Appendix A :

Translation of
Radon’s 1917 Paper*

ON THE DETERMINATION OF FUNCTIONS FROM THEIR
INTEGRALS ALONG CERTAIN MANIFOLDS

If one integrates a function of two variables x, y—a point-function f(P) in the
plane—that satisfies suitable regularity conditions, along an arbitrary straight
line g, then the values F(g) of these integrals define a line-function. The
problem that is solved in part A of this paper is the inversion of this functional
transformation. That is, answers to the following questions are given: Is every
line-function that satisfies suitable regularity conditions obtainable by this
process? If this is the case, is the point-function f then uniquely determined by
F and how can it be found?

The problem of finding a line-function F(g) from the mean values over its
points f( P), which is in a sense the dual problem, is solved in part B.

Finally, in part C, certain generalizations that arise particularly from
considering non-Euclidian manifolds as well as higher-dimensional spaces are
briefly discussed.

Interesting in themselves, the treatment of these problems is gaining even
more interest because of the fact that there are numerous relations between this
subject and the theory of the logarithmic and the Newtonian potential. These
will be pointed out in the appropriate places.

A. DETERMINATION OF A POINT-FUNCTION IN THE
PLANE FROM ITS INTEGRALS ALONG STRAIGHT LINES

1. Let f(x, y) be a real function defined for all real points p = [x, y] that
satisfies the following regularity conditions:

(a;) f(x, y)is continuous.

(b,) The following double integral, which is to be taken over the whole
plane, is convergent:

f f (€297
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(c,) For an arbitrary point P = [x, y] and any r > 0, let
F(r) = 2 b (x + rcosé, y + rsing) d
Bo(r) =5 [Ax Ly + rsing) do.
Then for every point P,
lim f.(r) =0
r—+oo
Thus the following theorems hold.

Theorem I. The integral of f along the straight line g with the equation
xcos¢ + ysing = p, given by

(1)
F(p,¢)=F(-p, ¢ +m) =f+mf(pfm¢- — ssing, psing + scos¢) ds

is “in general” well-defined. This means that on any circle those points that
have tangent lines for which F does not exist form a set of linear measure zero.

Theorem II. If the mean value of F( p, ¢) is formed for the tangent lines of
the circle with center P = [x, y] and radius g:

— 1 2w .
(11 Fo(q) = EFIO F(xcos¢ + ysing + g, $) do,

then this integral is absolutely convergent for all P, q.

Theorem III. The value of f is completely determined by F and can be
computed as follows:

(1) f(P)=-— 5

Here the integral is to be understood in the Stieltjes sense and it can also be
defined by the formula:

(le) f(P) li O(FP(E) fm FP(Q) dq]

E £ qz

Before starting with the proof of these theorems, we note that conditions
a,-c, are invariant under rigid motions of the plane. Thus we can always
consider the point [0, 0] to represent an arbitrary point of the plane.
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Now the double integral
X,
(1 f f —zﬂ—_f’.—)—dx dy
xlayisg? yx“+y —4q
is seen to converge absolutely. Using the transformation
X =gcos¢ — ssing, y = gsin¢ + scos ¢,

it becomes

2w 0
f d¢f f(gcos¢ — ssing, gsing + scos$) ds
0 0
PR 0 K "
=f d¢f f(gcos¢ — ssing, gsing + scos ¢) ds,
0 - o0
so that its value can also be expressed as
1 r2n +o . ; _l 2w
3.‘; d¢f~mf(qcos¢ — ssing, gsing + scos¢) ds = 21; F(q,¢)do.

From well-known properties of absolute convergent double integrals, theorems

I and II follow.
In order to derive formula (III), one can choose the following path:

Introducing polar coordinates in (1) yields

fwdrfzwf(rcos¢,rsin¢) ¢

q 0 ]f'rZ s qz

or, using the mean value notation from c,:

ZWIN———'r;(r) & ?

Comparing this with the value of (1) obtained before,

S o f d)
2) R(a) =2 L:g\/_-’)_—iz
- 4q

Introducing the variables r*> = v, g2 = u, this integral equation of the first
kind can easily be solved by the well-known method of Abel, which yields
formula (III) for

5(0) = £(0,0).
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However, it seems to be hard to derive this without placing further restric-
tions on f; therefore, we prefer a direct verification.

To prove the equality of the expressions (III) and (III), it first must be
shown that

tim T{2) _ o,
g—w 9
Because of (2),
24 fo( )’d"

_f“’ Jolr) dr

<IN+ 7= [Nl (g <1<29)

Fo(4)1

and this converges to zero as ¢ — oo because of b, and c,.
Introducing (2), the right-hand side of (III’) is transformed into

] rfo() odg (o _rfo(r)
L A [ |

If the order of integration is interchanged in the second integral, one can
integrate with respect to g and see that this integral is an absolute convergent
double integral that justifies the interchange. Moreover, one finds the value

2. o b,

= lim

Tes0le pfr2 — ¢

for the preceding expression which yields, in fact, f,(0) = f(0,0), as can be
shown without difficulty.

2. Let F(p,$) = F(—p, ¢ + m) be a line-function satisfying the following
regularity conditions:
(a,) F and its derivatives F,, F,, ﬁw, F,, oy, ﬁ,w are continuous
for all [ p, ¢].
(b,) F, FE,, pF,, pF,, and pF,, converge to zero uniformly in ¢ as
p — 0.

(c;) The integrals
oo o0 ol
j; .F;,p]npdp,j; F;,Ppplnpdp,j; F,,spIn pdp

converge absolutely and uniformly in ¢.

R B
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Then we can prove the following theorem.

Theorem IV. 1f f(P) is formed according to (III) or (III'), then it satisfies
conditions a;,b,,c, and its integrals along straight lines yield the given
F( p, ¢). Due to theorem III, it is the only such function.

Introducing polar coordinates, we get
il
27?

1 o 2
S5 lnpdp‘() F,(p+pcosw,w+¢)dw

f(pcosy, psiny) = — Lw%f"ﬁ,(pcosw+p,w+|\b)dw

since

fhﬁ,(pcosw +p,0+¢)de =f2"Fp(pcosw.w +¢)dw
V] 0
+j;hdwj;)pﬁ,p(pcosw +t,w+ ) dt

and the first term is equal to zero because of F( p, ¢) = F(—p,¢ + 7). Thus
the product of the integral with In p converges to zero as p — 0. From the
same property of F, it also follows that

(3) f(pcosy, psiny) = Lfﬂrﬁi’wf+W.F' (p,w+¢)n|p— pcosw| dp

P . 2'.172 0 —o0 e 3

Now it suffices to show

+ o0 T
() [ 10,0 do = F0.3).
since the conditions a,—c, are invariant under rigid motions. We let
T
F(p,¢)= F(p. 5) +cos¢ - G(p, o).
G satisfies regularity conditions that can be easily specified. According to

this decomposition, f(p, 0) is split into two parts f,(p) and f;(p) that have to be
investigated separately. Because of

: n—————, 1ol > Iol
f In|p — pcosw| dw =
0

7ln - Pl < el
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it follows that

1 w + oo
filp) = Py 4 dwf_ F;,P(p, ;)]n[p = pcosw| dp

M wa (p z),n”" +yp*—p?
pp\ P13

Lol dj
27 Jy el i
+lf_'p'F( E)] Ip| + {p? - p?
T P G Y W P TR

Now, this is absolutely integrable from — oo to + oo with respect to p,
which can be seen from interchanging the order of integration. The value of the
integral is

dp dp

o0 i 7| + Vp? — p?
[ ey o= [ 7E,(5.5) e *’:‘Ip
LR 2o A 3).

As to fo(p), we will show that it is also absolutely integrable and yields zero
when integrated from — oo to + o0.
We can write f,(p) as follows:

1 T + 00
5H(p) = ﬁj,; dwf_m G,p(p,w)ln|p — pcosw| - cos w dw

1 ” + oo — pCos 2
=—['do [ 76, (p.w) .n|u_wmsw+m
272 S pCos @ 1 + p’cos?w

since the integral of the additional terms is zero and in this form integration
with respect to p leads to an absolutely convergent threefold integral. This is so
because of

+ o0 — 2
f cos & In| 2= PCOS @ ppCoOs‘w

oo p cos @ 1 + p’cos?w

+ 00 1 pZT
= Injl - —|+ ———|dr=2A
[Plf_m pe et T (p)
with
Alp)

m =
Ipl = IP|In|p|
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The integration with respect to p yields the value

[ “h(p)de =0,

which completes the proof of (4).

Now it remains to show that f satisfies the conditions a,-c;.
The continuity follows from the representation (3) because of the assump-

tions a,-c,. Condition b, is also satisfied since

+ oo i
f |f(pcos ¢, psiny)|dp
is integrable with respect to v, as is easily seen. To show that ¢, holds, we form

folp) = El;j:”f(pcosnp, psiny) dy

Il

T 0T el N — pcos w| dj
= [ldo [ dy [ "F,(p.¥)inlp ~ peosw| dp

4m
2 2
1 2m = lel |p|+p—pd
Ao lp| + Vp? = ¢
+f F‘pp(P‘¢,)ln 2 dp
Iel

+F(p, 4»)111% - F(p, l!l)ln%l'

from ;arhich the validity of c, can be seen. This completes the proof of theorem
Iv.

B. DETERMINATION OF A LINE-FUNCTION FROM ITS
POINT MEAN VALUES

3. Let F(p,¢)= F(—p,$ +7)bea line-function satisfying the following
regularity conditions:
(a,) F,F, F.o are continuous, | F,| < M for all p, ¢.
(b;) F,In|p| is convergent to zero uniformly in ¢ as p — 0.
(c;) [PZIF,|In|p| dpis uniformly convergent in ¢.

Again these conditions are invariant under rigid motions. We form the point

TRANSLATION OF RADON'S 1917 PAPER 211

mean value of F(p, ¢) for P = [x, y]:
1 w/2 .
(5) f(x,y)z-—f+ F(xcos¢ + ysing, ¢) do.
T my2
Then the following theorem holds.

Theorem V. F is uniquely determined by specifying f; that is
) T & 1 +m£ + 00
V) Fo.3)= -5 [t

ot

where the Cauchy principal value is to be taken for the integral with respect to
x. The value of F for any other straight line can be determined from this
formula by means of a suitable rigid motion.

To prove this, we first deduce from (5) that
B 1 p4n2 B s
(6) f_Af;(x, y)dy = ;fwﬂ dq&f_AF;,(xcosep + ysin¢, ¢)cos ¢ dy,

where A, B are two positive constants.
Now, as we have done already earlier, we let

F(p,¢) = F(p,0) +sin¢ G(p, ¢),

where G( p, ¢) is bounded in the domain of integration and has the limit zero
as p — oo. From

fﬁ G,(xcos ¢ + ysing, ¢)cos ¢ sin ¢ dy
—A

= [G(xcos¢ + Bsing, ¢) — G(xcos¢ — Asine, ¢)]cos ¢

it follows that the second term of (6) tends to zero as A — oo, B — oo thus
leaving only the first one to be investigated. Performing the analogous integra-
tion, one sees that in this first term the integral with respect to ¢ also tends to
zero as A — oo, B — co if the integration is carried out over an interval which
does not contain ¢ = 0. Therefore, it remains to consider

. 1 pte B . 7T
i;]me —f_E dq‘:f_/ff';,(xcos-;: + ysin,0)cos ¢ dy, D<e< 7

This integral can be written as

1 r+e
=3

xcosd+ Bsing

f F,(p,0)cot ¢ dp.

xcos¢p—Asing
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Then, assuming A and B sufficiently large and interchanging the order of
integration, after some computations one obtains the value

xcose+ Bsine
f In (B*+ xz)v.m €
- ——
xcos e— Bsine IBp—x B? + x? - ‘

F,(p,0)dp

xcoset+Asine
+ = In =y
7 xcose—Asine ‘AP - X\[Az + X pz‘

(A2 + x%)sin e

F(p,0)dp.

It is sufficient to determine the limit of the second integral as 4 — . We
write it as follows:

&]n(A sine)[ F(xcose + Asine,0) — F(xcose — Asin g,0)]

xcosetAsine
+ - f In

xcose—Asine
1 xcosetAsine |AP + x}AZ +x2 _pz‘
+ = In Alp + x| F,(p,0)dp.

xcose—Asine

F(p,0)d
e »(p,0) dp

Since in the last integral the logarithm tends to zero uniformly as A — co,
the limit follows:

1 pto
~2 ) _E(p.0mip - xl dp
which leads to the limit of (6):
+ o0 2 ptow
f fx, y)dy = ";f F,(p,0)n|p — x| dp.
g .

It should be noted here that the latter expression represents the boundary

values of the imaginary part of a regular analytic function in the upper half

plane whose real part has the boundary values 2 F(x, 0).
If we now form

fmdxf f(x y)dy =— fdxf F(pﬁ)ln ‘x

. in the spirit of formula (V), then this double integral is absolutely convergent
and leads directly to formula (V) since

fmlpsls

dx 7t
= -5 snp.
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4. Now let f be a point-function with the following regularity properties:
(ay) fand its derivatives up to the the second order are continuous.

(by) The expressions f(x, y), yx*+ y*In(x? + p)f(x, »),

yx2 + y?In(x? + p?)f(x, y) approach zero as x2 4yt = 0.
(c;) The integrals

f+oof+oo ]fln )dxdy

x? +y
and

f+mf+mD2fln(x2 + y?) dx dy,
-0 Y=o

where D, f means any first and D, f any second derivative, are
absolutely convergent.

Again these conditions are invariant under rigid motions. Then the following
theorem holds.

Theorem VI. The line-function formed from f according to (V) has the
point mean values f(x, y).

It is sufficient to show the proof for the origin. For an arbitrary straight line
through the origin, (V) yields after an integration by parts:

+og p+oo
‘F(0,¢) = %frm f_m [fncosqu +2f, sindcos ¢ + )‘;ysin%]

-In|xcos ¢ + ysin|dx dy

or, after introducing polar coordinates p, y:
1 o 27 62f 2
F(0, ¢) _ﬁfn pdp]; [apzcos (¢ —¥)

3 sin(¢ = y)cos(¢ ~ ¥) . & sin’(p —¢) -

+2

Iy P w 4
L sin’(e = ¥)
ap P
2 Of sin(é = ¥)eos(6 = ¥) | oo — )l dy.
2% p’
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In order to form the point mean value for [0, 0], the integration with respect
to ¢ from 0 to 2w can be carried out under the double integral, and then one
has to divide by 2#. The term containing d2f/8y? that appears during this
computation cancels when integrating with respect to  and there remains

1 r2n w1 &?f of p d( af
E.[, d*Pj; [Z(Pa—ﬁ—g)*'%lﬂi 3—9(955)] dp,

which indeed reduces to (0, 0).

In order to show the uniqueness of F, it remains to show that the conditions
a3-Cy are satisfied, which makes it obviously necessary to place further
restrictions on f.

5. Here the following remark, for which I am indebted to Mr. W. Blaschke,
who also posed the problem, should be made: Both problems treated
here are closely related to the theory of the Newtonian potential. That
is, if we consider the transition from a point-function f to its mean
values F along straight lines as a linear functional transformation

F=Rf
and similarly the transition from a line-function F to its point mean
values v

v = BF,

then it is natural to consider the composed transformation H = BR
defined by

v = Hf = B[Rf] = BRY.

It can now be readily seen that Hf is nothing but the Newtonian potential in
the points of the plane that is covered with a mass of density (1/m)f.
According to a remark made by G. Herglotz, this can be used to construct the
inverse of the transformation H; this leads to

T O oL GO NS B S Ay I C 0
f(P)=H" = 2]; rgs - 4wf_mf_m Fpp dx’ dy’,

rP

where 0, is a notation for a mean value analogous to the previously introduced
notations and A is the Laplacian operator.

Now we could think of performing the inversion of R and H, which was
done directly in 1-3 by means of

R'"=H'B and B~'=RH "
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In fact, 1 first found the inversion formula (IV) in this way. However,
carrying out this thought in a strict manner seems to be more difficult than the
direct verification, and it even fails in the non-Euclidian cases, which will be
soon discussed.

Finally, we remark that the regularity conditions assumed in parts A and B
are of course by no means the most general ones. This can be shown with
simple examples.

C. GENERALIZATIONS

6. A far-reaching generalization of the problem treated in part A could be
formulated as follows: Let S be a surface on which a line-element ds is
defined by any means, and a twice infinite family of curves C is given
on §. Then, a point-function on the surface is to be determined from the
integrals [fds along the curves C,

The nearest specialization is obtained by taking a non-Euclidian plane for S,
the corresponding line-element for ds, and the corresponding straight lines for
the curves C. In the elliptic case, the problem can be carried over to the
geometry on a sphere. Interpreting in a well-known fashion a diametrical pair
of points on the sphere as a point in the elliptic plane, there results the
problem of the determination of an even function on the sphere (ie., a
function with the same value in diametrical points) from its integrals along the
great circles. Minkowski was the first to deal with this problem in principle*)
and he solved it by expansions in terms of spherical functions. Later P. Funk
computed Minkowski’s solution and he has shown how to obtain this solution
from the Abel integral equation.! This is the method to which 1 owe the
solution of problem A. Funk’s solution is analogous to (I1I) with the exception
that the sinus of the spherical radius appears in the denominator and to the
integral there is added the value of F at the pole of the corresponding great
circle divided by 7. In the hyperbolic plane, the solution of the problem is
analogous to (III) too:

1 (o dF(q)
f(P) = Caly sinh ¢
(here the measure of curvature is assumed to be = — 1). This can be shown to

be in total agreement with the derivation of (III) indicated in 1.

In both cases, the question analogous to B can be posed also. In the elliptic
geometry, nothing new results because of the absolute polarity, and in the
hyperbolic case a solution analogous to (V) does not seem to exist.

*G fle Abhandfungen 11, pp. 2771,
YMath. Ann., 74, pp. 283-288.
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A second specialization results if (in the Euclidian or in the non-Euclidian
geometry) the circles with constant radius are taken for the curves C. Here
Minkowski’s method using spherical functions can be applied on the sphere
and so the problem can be solved to a certain degree. However, it is interesting
that in this case the uniqueness of the solution can be lost. The reason for this
is that for certain radii p defined by the zeros of the Legendre polynomials of
even order there exist even functions on the sphere that do not vanish
identically, but whose integrals along any circle with spherical radius p are
zero. In the Euclidian case, the spherical functions are replaced by the integral
theorem of the Bessel functions. Here there are always functions which do not
vanish identically but whose integrals along any circle with fixed radius yield
zero. If this radius is one then these functions are (in polar coordinates)

J"(X,p)COS ne, Jn(x-p)Sin ne,

and linear combinations, where x, is a zero of J,. In the hyperbolic case, the
Bessel functions are replaced by so-called conical functions for which the
corresponding integral theorem has been proven by Weyl.* The results are
analogous to the Euclidian case.

7. The results in parts A and B can be generalized in another direction by
passing on to higher-dimensional spaces. In a Euclidian space R", one
can try to determine a point-function f( p) = f(x,, x5,..., x,,) from its
integrals F(a,. .-, a,, p) over all hyperplanes a,x, + --- + a&,x, = p,
(a} +--- +al= I) Following a procedure analogous to that apphed
in 1, we form lhe mean value Fy(q) of F over the tangent-planes of the
sphere with center [0,0,..., 0] and radius g. It is given by the (n — 1)-
fold integral:

Fiq) = o [Fla.q) do,

where dw is the surface element and @, = (27"/%)/(T(n/2)) is the
surface area of the n dimensional sphere a? + - -+ + a2 = 1.

Fy can be represented as an n-fold integral over f:

ff J[CAEPNE S

I)q’

(7) F(q)=

(x12+ +x:_q2)(n—3)ﬂ

(xF 4ot )7

dx, - dx

n

*Gott. Nachr., 1910, p. 454,
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or, using an already often used mean value notation:
= % - (n—3)/2
Fo(4)=ﬂn—|f fo(g)(r? - ¢*) rdr.
q

This formula is analogous to (1) and has corresponding consequences. The
substitution 72 = v, g% = u leads to the integral equation

®(u) = f o(v)(v—u)""? ap.

If n is even, we get the same equation as (2) by differentiating ((n/2) — 1)
times, and from this,

$(0) = £(0,0,...,0)
can be found. Thus, for a given F, the formation of F differentiations and one

integration is necessary. If n is odd, then this integration is omitted, since we
now get from differentiating ((n — 1)/2) times:

2( l)(" /2
sz,,_,(%)!

The three-dimensional case is particularly simple, but this case can also be
treated using a method analogous to 5 that yields very elegant results. From
(7), the point mean value of F for ¢ = 0 follows:

F = 2[[_[%:#@&‘

This equation can be considered the Newtonian potential of the space covered
with a mass of density 1f. Therefore, it follows that

$(0) = o= 37%(0).

f(x’ Y z)‘_= o ﬁAF_'

where F stands for the point mean value of F.

Here also the problem analogous to B can be solved. Using the method
indicated in 5, one finds for a plane-function F with known point mean values
f that

F(E) = — — fa,rdo,

where do is the surface area element of the plane E. A is the Laplacian
operator for the three-dimensional space, and the integration is to be taken
over the whole plane E.





