€ 0} (17)

Clearly the definition of £;(f) generalizes the definition
of g, given in section I1.B.2, with &, = sup{e;(8)}. The
interpolating distance A(8) is defined as A(8) = kes(8)
where k£ > 1 is a tuning parameter to be discussed below.

The 3D interpolation scheme proceeds as follows. First,
for each direction g in the Radon array, the value €,(8) is
calculated by sorting the relative distances g; - 8 of each

" vertex point g; projected onto the line segment Lg, and

finding the maximum distance between successive points
on this line. Care must be taken at the endpoints of Ly,
especially if no points project outside this segment. Then,
with A(@) defined, each vertex point a; is successively
processed with five operations:

o the set of planes II(d,!) of the Radon array are
selected which lie within a distance A(f) of g;,

o for each selected plane TI(8,I), a nearby plane
I1(8, a;-9) containing the vertex point g, is identified
using the method described in section IV.D below,

e the value R'f for I1(8,!) is estimated from R'f for
11 using Grangeat’s formula and the CB pro_]ectlon
9(a;,u,v),

‘o the estimated value of R'f (Q, ) is multiplied by

a weight w(f,l,a;) depending on the distance

= |l —g; 0| between the plane II(4,1) and the

Vertex point g;:

w(d,l,a;) = (A(ﬂ) - d)/A(6)

o the weight w(0,!,a;) is added to location (g,1) of a

weighting Radon array, so that the estimated values

of R'f can be normalized after the last vertex point
has been processed.

The tuning parameter k must be chosen so as to
ensure a good compromise between the average number
of vertex points contributing to each Radon plane, and
the accuracy of the estimate of R'f obtained from these
relatively distant planes. This trade-off is strongly

influenced by the signal to noise ratio in the CB data. For -

the results shown in section V below, the value k& = 2 was
chosen. -

D. Interpolation from a single projection

The three rebinning methods des\cribed above rely at
some point on the estimation of R'f for a given plane
Ti(g,1) from the CB projection measured for a vertex point
a;. We describe in this section the method which has been
used to achieve this estimation.

Using Grangeat’s formula, R'f can be calculated for
all planes containing the vertex g;. Since in general a; ¢
II, the problem reduces to approximating II(§,) by some
plane (@, a;-0) containing a;.

(18)

1313

Fig. 2 Approximating II with II. Consider a plane II and a
vertex point o; & II. A good estimate for R'f on II is given
by the value of R'f on the plane IT which contains the vertex
point a;, some central point P of interest on II, and is oriented
so as to have a minimum angle with IL

To achieve this goal we rely on knowledge of the image
support. We localize some region of interest in the plane
II(8,1) and select a central point P in this region. Then,
the plane II is chosen.to contain the vertex point a;, the
central point P, and oriented such that its angle with the
plane IT is minimized (see figure 2). Mathematically, the
unit vector @ normal to II is given by the relation

_b6-(@-pp
e —@-p)pl|

where the unit vector p is along the line connecting the

point P to the vertex point. If p and @ are colinear then

I must necessarily be perpendicular to II. In this case,
equation (19) cannot be used, but any @ perpendicular to
¢ may be chosen. In practice this situation occurs rarely
because g, is typically close to II and far from P.

|

(19)

E. Efficient use of Grangeat’s formula

The three rebinning algorithms proposed in sections
IV.A, IV.B and IV.C make efficient use of Grangeat’s
formula in the sense that the sinogram for each CB
projection, equation (7), is precomputed before being
involved in the rebinning process. Specific line integrals
required during 3D interpolation are computed by bilinear
interpolation in the sinograms of the detectors.

The computation of a particular sinogram is
computationally intensive. To be efficient, the rebinning
algorithms must be implemented in such a way that the
sinogram of each CB projection is only calculated once.

~ For the vertex-path algorithm, the vertex points are
processed by pairs of ordered vertices g; and g;,;. The
sinogram for the' CB projection g(g;,,u,v) is computed
at the time the pair (g;, @;,;) is involved, and is stored
until after the next pair has been processed. The sinogram
for g(a;,u,v) is known from the processing of the previous

pair, unless g; begins a new continuous path segment in -

which case the sinogram of g(g;,u, v) has not yet been
computed.

For the vertex-pair aigorlthm, the vertex pomts are
processed by pairs of non-ordered points. The approach
that was adopted was to precompute and store the
sinograms for all CB projections before rebinning the
data. -
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For the single-vertex algorithm, the vertex points are
also considered as non-ordered, but each CB projection is
processed ipdependently of the other projections, and a
particular sinogram rieeds only be computed at the time
the corresponding vertex pomt is involved in the rebinning
scheme.

V. SIMULATIONS

The aim of the simulation studies is to illustrate the
comparative performance of the three new rebinning
algorithms, and to demonstrate .the possibility to

accurately reconstruct CB data acquired with arbitrary

discrete sets of vertex points.

A. Discretization

The phantom-iised was the standard 3D Shepp
phantom [17]. Four discrete vertex sets were considered,
and all consisted of vertex points located on the surface
of an imaginary cylinder of radius 350mm. The simulated
detector was always- parallel to the symmetry axis of the
cylinder, and a distance D = 700mm from the vertex
point. The projection data were generated on a grid
of 128 x 128 square pixels each of area 4mm?. The
reconstructed images contained 100 x 100 x 100 cubic
voxels of volume 8mm? each.

The intermediate sinograms were computed using
linogram techniques.  Each linogram contained 256
angular samples and 256 radial samples, with a radial
sampling distance ranging from As = 4.0 mm to
As = 2.83 mm. )

The Radon array contained 120 x 120 directions 8

corresponding to a uniform sampling of the polar and’

azimuthal angles (8,¢) over a range [0,«] x [0,x]. For
each direction @ there were 128 radial samples, at a radial
sampling distance of Al = 1.bmm. ~

The derivative filters were -
in object space wusing the
(o,...,0,1/2,0,-1/2,0,...,
centered scheme:

always applied
convolution kernel
0) which corresponds to the

£(G+1)Az) — £((G - 1)Az)
20z

d/
a—};(iﬁx) =

B. Heliz path

The first vertex set consisted of 256 vertex points finely
sampled along a 2-turn helix of pitch 130mm. Figures 3a
and 3b respectively show the standard vertical slices
through the reconstructed phantom obtained using the

(20)

f

" vertex-path algorithm and the, single-vertex algorithm.

The vertex-pairs approach was not considered because of
its similarity to the veértex-path approach for this data
set. The parameter €,(f) was independent of # and equal
to 17.28mm, the sampling distance along the path.

The vertex-path and single-vertex reconstructions
are of similar quality. This is because ¢, = 7.83mm is
close to half the sampling distance along the path, and
because the single-vertex algorithm is executed with a

3000
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Fig. 3 Reconstruction of the helix data: (a, top left) vertex-path
algorithm (b, top right) single-vertex algorithm (c, bottom)
histogram of e,(8). For this application, both algorithms
interpolate in some sense between pairs of close vertices and
the results are similar.

linear interpolating function of width A(8) = 2&,(8). The
vertex-path and single-vertex algorithms both interpolate
in some sense between pairs of adjacent points along the
path. The histogram of £4(8) for the helix data set is
given in figure 3c.

C. Five-circles path

The second vertex set consisted of 225 CB projections

- sampled along five parallel circles a distance 49mm from

each other. The number of vertices on each circle was 45 so
that the distance between two adjacent points on a circle
was about the same as the distance between the circles.

The five-circle vertex path does not satisfy Tuy’s
condition, and a complete Radon array cannot be
built using the vertex-path algorithm. Most algorithms
available in the literature would fail to. provide satisfactory
reconstructions from such a data set, unless extrapolation
methods in the Radon array were applied [10]. The
vertex-pairs and single-vertex algorithms gave good
reconstructions from the five-circles data set.  The
results are shown respectively in figures 4a and 4b. The
vertex-pairs reconstruction seems slightly better than the
single-vertex reconstruction. The parameter ep(8) was
close to 49mm for all directions. All vertices are paired,
and the interpolation between close vertices using the
vertex-pairs approach provides a very accurate result.

The histogram of &,(6) (figure 4c) for the 5-circles data
set can be compared with the histogram for the helix data
set (figure 3c).

D. Random vertex set

The third vertex set consisted of 256 points platfed
randomly on the wall of the imaginary cylinder of radius
350mm. The points were distributed uniformly over &
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Fig. 4 Reconstruction of the 5-circles data: (a, top left)
vertex-pairs algorithm (b, top right) single-vertex algorithm
(c, bottom) histogram of €5(f). All vertices are paired and the
vertex-pairs algorithm provides a very accurate result.

height of 220mm and uniformly in angle, and are plotted

in figure 5.

Clearly, no natural path can be defined which contains
all vertices. No existing algorithm in the literature could
accurately process such a data set, however the vertex-
pairs and single-vertex algorithms can process any set of
unordered data points. The results are respectively shown
in figures 6a and 6b.

The vertex-pair reconstruction is slightly worse than
the single-vertex reconstruction. = The single-vertex
approach has the benefit of using isolated (unpaired)
vertices that may be near Radon planes,. whereas: the
vertex-pairs approach must find two vertices surrounding
the Radon: plane. The histogram of £,(f) and £,(8) are
shown in figure 6c and 6d. >

The histogram of &;(f) can be compared with the
histograms of figures 3c and 4c. The average values of
£¢(8) for the random set and five-circles set are slightly
larger than for the helix vertex set, which seems to
correlate with the observation that the resolution of
images 6b and 4b are slightly poorer than the resolution
of image 3b. '
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Fig. 5 Example of a discrete set of unordered vertex points.
The vertices are randomly distributed on the wall of an

imaginary cylinder.
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Fig. 6 Reconstruction from the random vertex data: (a,
‘top left) vertex-pairs algorithm (b, top right) single-vertex
algorithm (¢, bottom left) histogram of £,(8) (d, bottom right)
histogram of &;(f). The single-vertex algorithm has the benefit
of using isolated (unpaired) vertices that may be near Radon
planes, which results in a better reéconstruction.

E. Circle path

For the last experiment, the vertex set was 256 points
uniformly sampled along a circle. about the object.
The circle path does not satisfy Tuy’s condition and
only approximate reconstruction is possible. The FDK
algorithm of Feldkamp et al [4] yields the result of
figure 7a. The discrete vertex set is not pair-complete
so only the single-vertex algorithm was considered.
(The Radon method can still be applied in general if
some extrapolation method is used to fill in the holes
in an incomplete Radon array. We do not consider
extrapolation methods in this paper.) The single-vertex
reconstruction is shown in figure 7b. The result is
more accurate than the FDK result, which displays the
well-known reduced intensity away from the center in
the vertical direction. The single-vertex algorithm gives
estimates for any plane integral through the object and
results in a good reconstruction when considering the 3D
Shepp phantom whose axial frequency content is low.

Fig. 7 Reconstruction of the circle data:

(a, left) FDK
algorithm (b, right) single-vertex algorithm. The single-vertex
algorithm gives estimates for any plane integral through the
object and results in a good reconstruction of the 3D Shepp
phantom. Note that a less compressed greyscale is used, to
avoid exaggerating the FDK artifacts in the vertical profile.
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VI. DISCUSSION AND CONCLUSION

Three new rebinning algorithms have been proposed

and were implemented using the Radon derivative domain-

using Grangeat’s formula, and Marr’s algorithm to
perform the Radon inversion. Simulation studies verified
that these methods gave good recontructions of the 3D

- Shepp phantom. The vertex-path algorithm was shown
+to effectively process finely sampled data along a vertex
- path. This method was generalized to the vertex-pairs

algorithm, which was shown to be capable of accurate
reconstruction for any pair-complete data set. The
single-vertex algorithm is the most general algorithm since
it applies to any arbitrary vertex set to yield near-optimal
reconstruction.

The essential aspect of these algorithms is the
interpolation procédures used to obtain estimates in
the Radon domain. The vertex-pair algorithm has
the advantage of always interpolating between two
planes surrounding the plane of interest, whereas the
single-vertex approach allows unpaired vertices which are
close to the plane of interest to provide estimates.

Other components of the implementations described
here are not as crucial to the reconstruction quality.
However some minor improvements in reconstruction

-time might be achieved by replacing the Marr algorithm

with a 3D linogram approach [17], or by using Fourier
reconstruction with gridding [18]. We have also
implemented the vertex-path method using Smith’s
approach [8] and the corresponding Radon domain. The
reconstructions were of comparable quality to those
reported here. :

A close examination of the interpolation methods
described in this work suggests that the Ep OT &
definitions are too naive to yield a quantitative predictor
of reconstructed resolution possible with specific discrete
vertex sets. Figure 2 illustrates that the approximation
made by the choice of II is far better than what is
suggested by the distance from the vertex point g; to the
plane II. The distance from P to g; and the size of the
field of view both need to be taken into account also.
However, for the single-vertex algorithm, we observe that
the directional vertex sampling €,(0) is a godd tool for
the comparison of discrete vertex sets.
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