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INTRODUCTION

‘When objects are investigated under transmission radia-
n, information about the objects is conveyed through
it projections. The calculation of the structureof the
jécts is reduced to the problem of extracting and syn-
sizing the information locked in their projections. When
jeveloping general methods of recovering objects from - .
heir projections, we shall illustrate the two aspects of
the problem through examples taken from electron micros-

copy of bimolecules.

in ref. 1 we gave conditions under which the problem

““of recovering the structure of a given object from a set of
' projections could be solved, i.e., that there is an oper-
or R{r} which pairs the given projection set p(x, T) with

e desired function p(x) as follows:

p(x)=R{t}p(x, ).

Let us now formulate the requirements which must
be ‘satisfied by the recovery operator.

the

(1)

1. The operator R{r} must be defined not only on
e—dimensional complete sets {r}butalso ontwo-dimen-
sional complete sets {7}. . /

. 2. The operator R{r} must use all the information
cked in each projection which it can process. ;

At first glance the first conditions can appear redun-
dant if one considers the results of ref. 1,where it was
shown that in order to recover the desired function p(x)
it sufficed to consider only the projections of the function
‘¢oncentrated along complete curves T on a sphere of di-
‘rections. In this case R{T} could be constructed via re-

ults already cbtained. For example, for a complete
urve the projections of the object corresponding to some
emicircle are calculated from Eq. {(7) of ref. 1, and then
he Radon recovery operator is applied. However, inprac-
ce the set of known projections {7} is discrete, and to
btain a continuous set {7} some interpolation procedure
s needed. When the original set{r}has certainproperties, .
it can happen that the approximation of {1} by a two-di-
mensional set is more advantageous than the approxima-
tion of {7} by a one-dimensional set.!) We give an example
of such a siﬁtaﬁon below for an object with point group 53.

The first requirement implies that the choice of the
recovery operator is not unique. In fact, the information
locked in the various processable projections for some
two-dimensional region on the sphere of directions is
Strongly redundant. Without loss of information about the

429 . 5ov. phys. Crystallogr., Vol. 20, No, 4

A direct method of recovering three-dimensional functions from their projections is proposed; it is
especially suitable for the recovery of the structure of biomacromolecules from their electron micrographs.

original object, part of the projections can be selected or
only selected portions of each projection need be proc-
essed. To each such brocedure will correspond its own
recovery operator. In order to remove the indeterminacy
in the choice, practical necessity requires that the second
condition be imposed.

THE RECOVERY OPERATOR IN THE
GENERAL CASE

We now show that the recovery operator can be cho-
sen in the form

B S B ,px—x"1) (2
O L e ?
L([x==xT7) = x| SdG,G (t'rx). (2b)

G

In these, G is some complete one- or two-dimensional re-
gion; dG, is the element of length or area; A is the La-
place operator; Z; is the plane passing through the co-
ordinate origin and perpendicular to the vector 7; § (r'rx")
is the one-dimensional delta-function, and (t'7x') is the
triple scalar product of the vectors 7', T, X'. FGisa
two-dimensional region, then L([x']), which depends only
on the direction of its argument, is equal to the length of
the are of the great circle lying inside the region G and
passing through the ends of the vectors T and x' | x' "L
G is a one-dimensional region T, then

[+x]

2¢)
131k £

L' D= Y eI, m= 1=,
k

i.e., L([1x')) is the sum of reciprocal projections of the

unit tangent vector to the curve T at-all points at which T
intersects the great circle perpendicular to the vector m,
where the projections are along this vector. The integral
over the plane Z in (10) has a removable singularity for
certain x', when 1 is a boundary vector.

To prove (2), it suffices to show that i
1 ASdG‘ISdS' §(x—x, 1)

(2m)?* IXTL([=]) -
In fact, if we replace the left and right sides of (3) by
an arbitrary finite function p(x) we get (2). Consider the
expression

8(x)=— (3)

= 1 , d(x—x,7) _
i 0 Aagdg'ids
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[x —T(T)[™*

- {2:}, §dG,

Lt=x)).
1 [ — (vk)y =
=~ @yl 1x! o< T L(E) @

" where k = x+|x|~!. The integral in (4) does not depend on -

the vector k. In fact, if we use the representation T=
k {kT) + 7,, then we obtain

ACe=—d(tk)dgs,,

( = [ — (ekyz-h g d (kt) dq]\'_{
¢ Ll=k) VI— (k) L([v k)
' dgq | d arc cos (tk) H
=\ —rEme e e

If we now substitute (5) into (4) anduseA|x|'1=-4176 %),
we get [ = §(x), which is what we set out to prove.

We now show that if G is a great semicircle perpen~
dicular to the vector n then (2) becomes Radon's equation.
To see this we note that

[ (nx")|

o el 6
I (8)

L-'{[x'])=
In(x—x")|

— L =-28n(x—x") (ntV)*In|x—7(x7v)—x'l. (7)
|x— (xT)—x"]

If we substitute (6) into (2) we use (7), we get Radon's
equation:

p)={doegms § o6\ Dlnjmrix—xylan, @)

* o -

where
d a a d
n=(nix’), A= (;_n‘n‘ e ) (6_zi R azm)
=(V)*~(a¥)*, b

or

——1—§d § [p (x,7) — p(x + [Tn] M, T) (8b)

p(x}_ 2:":30 cpf_m l.la p p ]1]: ] )

To recover objects from coaxial projections, a meth-
od for the "synthesis of projecting functions" has been
proposed in ref. 2, with

¢ 9
Z(x)= S dipep (X, T) ®)

and it gives a fairly good approximation to the function
p (x), which is to be recovered. The precise method of
recovery defined by (8) can be called modified synthesis
of projections. -

The Radon equation can be obtained directly from the
relation between the two-dimensional synthesis T and the
desired f;_:mction, as stated in ref. 2:

p(x")

J'dS* T () IxI. -(10)

This last relation féllows immedlately from (9) and the
equation defining the projection p(x, T) from the known
function p{x):
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o0

2(x) ={do. § p(x+)a

—

§ dcprS o (x + vf) dt

i3

an o
. Sm_wd%;
o

Sdsf P(X-I-x]

le —p{x)lxrl‘

(11)

0 I

If we regard (10) as an integral equation, we may solve
it as follows

o ) 2=

Now we substitute (9) into (12}:

Z(x")

x|3

E(x)] x[1= as'. (12)

(x} (21’!}’

Y

p(x)= —~?~2—§-}-—2- A‘S;ﬁpt Sdsr p(x', ':)

13
o (13)

l'l

If we take into account the fact that the function pfx,T)
does not depend on the coordinate along the direction of
T, we may integrate along this direction and obtain (8).
Another derivation of this equation is given in ref, 3.

Now consider the case where the region G is a hemi-
sphere. Then L ([tx']) = 7, and therefore

1 —
p()= — g A Sdnt [ asr oE=X\0), (14)
]
This can be rewritten in the following form:
1 fa r
pE) = Sm‘ SdS px ) —p(x', 1) (142)

|x —t(xt) —x"|P °

Equations (14) and (14a) can be derived directly via
the operator given in ref, 2; this operator is the spatial
synthesis of the projecting function and is defined by the
equation -

2 = {0 (x, 0 = *}Bdfztp (x ), as)

in which dQ; is the solid angle element, The integral in
the first case is taken over the surface of the hemisphere,
and in the second case the integration' is extended to the
whole sphere G. In this article we have given a relation.
between the spatial synthesis and the desired function p{x)

Ip(x '}|= aF'mp (iﬂ;l-’. (16)
Tﬁlsrrelation is proved in the'same way as (10):
(x) = w%-gdﬂ.j;.p(x +at)dt = §dn,:§p(x +wt)dt
- §§M Pt g, = { av” % )

If we consider (16) as an integral equation defining
the function p(x), we may then write its solution as

p(x)=— QZ(x)le”

(2 )25

If we now substitute (15) into (18) and then integrate with
respect to the coordinate along the direction T we get (14)
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RECOVERY OPERATOR FOR
' SYMMETRIC OBJECTS

If the object has point symmetry group g, then (2) can

“be so modified that the invariance of the function to be re-
-:jcovered under the transformation operators Fy, Fyse e Fp
_of the given group g of order p can be directly inferred

from the recovery procedure itself. Just as in ref. 1 we

~introduce the group g, which differs from the group gonly
by the addition of a center of inversion (of course, if the
soriginal group g has a center of inversion, then g = g}, and
We partmon the sphere of directions S into independent

regions Gy
(19)

ZF"GN ZGm

A=1
where Fi are the transformation operators of the group

g, and p is the order of this group. Let us now suppose
that the projections of the symmetric object are known,

““where the projections correspond to some complete re-
“gion Go*€Gy. In ref, 1 we indicated the properties which

the regions G¢* must have for all groups.

From regions of type Gg* form the region

b
C= Z F.Go (20)
and introduce _
L' =1x| § 468 (), (21a)
G
5 _ 2
L(x)= Z‘U (Fpx) = LZ " (Fax). (21b)
k=1 k=,
Then
P
p(x)= Y p (Fx), — (22a)
;_l X
Tr e 1L P, , P(x—x,1)
px)=— 2ny p SdG,SdS [ X" TL([xx])
Gy & :
1 ’ p(x ey x’! t}
SR AN N a3 (22b)
(2m)* S R

’ P e —
& & IXIYLEED

To prove (22) one need use only (2) for the region (20)
cand the relations

(23)
(24)

p(x, Fr)=p(F~'x, 7),
L(F[wx'])=L{[«x'])

If G* coincides with the region G, then (22) are sim-

plified since L ([rx]) = 27.

Therefore, in this case recovery is achieved as fol-
lows:

P
pe= Y0 (Fu¥) (252)
A=l
p‘(X)=—-8—n3£a§th Sds_P{"l—xT )
; 3 _
U P (g Sd‘g P, ) —p(x—x,7)  (25b)
8“"1’08. ] xF
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CALCULATION OF STRUCTURE FUNCTIONS
OF BIOLOGICAL OBJECTS

Let us now discuss the application of the theory de-
veloped above to actual calculations of the structures of
biological macromolecules. To do this we must make the
following observations.

1. Electron microscopy of biomacromolecules stud-
ies objects via "models" of them, models which are ob-
tained from contrasting specimens, whose dispersions are
characterized by the length A = 15-30 A. The real dis-
tribution of the contrast density p ©X(x) can be expressed
in the form:

p=(x) =p (x) +p(x), (26)

where p(x) is functionally related to the density of the ma-
terial of the object itself, and ¢(x) is a function describ-
ing the noises present even when p(x) is homogeneous. The
characteristic length for the noise variation is of the or-
der of the length dimension of the macromolecule, D. Pho-
tometry of micrographs of the object therefore leads to
the function: :

Pe (1) =p(x, )+ (), (27)

where §x) is the microphotonoise function. The theoryde-
veloped in this article ignores this. Therefore, the pres-
ence of noise must be allowed for when the recovery al-
gorithm is constructed.

2, Only a finite number of microphotographs of the
object are ever at the disposal of the experimenter, There-
fore when the recovery algorithm is constructed, we must
consider how many projections we will need in order to
recover the function p(x) to the specified accuracy.

3. The determination of the orientation of the projec-
tion of general position from the micrographs is a prob-
lem in itself; it has not yet been solved.

The first difficulty can be overcome within the theory
we have developed. To see this we note that (2), (8), (14),
and (22) contain the Laplace operator. I we take into ac-
count the fact that D > A is usually the case for electron
microscopy of biomacromolecules and therefore P(x) is a
slowly varying function when compared with’ p (x, 1), then
we have that

Ape(x) =Ap(x. ) [1+0 (WD) ]. (28)

Thus with an accuracy of 1% the Laplacian of the
function given by the photometer coincides with the La-
placian of the projection. Recovery is defined by the pro-
cedure :

P = (a0 0 e
B _ 1 , A (x +x') 29b
(5 7) = ~ 5“ Eirric

The same result follows if the calculations are derived
from (8), (14), and (22). We note also that the proposed
direct method of recovery requires fewer calculations as
compared with the binary Fourier transform method of
ref. 4, and this means that the noise can be more effec-
tively tuned out.?) The dimensions of the calculation re-
gion almost coincide withthe dimensions of the objechtself.
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Let us now calculate the number of projections of the
object we need in order to determine the function p(x) to
the specified accuracy. In order not to make the deriva-
tion overlong, let us consider the coaxial projection case.
Let us write (13) as

p(x)= qu»tco{x, 7),

where we use the notation

1
o) :LdS

Let us divide the interval [0,n] into N parts anduse
the trapezium and Simpson's rules to estimate the inte-
gral. In the first case we have

. p(x,7)

iy x|

(30)

n:

12N=cb aq;

o(x)=A {%{0.+m1+_..+&x_,] (1-

where
®k=¢ (xl “l)@ TQET{qu} =T (%k)n @“:0 (x? “.)‘
v=1(g"), 0<gp'<m.

In the second case we have
p(x) =4 {%}[d’ﬁ@ﬁ e Oyt 2(O Oyt ...+ D) ]
nt 1 @
Tl S sy }
4 (1 180N° ©° dg' )

In this we have assumed that N is even., We now show that
1/ &) (8% 8¢ ~ (D¥AY. If we use (30) we get

(32)

B al 1 : 1 -Qz—
aT)zm(x.r)=_..__.(2ﬂ)zjds =g

. \

as’ - }

g (2n)* I!x—x’l [P(X, T)—A j tp (x+1:£)dt], (33)

Since the dispersion of the contrast density is character-
ized by the length A, we have Ap(x) ~p (X)/A%, Therefore

17 e
A j tolxtet)dt~— :[w:'p(x-{-rt)dt ?%p{x,r). (34)
Substituting (34) into (33), we get, if we take A < D,
2 2 et
%0(}(;1)%%0(1&;7}. (35)

If we now substitute (35) into (31) and (32), we get

in?
P(‘)=%(1_:T1:v)M°°+m'+'”+°”"] (36)
and
)= . 1o (B2 ] AlOF ... 40t 20,4 .. 42001,

(37)
In order to achieve an accuracy of p%, we must have

v - (38)

projections if the trapezium rule is used, and
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3 D
Ne =———
ST g% A

projections if Simpson's rule is used. For a specified .
calculation accuracy Simpson's rule requires fewer pm..
jections. For example, § = N7 /Ng = 2.8 when p= l%,
and 6 = 1.7 when p = 10%. 1

Equations (38) and (39) are obtaihed when the distrlbu'; [
tion of the corresponding projections of points on the semj.
circle ¢, ¥, ..., ®N can be assumed uniform. When thig
cannot be assumed, (38) and (39) must be supplemented:gy
that allowance is made for the nature of the distribution
of the corresponding projections of points on the sphere
S, and this can be described by the quantity

N—_
=-ﬂ—,-(q>r-q:a_1)’—1.
in which the bar denotes that an average is taken. The es-

timate shows that to achieve an accuracy of p% with spe-
cified v, one must take

£ et S
Nr ”T"QV (1+371)/p,

For the general case, the estimates found for the re-
quired number of projections still hold. It can be assumed
with a good degree of safety that to achieve an accuracy
of 51, N = 3D/A projections are required.

Thus we see that the natural difficulty is that of de-
termining the orientation of projections of general posi-
tion. However, for highly symmetric objects this obstacle
can be overcome since it is easy to pick out projections
taken along the axes of symmetry among microphotographs
of such objects,

Let us now consider an example; we consider an ob-
ject having icosahedral symmetry group 53 (p = 60). On
the sphere of directions, the total number of projections
along the five-, three-, and two-fold axes is 5-3+ 5+2 +
38+2 = 31, To calculate p(x), Eq. (23) is the suitable one,
with the region G, the spherical triangle with vertices at
the exit points on the sphere of directions of the five-,
three-, and two-fold axes; Fy are the transformation op-
erators of the group 53. We write the general form of the
rotation operator of angle 2rm/n around an n-fold axis of
direction k:

; 2
Fi, =I coszTnm—l-kXIsinzni m+k-k ( 1— coslm) _(40)
n

If we join the middle of the base of the spherical tri-
angle with the midpoints of the other two sides, the re-
gion is divided into three parts, two of which (containing
the axes 5 and 3) will be congruent, while the third (con-
taining the axis 2) will have an area equal to the sum of
the other two. As a result, we have

R LA CE YRR ET7 T N) N
T(x; ¥)=—A IdS'W’ (41b) .
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where Ts T3 and T are the directions of the five-, three-,

: Qnd two-fold axes,whose exit points are the vertices of the

triangle Gy.

The author sincerely thanks B, K. Vainshtein for his
constant help with the work, and also V. V. Barynin and
also E. V. Orlova for discussing the problem.

S APttt oL
1} more advantageous procedure for recovering p (x) would be one such

that when both the resolving power of the method of cbtaining the pro jec=

tions and the number of projections are specified it gives the smallest error,

J
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D1n the binary Fourier transform method mentioned noise can be eliminated
by increasing the calculation region in k space.
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