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Image Reconstruction from Cone-Beam Projections:
Necessary and Sufficient Conditions

and Reconstruction Methods
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: Abstract—Previously unknown sufficient conditions, a necessary con-
" dition, and reconstruction methods for image reconstruction from X3
i : cone-beam projections are developed. A sufficient condition developed
N is contained in the following statement. ‘i
R Statement 5: If one every plane that intersects the object, there exists ¢
z at least one cone-beam source point, thén the object can be reconstructed. A o ‘
. Reconstruction methods for an arbitrary configuration of source ? H
h points that satisfy Statement 5 are derived. By requiring additional . !
W conditions on the configuration of source points, a more efficient re- e '
Aull construction method is developed. It is shown that when the configu- ]
I ration of source points is a circle, Statement § is not satisfied. In spite
: of this, several suggestions are made for reconstruction from a circle of
: y‘ source points, :
|
) *2
ifal
‘ : INTRODUCTION |
5 MAGE reconstruction from cone-beam projection data has ;
i been considered in recent years. For instance, an X-ray CT
i scanner has been designed and built for temporial three-
! : dimensional studies of the heart which use cone-beam data
R obtained at a number of source points on a circle [13]. In ¢
R positron emission tomography, fully three-dimensional data
§ ~j collection was used to lower the radiation dosage to the patient 9
1N and reduce imaging time [18]~[20]. This three-dimensional %
: ‘ data collection scheme could be cased as knowing the cone- '_ . .
® beam data at each source point on a cylinder (a cylinder with- Fig. 1. The unit vector fg , defined by & and ¢.
‘A out its’ two parallel end sections). Hence, there are several
i icati i . . . R
g1 a‘lipfhcatlons for reconstruction methods that use cone-beam ject from? Moreover, we want a reconstruction method which
i1 ata. :

can be employed when the data from such a configuration of
source points is known. The purpose of this paper is to de-
velop (previously unknown) necessary and sufficient condi-
tions that will specify which configuration of source points
we can reconstruct from and reconstruction methods that can
be employed when these conditions are satisfied.

We start in Part [ by developing a sufficient condition which
is similar to the one stated for the reconstruction formula .
given in [1]. Two better (less restrictive) sufficient conditions
are developed along with reconstruction methods that can be
employed when the sufficient conditions are satisfied. We then
verify that one of the sufficient conditions is necessary too.
In Part II, the reconstruction method only stated in [1] is
derived and substantial improvements in it are made. Finally,
in Part 111, the conditions and reconstruction methods devel-
oped in the paper are applied to the particular case of a circle
of source points. Throughout this paper we avoid giving cum-

Perhaps the first formula given in the literature which en-
ables one to reconstruct from cone-beams was given in [15].
Since the formula given in [15] required parallel projections,
the cone-beam data would first have to be rebinned into
parallel projections. Methods that do not require rebinning
f were given in [3], [4], [16]. All these methods required the
: knowledge of the cone-beam data at each source point on a
] sphere. However, obtaining and processing the cone-beam
[t data at each source point on a sphere would be a difficult and
% lengthy task. Moreover, there are situations in which a sphere
{ of source points are not known [18]-[21]. Hence, it is de-
‘ sirable to reconstruct from something less than a “sphere” of
source points.”

Hence, we are lead to consider the following. What configu-
ration of cone-beam source points can we reconstruct an ob-
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I. NOTATION AND PRELIMINARY DEFINITIONS

Let x -y denote the inner product of the vectors x and y.
The object to be reconstructed is denoted by f(x) where x =
(xy, x,, x3)7. The support of the object is assumed to be a
ball of radius R. We define By, to be a unit vector in IR® that
is represented parametrically by & and y. Explicitly we define

Bg,p = (cos g sin 8, sin ¢ sin 6, cos 8)7.

The variables 8 and ¢ are shown in Fig. 1. The greek letter 8
without the subscript 8, v will denote a vector with arbitrary
length. The following equations define the n-dimensional
Fourier transform and its inverse respectively.

FX) = x T, {f(0)} = f F6) X x (.1
an

= T=-1[F . py jx -
F = TR0} = o [ FeXax. a2

The following equations define the two-dimensional Radon
transform and its inverse, respectively.

For x = (xy, x,)7, § = (cos@,sin )" and 61 (sin@, -cos8)”
we have

P(l,8) = f F(6 +56 ) ds (1.3)

f()—-——f f P Ial (l(-))dlda (1.4)

In (1.4) the Cauchy principal value of the inner integral is
taken. By performing an integration by parts (see (4)~(8) in
[17] for details) it is seen that (1.4) is equivalent to the fol-
lowing. Let

Lz for || <e
Fe(t)=
— for |t|>e

then

f(x)-—f *f F(X-9-1)P(@,8)dldo. (1.5)

Equation (1.5) is essentially (35) and (36) in [17]. For a
fuller theoretical understanding of (1.5) see [17], [2], [5]
and [6]. For numerical analysis considerations of (1.5) see
[17]. (Also related are [24] and [25].) Now, for a given
function A, the reader familiar with the tomographic literature
will recall that
~ 11 d
-1 =2
I w] @)} = =1« ZhO) (16)
See [26] or [S], [6] for details. Using once again the same

reasoning that showed that (1.4) and (1.5) were equivalent,
we see that

(1.7)

1T | H(w)} = lim f“ F.(- 1) h(r)dr.
; €0 Yeoo

To simplify notation in what follows we will write the right-
hand side of (1.7) as

j (—l#h(’l’)d‘r

or more simply as
1

Recall that the three-dimensional Radon transform involves
the integrals of f over planes. If the vectors 8 ,, 81,81, form
a orthonormal set, then the three-dimensional Radon trans-
form and its inverse can be written as

;(5e,¢,1)=f f fBg,p, + By, +1B,,)dsdt (1.8)

f(x)=(;—ﬂ‘);foﬂf°"ai;—

- F(B.» 1) sin 6 d do.

I=x-Bg,

1.9)

In the two-dimensional case the “projection theorem” or the
““central slice theorem” is well known. In what follows we will
need the following extension of the projection theorem.

f(wBs,p) = w Ti{f(Bag,p> D} (1.10)
PART I--SuFrFrICIENT CONDITIONS,
NECESSARY CONDITION, AND RECONSTRUCTION
FROM AN ARBITRARY CONFIGURATION
oF CONE-BEAM SOURCE POINTS

II. A New FUNCTION

The following definition is basic in the sequel.

R ‘
FoopD=5 | Ttoplo]eiao. @1
The domain of F is [0, m) X [0, #) X [~9°, *0]. The following
propositions and proofs will motivate a further meaning of F.

Proposition:

R
_1 1 v
( =— —_— , t)de. 2.2
F\ﬁo,wl) T —[R (l— t)z f(ﬁo,p ) ( )
(To avoid a possible misinterpretation, recall that the right-
hand side of (2.2) involves integrals of f over planes, not lines.)
Proof: Using the “extension” of the projection theorem in

(2.1) we obtain

F(Bs,,,1)= El;f w3 {f(ﬁo,w, D} w|e/®dw. (2.3)
Using (1.7) we obtain
- 1 v
F(ﬁe,w I) = —75_ * f(BO,wv l) (24)
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We recognize (2.4) to be (2.2).
Proposition:

10" 5 fff.,u

Proof: From (2.3) we obtain

w0 T IFBo.pr D} = w0 T1 {1/ (Bo,pr D} |- (26)

Multiplying both sides of (2.6) by |w| and applying ;32! to
both sides we obtain

11 92 v
= *FBop. ) =31—2'f(50,¢, D).

F (o, t)|dt sin 6 d6 dy

I= xﬁG,

2.5)

2.7

Thus, we can write
sin 6 d6 dy

f f o P! )MM
(217)2 f fﬂ aa; f(Bo.p: D
2.8)

The proof is completed by observing the right-hand side of
(2.8) is the left-hand side of (1.9).

In what follows, we will consider F on both its whole do-
main and on the subset [0, m) X [0, 7) X [-R, R]. To distin-
guish which one we are talking about, we define Fg (8o, /) to
be the restriction of F(8g ,, I) to the domain [0, m) X [0, m) X
[-R, R]. That is, we define the domain of Fg(8g,,,!) to be
[0, m) X [0, m) X [-R, R] and define Fr(Bg ,, !) equal to
F(Bg,y, 1) on that domain.

sin 9 d@ dy.
I= x'ﬁg,w

[II. DEVELOPMENT OF A SUFFICIENT CONDITION

In this section, we develop a sufficient condition similar to
the one stated for the reconstruction formula in [1]. To do
this, we need a function that describes the cone-beam pro-
jection data at an arbitrary source point. By letting the position
of the source point be denoted by the vector ®, and the direc-
tion of the line along which f(x) is integrated be denoted by
the vector a for ||a|| = 1, we define

gl(,a,<1>)=fmf(¢+ta)dt for |leff=1. (3.1)

Rather than working with the above function it turns out to
be convenient to work with a following function.

g(a, ®) = f f(®+1ta) d? for a €IR3. 3.2)

The reader can verify that

st (g ©) G
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In words, g(a, ®) is the homogeneous extension of the cone-
beam data with a degree of -1. Now consider the Fourier
transform of g(a, ®) for a fixed &.

G(B, @)= f g(a, ®)e* P o, (3.9
IR3

{Aside: Since g only decreases as 1/“ a” as & — oo, the integral

on the right hand side of (3.4) does not exist.  The mathemati-

cally proper way to define G involves “generalized Fourier
transformations’’ as discussed in [S] fﬁ] and [8} For a

sformations” as discussed in [s1, (6}
fixed ®, define G as the generalized Founer transform of g.
The practical importance of the nonexistence of the integral
in (3.4) is that if (3.4) was used in a practical method to com-
pute G from g, the best one could hope for isan approximation
to G. An equation which could be used to compute G exactly
(at least in theory) is for

g = (cos ¢ sin @', sin ¢’ sin 8', cos 8')7,

G(B, c1>)—” Ak wo[f f £(@y, P) Fe (ae ¢ TfﬁH)

- sin 8 4’ dw'} ]
Using (3.2) and exchanging integrals we obtain from (3.4)

G(8, ®) = f ) fma f(® +ta) e P dadr. (3.5)

Perform the change in variables defined by v=®+ta to
obtain

” ityeg 1
G(B, cp):f_,, fma flv) e~ fle-®u1 Bmdvdt. (3.6)

Now let t=1/7

G(ﬁ,¢)=_f f3f(u)e'f(""">'ﬁfdu|r|dr. 3.7
-w YR

By considering the inner integral as a Fourier transformation
we obtain

G(B, ®) =f ) Fgry | 7] e/ P dr. (é.s)

Comparing (3.8) with the definition F (2.1) we obtain
G(Bo,p» D) =2mF (Bg , P * B, )-

for each source point ®.

Now, to determine a sufficient condition for reconstruction,
first observe that given g we can determine G {via (3.4)],and
given F (on its whole domain) we can determine f [via (2.3)].
We represent this symbolically as

F-f

(3.9)

g0,

If we can determine F on its whole domain, from using (3.9)
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X3

Fig. 2. The coordinate system that defines the projection data of the
“object” f1{x1, x3).

at various source points in the configuration, then we have a
method of reconstructing the object from that particular con-
figuration of source points. Symbolically, we would have

g>G—>F~f

F can be obtained from g if, for each direction By , there ex-
ists a source point ¢ such that

Bo,p @ =1 (3.10)

for all I’s oo < I < oo Since for a fixed 8y , and a fixed /
(3.10) is an equation for a plane, we have the following
statement.

Statement 1: If on every plane there exists at least one cone-
beam source point, one can reconstruct the object.

Statement 1 is (essentially) part of the sufficient condition
stated in [1].

IV. BETTER SUFFICIENT CONDITIONS

In this section, two sufficient conditions are developed that
are better (less stringent) then Statement 1. As a first step, we
need to develop a relationship between the integrals of falong
lines parallel to a given direction vector (let us call the direc-
tion vector ) and the integrals of f over planes parallel to 7.
For notational simplicity, assume 7 points in the direction of
the x, axis. Furthermore, assume that the following integra-
tion is known.

fl(xly-x;:!):f flxy,x, +5,%3)ds. (4.1)

This integration has defined the function f;(x,, x3), which is
supported by a disk of radius R. We consider for the time
being f;(x;, x3) to be “a whole new object” independent of
the original object f(x,,x,,x3). Since fi(x;,x3) is a two-
dimensional object we can take a two-dimensional Radon trans-
form of it. To do this we define

5=(coso,sin 6)" and §L=(sin §,-cos8)

as shown in Fig. 2. The Radon transform is

oo

P1(6,1)=J

-0

F1(6 +56 ) ds. (4.2)

Now, interpret what we have just done from the three-dimen-
sional point of view. Integrating f(x,, x;) along a straight
line corresponds to integrating f(x,,x,,Xx3) over a plane.
Explicitly,

Pi(0,1)=f(Bo.0, ). (43)

Although (4.3) was developed for 7= (0, 1,0)7, it is geometri-
cally clear that a similar equation holds for any other 7 (for,
where was the x, axis located in the first place?). Thus, we
can state the following.

Statement 2: The two-dimensional Radon transform of the
integrals of f over lines parallel to T are integrals of f over
planes parallel to .

Now, the following statement should be of no surprise.

Statement 3: The two-dimensional inverse Radon transform
of the integrals of f over planes parallel to T are integrals of f
over lines parallel to T.

To elaborate on this point, consider again 7 =(0,1,0)". In
this case Radon’s two-dimensional inversion formula can be
written as

~ -1 4 R 1 o
fl(xlyxZ)_z?J; J:R (X'ﬁo,o - l)z f(ﬁﬂ,(hl)dlde'

4.5)

Although (4.5) was developed for 7 = (0, 1,0)", it is geometri-
cally clear that a similar equation holds for any other 7. (In
fact, in Section V an equation for a more general 7 is pre-
sented.) Thus, we see Statement 3 is in fact true.

Now we are in position to clearly see a scheme that will in-
vert the three-dimensional Radon transform, which is an alter-
native to (1.9). The first step of this scheme is for each 7 per-
pendicular to the x5 axis determine the integral of f over the

lines parallel to 7. Then, on each plane perpendicular to the

x3 axis, perform a two-dimensional inverse Radon transform
using the line integrals obtained in the first step. In fact, this
scheme has appeared before in the literature in [7] and {10].

A slight modification of the above scheme yields a method
of obtaining f from F [which is an alternative to (2.5)]. To
see this, use (2.2) in (4.5) to obtain

T

1 .
fienx) =5 f F(Bo.o: a0 - ) do. “6)
0

Using (4.6) rather than (4.5) as the first step of the scheme
results in a method of obtaining f from F. It is of most im-
portance to more than Fg is only needed, rather than F.
Combining (4.6) with the method of obtaining G from g dis-
cussed in Section III, we have

g~>G, Frp—f.

Now we have our first sufficient condition.
Statement 4: One can reconstruct the object from a given
configuration of source points, if one can obtain Fg from G.
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Note that Statement 4 does not make any assumptions that
the configuration of source points. The source points could
be isolated source points as are obtained in a pin-hole colli-
mator, a curve of source points as discussed in [1], a surface
of source points as considered in [11], or even a “volume” of
source points; just as long as Statement 4 is satisified.

Recalling the geometric interpretation of (3.9), we can write
a second sufficient condition.

Statement 5. If on every plane that intersects the object
there exists at least one cone-beam source point, then one can
reconstruct the object.

Observe that Statement S is always as stringent and in cer-
tain cases (take a spherical symmetric object for instance)
more stringent then Statement 4.

V. RECONSTRUCTING FROM AN ARBITRARY
CONFIGURATION OF SOURCE POINTS

This section will elaborate upon the formulas motivated in
the last section. These formulas and others will be case in a
form that may enhance their numerical implementation. We
start by elaborating on (4.1). For

¢ =(cosg,sing,0)" and @, =(sin ¢, -cos v, 0)7

let P(x, ¢) denote the integral of f along the line that intersects
x and is parallel to ¢,. That is,

P(x, ¢)=f flx +5¢y) ds. (ERY)

One such @ is shown in Fig. 1.

Using this notation the gen-
eralization of (4.6) is

1 m
P = [ Fsx 0,000 52
‘ 0

For any L, 20 and L, >0, it follows from the two-dimen-
sinal inverse Radan transform (1.6) that

VRE-X3-X-3+Ly 1
f(x)- f f P(X + e, ) = dede.
VREXE-X-$-Ly €

(5.3)
Now combine (5.2) and (5.3) to obtain
. -X3-X J*’Ll
o [
RI-X3-X-3-L,y
“F(Bg,p, ) d9 de de. (5.4)

w=x* 69,¢+e sin @

By exchanging integrals and making the change in variables
defined by

[=x-fg,+esinb

we obtain
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5.7 15.6)
(3 9)
f
v (5. QK {5.3)
(3 4] P(x,'f)

Fig. 3. Several methods of reconstructing when the configuration of
source points satisfies Statement 5. The numbers above the arrows
indicate the equation which describes that step in the method.

LT 1
f(x)'4"3 J; j; fF(ﬁe,wrl) (x 'Bo,w _ l)z al

- sin 6 d6 dy (5.5)
where the upper and lower limits of the inner integral are

[L, +vVR?-x%] sin8 + x5 cos
and

[-L; - VR? - x%} sin 8 + x5 cos §

respectively, We let

R -x5cos0
Ly === -VR*-x}
sin 8
R +x5cosf
[, =237 RTTAE
sin 8

The reader can verify that for these choices, L, and L, are
both greater than or equal to zero for all —-R <x; <R and
0<6 <m Now we have

i [ [ [ e

- sin 8 dO dy.

__—_-—l—)i

(5.6)
1t is informative to compare (5.6) with (2.5).

Implementing (5.6) rather than (5.2) and (5.3) to obtain
f from Fgp may.save computation and storage. To possibly

save computation in obtaining G from g we give the follow-
ing results. For

g, 2 (cos ¢’ sin §', sin ¢’ sin 8', cos 8')",

66~ [

gl(ae,gp’ )

(Ilﬁ!l
5.7

We leave it to the reader to verify (5.7) by first writing (3.4)
in polar coordinates and then considering the inner integral
as a one-dimensional Fourier transform.

This section has provided several methods of reconstructing
when Statement 5 is satisfied. These methods are summarized
in Fig. 3.

e sin ' do’ dy'.
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VI. A NECEsSaRY CONDITION

When considering sufficient conditions, the question of ne-
cessity naturally arises. Clearly, Statement 5 cannot be neces-
sary, since a spherical symmetric object requires only one
cone-beam source point. [Aside: Although theoretically State-
ment 5 is not necessary, reconstruction when Statement 5 is
violated may be subject to numerical difficulty.] In addition,
there are practical situations (for example, electron microscopy
[15}, [22]) where the symmetry of the object is used in re-
construction. Now then, is Statement 4 necessary? Is it pos-
sible to obtain f from g when it is not possible to obtain Fg
from G? The following argument shows that this is not
possible.

As a first step, observe that one can obtain Fp from f via
(2.2) and g from G via an inverse Fourier transform. Sym-
bolically we have

G—g, [—Fg.
Now, assume that there exists a method (which may or may

not involve G and F) of obtaining f from g. Then we would
have

G->g->f->Fg.

In words, if there exists a method of obtaining f from g,
then there exists a method of obtaining Fg from G. In yet
other words, if there does not exist a method of obtaining Fg
from G, then there does not exists a method of obtaining f
from g. We combine this with Statement 4 by stating the
following.

Statement 6: To reconstruct the object from a arbitrary con-
figuration of source points, obtaining Fg from G is not only
sufficient but is necessary too. ’

PART II—A RECONSTRUCTION METHOD
FOR A CURVE OF SOURCE POINTS

VII. ASSUMPTIONS ON THE CURVE

When the configuration of source points is restricted to a
curve, a reconstruction method can be obtained which is most
likely more efficient then the methods discussed in the pre-
vious sections. In this part of the paper we develop this re-
construction method. We represent the curve of source points
parametrically by a vector-valued function ®(A) = (@,(A),
&, (A), 3(A))7 with a domain (g, b) and adopt the notation

, d®d, do, dd>3>"
(A= |\, —=,—] .
™ (d)x T dh T dh

In addition, we assume that

CI: The curve lies outside the object. That is,

|®(M)|>R  forall NE(a,b).

C2: For each pair (8, v), g, ®'(A) is piecewise continuous
with respect to X on (a, b). (See [9] for a precise definition of
piecewise continuity.)

C3: For each pair (8, @), Bg,, €I>'| A) =0 has at most a finite
number of roots. Each root has a neighborhood that does not
contain another root or another point of discontinuity.

The last assumption we make is more substantial than the
previous ones.

C4: There is an integer M (which remains constant for a
fixed curve) such that each plane that intersects the object
intersects the curve exactly M times.

[Aside: Actually the fourth condition can be slightly weak-
ened to:

There exists an integer M (which remains cons
curve) such that each plane that intersects the object intersects
the curve exactly M times except for a “set of planes” with
measure zero. )

(It is informative to compare this statement with the “geo-
metric condition” stated in [2].) A straight line of source
points does satisfy the weakened condition but does not sat-
isfy the stronger condition.]

The above conditions have been stated in rather “geometric
terms™ to help in the selection of a curve from which one can
reconstruct. However, the “geometric terms” of the above
conditions are not useful in the derivation that follows; rather,
several somewhat “analytic” conditions which stem from the
above “geometric conditions” are. In Appendix A, it is shown
that if the curve satisfies C1-C4 then the curve also satisfies
the following “analytic conditions.”” For each pair (8, ) there
exist M sets contained in (a, b)—call them (8, ¢, i) fori=
1,2,3, -+, M—such that the following is true.

Al: (8, ¢,i)isa union of closed intervals.

A2: For i # I, ¢,i)and I(8, ¢, j) contains at most one
point in common.

A3: For each pair (8, v), and for a continue function K with
support [-R, R], the following change in variables, defined by
[=®(R) - fy,,, can be performed.

fR k(l)dl= f

-R 10,90

4ot £
1amt

e Fivad
It iVl alil

iXea

k(Bo,p - D) [2'(N) - Bo,p| AN

A4: For each X such that Iﬁo.w . CD(}\)| <R, there exists an
i such that A € I(8, ¢, i) (with a possible exception of a set of
measure zero).

The I(8, ¢, i)’s are used in the following.

VIiI. DERIVATION OF THE RECONSTRUCTION METHOD

As the first step in the derivation, we use A3 in (5.6) to
obtain

_1 n ™
)= f J [( o B0 O 60

0

. I‘D'()\) ’ ﬁe,‘p!
((x - @A) “ Bo,p)”

Since (8.1) is true for i =1,2,3,- -, M and since A2 is also
true, the following can be done. Fori=1,2,3,-:+,M add
the sides of (8.1), respectively, and then divide the sums by M
to obtain

dX\ sin 8 d6 dy. (8.1)
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Using A4 and Appendix A, we obtain

oI [ [

Yo @)= Y 1600

R LA
(X~ 2() s, *

Therefore, using (3.9) and exchanging integrals, (8.2) can be
written as

=gz [ 6Gon 0w

0
|20 g
(@ - 2(N) - fo,p)*

(The above steps in this derivation were also used in [2].)
Equation (8.3) can be written as

1
e
2Mn (a,b)

8.2)

F(Ba,p, ®(N) - Ba,0)

d\ sin 6 d6 dy.

sin 8 d6 dy d\. (8.3)

|®'(M)] @
a=X-D(A)

o 20 lp : —"i—(&“

[ELCY]

(8.4)

Equations (8.4) and (8.3) are seen to be equivalent by writing
the Fourier transform in (8.4) in polar coordinations and then
considering the inner integral as a one-dimensional Fourier

transform. Now, by observing
')
(g
[EXeNl|

(N 'Bl =< (N
&Ml ol

and employing familiar properties of the Fourier transform,

we obtain

F0) =5 f( L5
'lsg“ (%%))_1 ' )l * <V° ' n:'((y)ll)

-g(a, (V) |@'(V)| ax.

(8.5)

where * denotes a three-dimensional convolution. In Appendix
C it is verified that for an orthonormal set of vectors

'(\)
&M’

it is true that -

@, (N, ¥, (V)

. P
53 s o]
. | , ,
=£ WS((DLX(A) 'a)s(q)lz(}\) - ).
l|e' M|

Thus, (8.5) can be written as

fix) = 1 ‘. ——1
T aMa? s . P'(\)
|2’

3(@1,(N) - a) 82, (V) )

')
* (V- - ,P(A
( ||<I>(x)||>g(a )

[ @' (V)] an.
az= X-®(A)

(8.6)

This equation was presented in [1], although no derivation
was given there. For a full explanation of (8.6) and how it
could be implemented, see [1].

To rewrite (8.6) in a slightly different form we use the fol-
lowing relationship. For a notation matrix 4

R(AZ)*k(Z)=h(Y) * k(A"Y)|y-az-

Now we take

(8.7)

(e = o) e
and define A4 by taking the columns of A7 to be the vectors

ﬁ%ﬂ, &1, (0, &1, (N).
Furthermore, we define

gr(a, ®(\)) =g(A7a, 2(N)).
Now (8.6) can be written as

ﬂx)=ﬁ f fw (a,l- Iy

(a,b) “-o

- gr( o, a3)", @(N) dl| || @' (V|| @

a=A(X-D(N)

(8.8)

It is of interest to note the geometric interpretation of
gr(a, ®(N). gr(a, ®(N)) describes the cone-beam data in
terms of a locally defined coordinate system at each source
point as illustrated in Fig. 4. The x; axis of the local coordi-
nate system is colinear with the tangent to the curve ®'(\).
As ®'()\) changes so does the coordinate system.

IX. AN IMPROVEMENT IN THE RECONSTRUCTION METHOD

As explained in [1], the operations to be performed at a
given souce point to reconstruct a particular point x via (8.6)
or (8.8) involves only the cone-beam data which lie on the




0. 1, MARCH 1985

L (A)-a).

J| di.
P(A)

(8.6)

.gh no derivation
(8.6) and how it

n we use the fol-

(8.7

be the vectors

| dX.
()

(8.8)

interpretation of
»ne-beam data in
1n at each source
" the local coordi-
the curve ®'(\).
m.

JCTION METHOD

2 performed at a
point x via (8.6)
which lie on the

SMITH: IMAGE RECONSTRUCTION FROM CONE-BEAM PROJECTIONS 21

ot
/
/
/
/
/
/
/
/
4
1 Xy
I ,
, §.1.,”‘)
1 N
! \
| ‘\
! BIA) =Y F'(5)
T 1
P | |
] ! ,
% i I\ 3 (N
1 II 2
1

Fig. 4. The local coordinate system defined by gg(a, ®(A)). At ®(N),
the vectors ®'(A)/{¢'(M), ®1(0), ®,(X) form a three-dimensional

coordinate system. @) and ®), are picked such that the vectors

@' (N0 (N, @ (N, tg]_z(}\) form aright-handed coordinate system.

plane that contains ®'(A) and x. This cone-beam data, which
has been restricted to a plane, can be referred to as fan-beam
data. In considering reconstruction of the entire object, it is
seen that this restriction defines a one-dimensional family of
fan-beams. (In fact, later we define a function that describes
this family of fan-beams.) Furthermore, reconstructing the
whole object via (8.6) or (8.8) would require multiple (“direc-
tional”) convolutions of each fan-beam in the family. To
reduce computation it is desirable to rewrite (8.6) or (8.8)
such that only one convolution is needed per fan-beam. The
purpose of this section is to do this.

We need a function that describes the fan-beam data on the
plane that contains the reconstruction point x and &(\)-
the tangent to the curve. Towards this end, in Fig. 5 we de-
fine ¥ to be the angle between & (X\)and

(X - 2() - 2O &MY
llel*

We describe the fan-beam data on the plane that contains the
tangent and x as

X-o(\)-

gylay,ay, ®(N) =gr (o), &, cos ¥, a, sin )7, ().
©.1)

As in (3.3), gy (&1, @y, 2(N)) is the homogeneous extension
with -1° of the projection data; that is

g0 (01, @, (V) = gy (@, @z, B(V). ©.2)

[l

By defining

§4'_'()\)
- — (X -3a) - BA) T
\—X T(A) TE T
)
T -/ g
X—Q(A)—/ et

ZN)

Fig. 5. The angle y which defines the fan-beam data on the plane that

containg the reconstruction point x and ®'(A). Since CD'J_I()\) is some-
what arbitrary, so is y.

1 0 0
B= |0 cosy siny
0 -siny cosy

and using (9.1), (8.8) can be written as

-1 8(ay) !
fx)= 2 f 2 @2, 2(N)| [E(N)] AN
)=t (@, @1) 8y (0,2, 200 l=a(,a(¥-o0\»

(9.3)

where * denotes a two-dimensional convolution. [Note only
the first two components of BA(x - ®(1)) are needed in (9.3).]
In Appendix D we verify the following. If

d=(gy,0,)" = (cos g, sin 6)"

and

6.L=(02"01)

then

5(:;) .y (@, a2, B(V)

) Hillz f 5 gy1(cos 0, sin 0, 8()) 0.
o ——— 4
<1at ‘“)

04

Thus (9.3) becomes

-1 1 sin 0
f(x)_ WM j(;,b) 'X“ Q()\)P J; (ﬁ_ OL)Z
a

do |®' (V)] A\
a=BAX-d(N)

-8y, (cos g,sin 0, ®(Q)

(9.5)
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Note that this equation requires only convolution per fan-
beam. [Aside: In more detail (9.5) is

I I
T = g .L,,) PR

- lim

i [ i)

8y, (cos g, sin g, B(N))
a=BA(X-D(N))

- qin
sin

Q

d

«Q

=

NI
LA

| 1
|2 (M) dN]

In comparing (9.5) to the “extended fan-beam convolution
formula”—-(5.4 in [2] —one sees a great similarity. The princi-
pal difference between these formulas is that the operation
performed on the inner integral of (9.5) is on the plane that
contains x and ®'(X) and that this plane changes as ®'(}) or
x changes, whereas the plane on which the inner integral of
(5.4) in [2] takes place remains fixed.

PART III-SUGGESTIONS FOR THE CIRCLE
OF SOURCE POINTS

X. THE CirRCLE OF SOURCE POINTS

At the present time there are two scanners being developed
that reconstruct from a circle of source points—the cardio-
vascular computed tomographic (CVCT) scanner at the Uni-
versity of California, San Francisco, and the dynamic spatial
reconstructor (DSR) at the Mayo Clinic, Rochester, NY. Be-
cause these scanners are presently being developed, in this part
of the paper we apply the results we have developed to a circle
of source points. Although the discussion is confined to a cir-
cle of source points, much of what is said applies equally well
to other configurations of source points.

Unfortunately, the circle of source points does not satisfy
Statement 4. To see this, we introduce the following mecha-
nism to represent planes. Let the order pair (89 ,, /) represent
a plane where 4 , is the direction of the perpendicular to the
plane from the origin and / isits length (see Fig.6). From Fig.6
we conclude that the set of planes that intersect the object,
but not the circle, is the set

{(Bo,p:1): 0<8<m0<yp<mDsinb<|l|<R}

Thus the circle does not satisfy Statement 4. It therefore can-
not satisfy the fourth condition stated in Section VII either.
Hence, without making additional assumptions concerning the
object (e.g., spherical symmetry) none of the reconstruction
methods presented so far can be used. In spite of this, we are
still able to make several suggestions for the circle.

XI. SUGGESTION ONE: A CHANGE IN AN APPROXIMATE
RECONSTRUCTION METHOD

The first suggestion involves a change in the approximate
reconstruction method that is presently used in the DSR. The
approximate method used in the DSR is explained with the
help of Fig. 7. The X-ray source at ®(\) projects the cross
section of object indicated by broken lines in Fig. 7 onto the
line “T” on the detector screen. One observes that as the
source and detector rotates about the object, different cross
sections of the object will be projected onto the line “T”.

Fig. 6. The plane (8g ,, !) intersecting the circle of source points with
radius D. From the vantage point of this figure, the plane (ﬁg, )]
appears as a straight line and the circle appears as a line segment fﬁom
-D to D. The plane will intersect the circle if and only if |/{ < D sin 4.
Because of the symmetry around the x3 axis this argument is true for

all .
OBIJECT
DETECTOR
| \SCREEN
[
}
i />—L|NE'T'
-’Li /
e = '< L —PLANE OF CIRCLE
EIGN] S e e ______ﬁ OFlSOURCE POINTS
==
1
1
[}
|
I
1
\\

-~ AXIS OF ROTATION

Fig. 7. The approximation used in the DSR and a suggested change.

The only point in common with all these cross sections is the
point “o,” which is the point of intersection of the cross sec-
tion with the axis of rotation of the X-ray source points. The
approximation used in the DSR is that the data obtained on
line “T from these different cross sections are from one cross
section of the object; the cross section (indicated by solid lines
in Fig. 7) that contains the point “0” and is parallel to the
circle [13]. The change in the approximate reconstruction
method that results when one applies (9.5) to the circle rather
than using the DSR approximation boils down to the follow-
ing. At each source point backproject the convoluted fan-
beam data of line “7T” onto the nonparallel cross section indi-
cated by the broken lines in Fig. 7 rather than backprojecting
it on the parallel plane indicated by the solid lines in Fig. 7.

XII. SucGEsTiION Two: EXTRAPOLATION

There are several methods that can be proposed that involve
extrapolation. First, from the portion of Fg which can be de-
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termined via (3.9), extrapolate the remaining unknown por-
tion. If this extrapolation can be posed in the Hilbert space
setting discussed in [12], then this extrapolation can be done
via the method proposed in [12], iterating back and forth be-
tween f and Fp. To save computation observe that actually
only f rather then f needs to be solved for iteratively since 1)
the a priori information about the support of the object can
be imposed upon f and 2) Fg can be recalculated from f
via (2.2).

Thé second extrapolation method proposed involves extrap-
olating P(x,y). Once the largest portion of the function
P(x, ¢) has been obtained via (5.2) one can define on each
plane perpendicular to the x; axis a limited angle problem.
Then, on each plane one can use any of the methods pre-
viously stated in the literature to solve the limited angle
problem.

The third extrapolation method proposed also involves ex-
trapolation P(x,¢). Since P(x, y) is constant along the lines

“perpendicular to y, that is

P(x! ‘p)=P(x +S(Pl, KP)

we can do the following. Define

forall s,

x=x-(x"9)¢y

then for a fixed  consider P(x,, p) as a two-dimensional func-
tion. Now, for a fixed value of ¢ extrapolate the unknown
portion of the two-dimensional function P(x,, @) from its
known portion. If for various values the two-dimensional
function P(x,, y) cannot be extrapolated, then extrapolate
P(x,, ¢)as a three-dimensional function of the variables x,,,
X,, and ¢. This latter extrapolation can be casted in the fre-
quency domain setting by observing that for a fixed ¢ the two-
dimensional Fourier transform of P(x,, y) yields a section of
the Fourier transform of the object on the plane that is per-
pendicular to ¢ and intersects the origin. That is

7(X\p) = X\" gxw {P(xw &P)}

XIII. SuGGESTION THREE: ADD MORE SOURCE POINTS

The final suggestion made for the circle is to add more
source points. One method of adding more source points
which does not require extensive redesign of the CVCT and
DSR would be to obtain two circle of source points that are
perpendicular to each other. How this could be done is shown
in Fig. 8. This configuration of source points was suggested in
[231, [14]. Since this configuration satisfies Statement 4, the
reconstruction methods discussed earlier can be applied.

CONCLUSION

In Part [ a new function Fg was introduced. The relation-
ships of Fg with the object and the object’s three-dimensional
Radon transform was developed. By defining G as the Fourier
transform of the homogeneous extension of the cone-beam
data, we verified the following statement.

Statement 6: One can reconstruct the object from a arbi-
trary configuration of source points.if and only if one can
obtain Fg from G.

Statement 6 is both necessary and sufficient, at least from

POSITION 1 POSITION 2

o
45 as°

Fig. 8. A schematic representation of how two circle of source points
can be obtained without substantial modification of the CVCT or the
DSR. From the vantage point of this figure, the circle of source points
appears as a horizontal line segment. The line segments with a circle
on top represents the patient. First, the patient is placed at a 45°
angle on one side of the vertical and then swiveled to a 45° angle on
the other side of the vertical.

the theoretical point of view. More suggestive is Statement 5.

Statement 5: If on every plane that intersects the object,
there exists at least one cone-beam source point, then one can
reconstruct the object. :

Theoretically speaking, Statement 5 is more stringent than
Statement 6. However, when numerical stability is considered
it may turn out to be that Statement 5 will be more practical.

The reconstruction methods that require only Statement 5
would most likely require a large amount of computation and
storage. In Part II, a more efficient reconstruction method
was derivated, but it was at the cost of additional constraints
on the configuration of source points. The principal con-
straints were 1) the configuration of source points was a curve,
and 2) on every plane that intersects the object there exists
exactly M (an integer fixed for a given curve) source points.

In Part I, the ideas developed in this paper were applied to
a circle of source points. Unfortunately, we saw that a circle
does not satisfy Statement 5. Thus, strictly speaking none of
the previously mentioned reconstruction methods can be ap-
plied. Nonetheless, several suggestions were made for the cir-
cle. 1) A change in the existing approximate reconstruction
method used in the DSR. 2) Extrapolation of missing data. -
3) Addition of more source points. Many of the suggestions
made for the circle apply equally well to any ottier configura-
tion of source points that violate Statement 5.

This paper has not answered all the questions concerning
cone-beam reconstruction. First, there are questions concern:
ing the reconstruction methods developed in Part I (the meth-
ods that only require Statements 5 or 6). Is the amount of
computation and memory required for implementation reason-
able? How ill-conditioned are these methods? Experience from
two-dimensional tomography provides ample evidence that the
operator 1/1% = (or equivalently 1 J1 % 3/31) is ill-conditioned.
This experience suggests that obtaining f from Fgr is ili-
conditioned since it involves the some operator [see (5.3) or
(5.6)]. Unlike the two-dimensional case we now have another
step that may be ill-conditioned. Equation (5.7) suggests that
obtaining G from g may well be ill-conditioned too. Also,
note that obtaining G from g via (3.4) or (5.7) assumes that
the data are known for the whole cone, which, in practice may
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require X-raying the whole body. Not having the whole cone
of data would result in a problem somewhat analogous to the
“limited angle problem.” Other, somewhat related questions
concern sampling. What is the best sampling of the cone of
data itself? In the light of (3.9), what configuration of source
points results in the best sampling of Fx? What is the best dis-
crete version of (5.6), (3.4), (5.7), (5.2), and (5.3)?

There are also questions concerning the reconstruction
method developed in Part II (the method that assumes the
source points form ‘a curve). What curves other than a straight

lina catiafyu tha roriiicam-ooio 10~

ine satisty the requirements of the method? Can the require-

‘ments on the curve be reduced? Can acceptable reconstruc-

tion be obtained from curves that only approximately satisfy
the requirements? Questions like those of Part I concerning
sampling should be asked here too. Fortunately, however,
we do not necessarily need the whole cone of data at each
source point. This can be seen when the curve is a straight
line. Does any configuration of source points besides the
straight line have this property? Addressing these questions
will be the subject of future research.

APPENDIX A

This Appendix shows that if a curve satisfies C1-C4, then
Al-A4 are true. First, for notational convenience, let h(\) =
Bs,p * ®(N). Note that the functional dependence of 4 on 8
and y has been suppressed. Conditions C1-C4 imply that for
each pair (4, y) the following “algorithm’* can be used to de-
fine /(8, ¢, {), which results in Al-A4 being satisfied.

Let

a; = ith largest root or discontinuity of dh/d\ on (g, b); i =
1,2,3,---
v = the largest root or discontinuity of dh/dA on (a, b)
Ao =(1,b)
Al = (ay al)
A;=(8;-1,4),i=2,3,4,- -,

For each A; the following two step “algorithm” places A
inal(9, /) or discards it. Initially L = 0.
Fori=0,1,2,3, - until all intervals have been considered

Step 1. If the set {A€4;: |h(X)| <R} has measure zero,
then discard 4; and go to next i.

Step 2: L =L +1. If the set [-R, R] - h(4,) has measure
zero, then define /(8, ¢, L) = 4;; otherwise, there exists a se-
quence of intervals—call them Angy for k=1,2,3,---—such
that N(k) 2 i, Ay = 4;, and Ay satisfy the following two
properties. .

1) The set-A(dyg)) N h(An¢y) N [-R, R] has measure
zero for k #j.

2) Theset [-R,R] - Uy h(Ay)) has measure zero.
Define 1(8, ¢, L) = U, /fN(k). Remove the sequence Ay,
from the remaining set of intervals to be considered and re-

‘ label the remaining intervals sequentially. Go to next i.

Take M to be the final value of L.

APPENDIX B

Let £ be a (measurable) set such that each element of £ is
either greater then R or less then - R. In set notation that is
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EC((-=-R)VU (R, ). (B.1)

In this appendix we verify that for any £ that satisfies (B. 13}
it is true that

n k. 1
0=f J‘ fFﬁ ) —————5 dl sin 9 d8 d.
A A e ( 8,9 )(X‘Bo,p_ 1)2 @

(B.2)

[Compare (B.2) with (5.6).] Using the values of L, and L,
chosen in Section V, (B.1) is equivalent to

m
- 1
0= f f P(X + e, ) dedy (B.3)
o YE' €

where £ is a (measurable) set such that
E'C((->-L- X $-VR*-X})
UL - X+ VRT XD, )
[Compare (B.2) with (5.6).] By observing forall e € £’
P(X +ge,9)=0 |

we have verified (B.2).

APPENDIX C

In this Appendix we verify the following. If the vectors X,
Y, and Z form a orthonormal set, then

oJg! {sen (X -B)} = ﬁ——Xl (Y08 a). (C.1)
First, note that

oT5! {F(B) H(B) K(B3)} = fla) h(a) k(). (C2)
It is shown in {5] and [6] that

i il

135" {sgn w} = T (©3)
Thus, we have
B R L) 4

We leave it to the reader to verify that for any rotation matrix
A

« T35 {F48)} = f(40). (€5

By taking the columns of A" to be the vectors X, ¥, and Z,
that is
@ =X, =Y, ay=Z

forj=1,2,3,(C.1) then follows.
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