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Abstract

The paper presents a reconstruction algorithm for cone-
beam (CB) data acquired with a vertex path which consists
of a circle and of a complementary path such that Tuy’s
data sufficiency condition is fulfilled. The algorithm is
based on the CB filtered-backprojection method of Defrise
and Clack, with an appropriate handling of redundancy to
reduce the processing of the circle data to a stationary 2D
filtering. The method is similar to a previous algorithm
of Kudo and Saito, and it also admits reconstruction from
truncated data. However, the use of a 2D filter for the
circle data instead of a 1D ramp filter avoids singularities
in the filtered projections.

I. INTRODUCTION

The problem of cone-beam tomography consists
of reconstructing a 3D image from cone-beam (CB)
projections sampled along a specified trajectory called the
vertex path. :

~ The simplest vertex path consists of a circle about
the object. Circle data can be efficiently reconstructed
using the filtered backprojection algorithm (FDK) of
Feldkamp et al [1], but the result is approximate. Stable
and accurate reconstruction is possible only for complete
paths: those which satisfy Tuy’s condition [2]. Invoking
Grangeat’s [3] and Smith’s results [4], Defrise and Clack
5], and independently Kudo and Saito [6], derived in
1994 a filtered backprojection (FBP) algorithm which
yields exact reconstruction when CB data are measured
along a complete vertex path. Unfortunately, the filtering
step for these exact algorithms is nonstationary, and the
FDK algorithm remains more attractive from the point of
view of numerical efficiency.

This observation suggests combining the efficiency
of the FDK algorithm with the analytic accuracy of
fully 3D FBP algorithms. This combination is possible
for “circle-plus” vertex paths which consist of a circle
plus a supplementary curve designed to ensure that
Tuy’s condition is satisfied. ~The circle data can be
reconstructed using the FDK algorithm, while the rest
of the CB projections are reconstructed using the exact
FBP algorithm [5] [6]. This composite algorithm has been
investigated by Kudo and Saito [7]. Their remarkable
work also showed the ability of the composite algorithm
to handle truncated data.

This paper presents a rigourous analysis of the CB
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reconstruction problem for arbitrary circle-plus vertex
paths. The exact DC-FBP algorithm of Defrise and
Clack [5] is reviewed in section 2. The interplay between
data redundancy and nonstationarity of the filtering
step is investigated in section 3. In section 4 circle-plus
vertex paths are considered and the composite algorithm
is derived. A major result of this derivation is that
some filtered projections contain singularities, which are
illustrated in section 4.B for the particular case of a
circle-plus-one-line path. A new composite algorithm is
proposed in section 4.C, which avoids the singularities,
processes the circle data as efficiently as FDK, and yields
accurate reconstruction from truncated data. Results
from simulated data are presented in section 5 to illustrate
the accuracy and efficiency of the new algorithm.

II. FBP RECONSTRUCTION OF CB DATA
A. DC-FBP algorithm

We consider the problem of reconstructing an object
from CB projections sampled along a complete vertex path
about the object. The vertex path is parameterized by a
scalar A varying in some interval A of IR, and the vertex
point is denoted by a(A). The object is represented by
a smooth function f(z) of finite support Q (throughout
the paper continuously differentiable functions are called
smooth functions). The CB projections

B fo g fa) + 8w, N) (D)

are collected on a 2D detector described using cartesian
coordinates (u,v). Each line integral g(u,v, A) corresponds
to a line of direction B(u,v,\) connecting the vertex
point to some point (u,v) on the detector. The distance
between the vertex point and the detector is denoted by
D. Unless specified, we assume that the CB projectionS.
are not truncated.

The DC-FBP algorithm is a FBP method which:
subject to some conditions discussed below, yields GX%Ct
reconstruction. Mathematically, the algorithm applies
to piecewise smooth vertex paths, for which the tangent
vector a'()\) exists almost everywhere.

The reconstruction algorithm consists of performl_ng 8
scaling and nonstationary filtering of the CB projection®
followed by a 3D backprojection:
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Step 1 The CB projections are scaled

9s(u,v,A) = mguv,\ (2)

Step 2 A nonstationary filter is applied. The filtered
projections g (u, v, A) are equal to the 2D backprojection:

gp(u,v,/\)=/ dps by (oo + vain g e ). (3)
0

of the filtered sinogram function

1 0 |vVs?+D?
ke(s,p, A) = i 5s {T_M(S’ [T

o) -00e,m W g5 (Res)sm V| (@

defined on the A-detector. The sinogram variables
(s,p) define a straight line L(s,u) in the detector
plane and (Rgs)(s,p,A) is the integral of gs(u,v,A)
along this line. The explanation of the weighting factor
la’(A) - 0(s, p, A)| M (s, u, ) is given below.

Step 3 The filtered CB proje'ctions are backprojected in
3D to form the reconstructed image

u? + v? + D?
/d)o. o =al ”2 gr(u,v,A) (5)

where, for A fixed, (u,v) is the intersection of the detector
with the line connecting z to the vertex point.

The significance of the factor M (s, i, A) |a’(A) - 8(s, u, N)|
at some point (o, o, o) is the following. The vector
6(30, t0, Ao) has unit length, and is normal to the plane
IT containing the line L£(s, 1) and the point a(),). The
value M (sq, tio, Ao) is the relative weight given to the
plane II to account for its multiple intersections with
the vertex path. The plane II intersects the vertex path
at n(II) vertices a(Ay), @ = 0,...,n(II) — 1 with lines
L(sa, o) on associated A-detectors. In the absence
of noise, data corresponding to each (g, fa,Aa) triple
supply identical contributions to the image and must be
given a relative weight M (sq,fa,Aa) SO that the total
contribution is unity:

n(Il)—1

Z M(Smﬂ*m/\a) =1 (6)
a=0

This relation is called “normalisation condition” and must
be satisfied for each triple (S0, oy Ao) associated with any
plane IT intersecting the support Q of f(z).

The easiest way to satisfy the norma.hsatxon condition
(6) is to take M(Sa,pa, o) = 1/n(II). This choice
Is inappropriate because the M functlon would be

iscontinuous and the outer derivative in equation (4)
‘would be numerically unstable.

The DC-FBP algorithm is a stable and exact method
for solving the CB reconstruction problem provided
the vertex path is complete and a smooth M function
satisfying the normalisation condition (6) can be defined.
A suitable expression for M was given in [5].

B. FDK algorithm

The FDK algorithm [1] is designed for approximately
reconstructing CB projections sampled along a circle. The
A-detector is perpendicular to the plane of the circle and
parallel to the vector a’(A). The wu-axis is oriented along
a'(A). The FDK and DC-FBP algorithms are similar
except for the filtering step which for FDK reduces to

+co
gr(u,v,A) = / du' r(u —u') gs(u',v, \) )

—0Q

where r(u) is the kernel of the 1D ramp filter.

III. REDUNDANCY HANDLING

A. From nonstationary to stationary filtering

The filtering step in DC-FBP, equations (3) and
(4), is the combination of simple 2D operations some
of which can be efficiently implemented using linogram
techniques [8]. Nevertheless, the succession of projection,
differentiations and backprojection is more complex
than the 1D ramp filtering in FDK, equation (7). This
complexity increases the reconstruction time and the
interpolation errors due to discretization. We have
found [9] that, given a particular orientation of the
detector, certain choices of the M function reduce the
nonstationary filtering to a 2D stationary filtering, which
can be efficiently implemented using 2D FFT code.

Assume that for a given A € A, the tangent vector a'())
is parallel to the detector and is oriented along the u-axis.
If M (s, s, A) is independent of s, i.e. M(s,p, ) = M (u, ),
then the 2D Fourier transforms of gr and g5 are linked by
a simple 2D filter

Fage(kus by, A) = Ha(ku, ko) Fogs(ku, ko, A) - (8)

the expression of which is given by
1 s
Hy(ku, k) = 3 [kl M(arctan 22,0)  (9)
D k.,

where the arctan function is defined with its value in [0, 7).

Note that equation (9) reduces to the 1D ramp filter when

M is constant. More details can be found in [9].

Thus, if we can find solutions M(s,u,A) to the
normalisation condition which for some A are independent
of s, then for those values of A, faster and more accurate
filtering will be possible. The composite algorithms in
section IV are based on this idea.

B. Support of the kernel

Another disadvantage of DC-FBP is the global action
of the filter. Owing to the projection and backprojection

17NN



steps in equations (3) and (4), the value of the filtered
projection gr(u,v,A) at any point (uo,v,) depends on the
value of the projection data g(u,v,A) at all u and v. In
contrast, in FDK, the value gr(uo,vo, A) depends only on
the projection data g(u, v, \) along the line v = v, parallel
"to the u-axis in the detector plane.

We have investigated the kernel support of the 2D
stationary filter of equation (9) and found that its action
is that of a ramp filter in the u-direction plus a weighted
sum of ramp filtering in a range of directions inclined at
an angle a with respect to the u-axis. Specifically,

M(Z, A o
gr(u,v,A) = —(—bv—)gg(u,v, A) +[0 daq(a) g% (u,v,A)
(10)
where ¢%(u,v,)\) is the result of the convolution of
gs(u,v,\) with the ramp kernel along the direction
making an angle a with the u-axis:

+o0
9%(u,v,A) = f du' r(u')gs(u — u' cosa,v — u'sina, A)
—o0
(11)
The function g(c) is given by
7r sin @ — COS Q¥ =1
gla— E) =5 M (o, \) — 5D M (a, ) (12)

where M and M are the first and second derivative of
M (g, \) wr.t. g, and M(p+m,X) = M(u,N).

*If for some small y, € [0,7/2], M(p, ) is constant in

the range p € [7/2 + o, 37/2 — po] then the function g(a)

in (10) is only nonzero on the range [0, uo] U[m — o, ] and

the filter kernel has a wedge-shaped support of aperture

2u, about the u-axis.

IV. COMPOSITE ALGORITHMS

A. The composite algorithm

The vertex path a(A) considered in this section is the
union of two subpaths a(A;) and a(Az) with A = Ay U Aa.
The subpath a(A;) is a circle in the plane z = 0. The A-

detector is oriented so that u- and v-axes can be chosen .

along a'()\) and the z-axis. The subpath a(A2) consists of
one or more segments of curves such that the circle-plus
path a(A) is complete.

' The application of DC-FBP with the smooth M
function of [5] generally involves a nonstationary
filtering of each CB projection, which is rather complex
numerically. A more efficient approach for a “circle-plus”
path consists of processing the circle data using FDK
and appropriately processing the rest of the data to
achieve an exact reconstruction. This method is referred
to as the composite algorithm. Applying FDK to the
circle data is equivalent to applying DC-FBP with
M(s,p,A € Ay) = 1/2 (see [5]). The normalisation
condition (6) can then be fulfilled only by taking the

R

following expression for M (s, p, A € Az):

Mo (s, p, A) if TI(s, u, A) N a(Ay) =0
M(s, A € A2) :{ 0 el s
(13)
where II(s, 4, A) is the plane defined by the triple (s, 1, A),
and Mc(s,p,\) must satisfy a normalisation. condition
similar to (6), but restricted to those planes intersecting
the subpath a(As) but not intersecting the circle. A
suitable expression for Mc(s,u,A) can be obtained by
applying the general formula of [5] to a(A2). The filtered
projections are then obtained:

o using equation (7) for the circle data, A € Ay

e using equations (3) and (4) for A € Aa, with the M
function in (13)

Note that although- the normalisation condition
is satisfied, smoothness is not assured; this aspect is
discussed below.

B. Singularities in the composite algorithm

To simplify the discussion, we restrict to the case where
a(Ay) is a line segment orthogonal to the circle through
some circle point. The detector is parallel to the line and
perpendicular to the circle, with the v-axis parallel to the
z-axis. The M function in (13) then becomes:

1 ifl'I{s, ,/\ aAl =0 :
M(s, X € A2) = { 0 e T g
Given a fixed p, M(s,pu, A € Ag) is discontinuous in s at
the point s.(u) where the plane II(s,z, ) is tangent to
the circle. This discontinuity results in singularities in the
filtered projection gr(u,v,A) along the curve C which is
the CB projection of the circle. The general proof of this
result is beyond the scope of this paper, but the argument
can be sketched as follows. Owing to the action of the
outer s derivative in (4) on the discontinuity of M, the
function kg (s, u, A) contains a boundary term proportional
to 6(sc(u) — s). The corresponding contribution of this
boundary term to the filtered projection is

/ﬂ dp[...]8(sc(p) — ucospu — vsin )
0

= Zi[- : -]/l%(u?) +usinpf —veospi|  (19)
where p are the angles, if any, such that
ucosp! + vsinp; = sc(pi). A simple geometrical
argument shows that the expression in (15) is singular for
any point (u,v) lying on C. It can be shown that this
singularity also occurs if the p integral and the outer 8
derivative in equations (3) and (4) are permuted as in the
algorithm of Kudo and Saito [6].

C. New composite algorithm

We derive in this section a new composite algorithm
which avoids singularities and reconstructs the circle data




using a 2D stationary filtering which can be implemented
almost as efficiently as the 1D ramp filter in FDK.

The singularities in the composite algorithm arose from
the discontinuity of M for the planes (s, (u), u, A € As)
which are tangent to the circle. Hence, to avoid this
discontinuity, it is necessary to replace the weight function
used for the circle data in the composite algorithm,
M(s,p,A € Ay) = 1/2, by another function which
smoothly tends to zero as the plane II(s, u, A € A;) tends
to be tangent to the circle, that is, as p tends to #/2. On
the other hand, to satisfy the normalisation condition,
the weight M (s, s, A € A1) should be equal to 1/2 for all
planes which do not intersect a(Az). A smooth expression
for M(s,pu, A € A1) which meets these constraints is:

e R if | cos p| > sin p,
(.2 € A1) = At —exp(ﬁycfj—i%zmn otherwise
(16)
where p, is a small fixed angle. Note that this function
is independent of s and hence, according to the results
in section 3.B, the filtering of the circle data will be
stationary. Given equation (16) for the circle data, it
can be shown that the normalisation condition for the
composite path a(A1) |J a(Az) is satisfied by the following
choice of M for the subpath a(A2):

= | Mo(s,m ) if (s, 2, A) N (A1) = 0
M D { Mo (s, 1, A) (1 — 2M (4, ")) otherwise
(17)

where A* € A; is a vertex point on the circle and in
the plane II(s,u,A), and p* is the angle of the line
of intersection of II(s,u,A) with the A*-detector. The
function Mg (s,p, ) is defined as in equation (13) with
the smooth solution of [5]. -

For the redundancy scheme of equations (16)
and (17) to work, it ‘is vital that the planes which
intersect the circle nearly tangentially also intersect
the complementary subpath a(Az). Therefore, for this
method, the complementary part of the general circle-plus
vertex path must intersect not only the planes which do
not intersect the circle, but also the planes which are
tangent and nearly tangent to the circle, more specifically
the planes such that |cos u*| < sin p,. Since the value of
Uo can be small, this modified completeness condition is
only slightly more restrictive than Tuy’s condition.

In summary, the filtered projections in the new
composite algorithms are obtained:

e using the 2D stationary filter, equation (9), with M
given by equation (16) for the circle data, A € Ay

® using equations (3) and (4) with the M function of
equation (17) for A € A

D. Reconstruction of truncated CB projections

We discuss here the case where € is an infinite cylinder
of radius r, oriented along the z-axis. The projections
are truncated along z, and we attempt to reconstruct a

finite cylindrical region §24 for which there exists a u, such
that the modified completeness condition of the path is
satisfied.

The detector geometry of the circle-plus path remains
the same as in section 4.A, except that for A € Ay we
now require the detector to be parallel to the z-axis, with
the v-axis oriented along 1,. The detector covers a region
D) = {(u: V)| 4] < Umax, Umin < ¥ < Umax}s where vpin
and vYpmax may depend on A. The value of ©pay 15 considered
large enough to avoid truncation in u-direction. We denote
the unmeasured region of the data as:

T(A) = {(u,v)| g(w,v,A) # 0 and (u,v) € D(A)} (18)

Kudo and Saito [7] have demonstrated that the
composite algorithm can be used to reconstruct 2 if
the values of wmin and wvmax are appropriately chosen.
We show here that the same property holds for the
new composite algorithm. This is due to the fact that
the 2D kernel applied to the scaled projections has a
wedge-shaped support covering a limited angular region
around the w-axis. Specifically, for any A € (A; J A2)
the calculation of gr(u,,vs,A) involves only the values
of gs(u,v,A) within a horizontal wedge W (uo,v,,A)
centered on (uo,v,) and bounded by two lines L(s,,p,)
and L£(s,,,), which contain (u,v,) (the pairs (s,,u;)
and (s,,p.) depend on u,, v, and A). Therefore, the
filtered projection can be calculated from truncated data
within the region

E(N) = { (o, v0)] W (1o, 00, 3) () T(N) = @} (19)

As can be seen from equation (5), the image fa(z) can
be reconstructed at any point x, such that for all A €
(A1 U A2) the CB projection of x, onto the A-detector
belongs to the region E(A). The region of interest 2y, can
be reconstructed if, for all A, the projection of {1 onto the
detector is contained within E(X).

Let us briefly sketch how the wedge W(uo,v,, ) is
determined for a given path. Consider first a vertex point
along the circle (A € A;). The scaled projections are
filtered using the stationary filter of equation (9) with
M (s,p,A) = M(u, ) given by equation (16). As discussed
in section 3.B, the corresponding 2D convolution kernel
has a wedge-shaped support of aperture 2u, about the
u-axis, and therefore,

W (10,0, A) = {(,v)] [v = vo] < |u—uo|tanpo}  (20)

Consider next a vertex point on the complementary
subpath (A € Az). From equations (3), (4) and (17),
the calculation of ge(ue,vy,A) only involves the value of
gs(u,v, A) along lines £(s, ) passing through (u,,v,) in the
detector plane and such that M (s, 4, A) # 0. Observe from
equation (17) that M (s, u, ) = 0 where M (u*, \*) = 1/2,
which corresponds to a plane II(s, 4, A) which intersects the
circle a(Ay) at two well-separated points (i.e. not “nearly
tangentially”). This condition allows W (uo,vs,A) to be
determined for a given path and for a given value of p,.
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Fig. 1 Slice y = —24mm through the 3D Shepp phantom. Non-
truncated data: (a) DC-FBP (b) New algorithm. Truncated
data: (c¢) DC-FBP (d) New algorithm. The new composite
algorithm is accurate and suited to handle truncated data

V. IMPLEMENTATION AND SIMULATIONS

Simulations were performed using the 3D Shepp
phantom of intensity ranging from 1.0 to 2.0. The vertex
path, located on a virtual cylinder of radius 300mm,
consisted of a circle (120 vertex points) plus a one-turn
helix (60 points). The pitch of the helix was chosen
so that the path satisfies the modified completeness
condition for y, = w/15. The vertex point was always
a distance D = 300mm from the detector, and the CB
angle for a circle point was 2 x 18°.

Non-truncated projections were collected considering a
detector of 128 x 128 square pixels each of side 1.9mm.
Truncation was introduced by reducing the number of
pixels along the v-axis to 86. The data were reconstructed
on a grid of 100° cubic voxels of side 2mm, using DC-FBP
and the new composite algorithm. Images were displayed
on a compressed greyscale ranging from 1.005 to 1.04.

Figures 1a,b show the slice y = —24mm for the case of
non-truncated data. Despite careful implementation [8]
of nonstationary filter, DC-FBP. appears slightly more
sensitive to discretization errors. The reconstruction cpu
time on a SUN Ultra Sparcstation (167MHz) was 761s
for DC-FBP and 403s for the new algorithm (See [9]
for a detailed breakdown of reconstruction times). The
new composite algorithm achieves faster and accurate
reconstructions.

Figure lc,d shows the same y-slice when data are
axially truncated. DC-FBP yields reconstruction of poor
quality. Artefacts are present throughout the image and
the quantitative accuracy is poor. The new algorithm

yields accurate reconstruction inside a certain region

of interest, which demonstrates its ability to handle
truncated data. '

VI. DISCUSSION AND CONCLUSIONS

A rigourous analysis of the CB reconstruction problem
has been given for arbitrary circle-plus vertex paths.
The composite algorithm of Kudo and Saito [9] has
been shown to introduce singularities in some filtered
projections even when the data are smooth. One way to
handle this difficulty would be to ignore it and to rely on
the discretization of the data to approximately integrate
the singularities. We have derived a new exact composite
algorithm which avoids the singularities and keeps the
advantages, i.e. efficiency and ability to handle truncated
data, of the original method of Kudo and Saito.
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