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Abstract

The art of medical computed tomography is constantly evolving and the last years
have seen new ground breaking systems with multi-row detectors. These tomo-
graphs are able to increase both scanning speed and image quality compared to
the single-row systems more commonly found in hospitals today. This thesis deals
with three-dimensional image reconstruction algorithms to be used in future gen-
erations of tomographs with even more detector rows than found in current multi-
row systems.

The first practical algorithm for three-dimensional reconstruction from cone-
beam projections acquired from a circular source trajectory is the FDK method. We
present a novel version of this algorithm that produces images of higher quality.
We also formulate a version of the FDK method that performs the backprojection
in O(N3 log N) steps instead of the O(N4) steps traditionally required.

An efficient way to acquire volumetric patient data is to use a helical source
trajectory together with a multi-row detector. We present an overview of existing
reconstruction algorithms for this geometry. We also present a new family of algo-
rithms, the PI methods, which seem to surpass other proposals in simplicity while
delivering images of high quality.

The detector used in the PI methods is limited to a window that exactly fits
the cylindrical section between two consecutive turns of the helical source path.
A rebinning to oblique parallel beams yields a geometry with many attractive
properties. The key property behind the simplicity of the PI methods is that each
object point to be reconstructed is illuminated by the source during a rotation of
exactly half a turn. This allows for fast and simple reconstruction.
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1

Introduction

Computed tomography (CT) is a technique for imaging cross-sections of an ob-
ject using a series of X-ray measurements taken from different angles around the
object. It has had a revolutionary impact in diagnostic medicine and has also
been used successfully in industrial non-destructive testing applications. In 1972
Hounsfield patented the first CT scanner and he was awarded a Nobel Prize to-
gether with Cormack for this invention in 1979. Ever since, new developments
have led to faster scanning, better dose usage and improved image quality.

An important part in this story of success has been the development of new
efficient image reconstruction algorithms. Although the problem of image recon-
struction in its purest mathematical form was solved by Johann Radon in 1917,
the field is steadily evolving and gives rise to a seemingly never ceasing flow of
new algorithms.

1.1 Modern Computed Tomography

There exist many texts on the history of tomography. Webb (1990) gives a detailed
survey of classical tomography, i.e. techniques used before the computerised ver-
sion was invented, and also discusses the first CT-related patents. Kalender (2000)
presents the main developments thereafter. In this section we will focus on the on
the developments in CT during the last ten years.

The so-called slip-ring technique was introduced in CT around 1990. Previ-
ously, power support to the X-ray tube and connectors for tapping detector data

1



2 Chapter 1 Introduction

Figure 1.1 A modern tomograph (by courtesy of Philips Medical Systems).

required a set of long cables hooked to the rotating gantry. To avoid strangula-
tion, this gantry had to be accelerated and decelerated between data captures of
two successive slices. In a slip-ring system, such as the one shown in Figure 1.1,
the cables are replaced by slipping contacts for the power and cable-free optical
connections for the measurement data. Alternative solutions include on-gantry
rechargeable batteries and short-term memories, which are recharged and tapped,
respectively, over fixed connectors between two imaging events.

In any case, due to the slip-ring technology, the X-ray source could be given a
continuous and well-controlled rotation velocity, which today has been increased
to over two rotations per second. The table with the patient is translated contin-
uously to provide for exposure of successive slices. Relative to the patient, the
source is then moving in a helix with a rather small pitch. In these single-row
helical CT-systems the detector still consists of a single row of detector elements
arranged along a circular arc centred in the source. The first reconstruction algo-
rithms for this setup are also inherited from the previous planar fan-beam situa-
tion, but some precautions have to be taken. For instance, the fan-beam projec-
tions available for reconstruction of an image slice are no longer stemming from
rays that are contained in the slice.
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Figure 1.2 By collimating the beam and by adding rows together, several slice
widths are possible using this 8-row adaptive array detector. (The scale is heavily
distorted.)

Even if the slip-ring allowed for a considerable increase in speed, it soon be-
came obvious that the next generations of CT-machines would include multi-row
detectors. One manufacturer introduced double-row detectors several years ago,
but the real breakthrough seems to have happened in 1998 with at least three new
machines coming out on the market. These machines are capable to collect data
from four rows in parallel with an approximately corresponding gain in speed.
With such a relatively low number of rows the rays hitting the multi-row detector
are only somewhat more divergent in the translation direction than the single-row
rays. As a consequence, the first generation reconstruction algorithms for multi-
row data rely heavily on single-row counterparts.

Figure 1.2 shows the detector for one of these state-of-the art tomographs. It
consists of eight rows of varying widths. The detector signals are delivered to
pre-amplifiers, high-precision AD-converters and pre-processing DSPs. Presently,
these components constitute a data-rate bottle-neck and no commercially avail-
able systems today can handle data from more than four rows. This number is
expected to double within the near future. To exploit all eight rows in Figure 1.2
signals from several detector elements can be added before AD-conversion. The
detector rows have different widths which together with collimation allow for sev-
eral different configurations listed in Table 1.1. Other manufacturers have detector
rows of equal widths, or two different widths, and corresponding configuration
schemes to efficiently obtain four detector rows for different slice widths.
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Total Width Detector Rows Utilized Slice Width

2 mm 2 + 2 collimated to 1 + 1 1 mm
4 mm 2 + 2 2 mm
8 mm 3 + 2 + 2 + 3 collimated to 2 + 2 + 2 + 2 2 mm
10 mm (3 + 2) + (2 + 3) 5 mm
20 mm 5 + (3 + 2) + (2 + 3) + 5 5 mm
20 mm (5 + 3 + 2) + (2 + 3 + 5) 10 mm
40 mm 10 + (5 + 3 + 2) + (2 + 3 + 5) + 10 10 mm

Table 1.1 Possible configurations using the detector in Figure 1.2. All widths are
given as measured on the detector.

The multi-row systems provide important flexibility and trade-off between
dose, speed, signal-to-noise ratio, and z-resolution by changing the table speed,
collimation of the cone-beam, and adjusting the X-ray-tube current. The speed
of the new multi-row CT-systems is impressive. With a slice width of ∆z = 2
mm and 2.5 rotations per second, a volume covering 200 mm in the z-direction
is acquired in around ten seconds. Most patients have no problem to keep their
breaths for ten seconds, which means that breathing artifacts can be avoided, or at
least alleviated in full body scanning. One manufacturer even has a visible “egg-
clock” so that the patients know how much longer they should hold their breaths.
The rotation speed is kept constant since the rotating gantry, constantly subjected
to heavy forces of several G, is designed to work optimally at a certain speed.
The variable parameters are therefore the translation speed of the patient and the
detector row width.

These high rotation speeds not only allow for high patient throughput, but also
open up the possibility for gated tomography, where motion artifacts when imag-
ing the heart can be reduced since each phase of the cardiac cycle is measured
from a projection angle interval long enough to allow for reconstruction. The re-
construction algorithm uses the E.C.G. of the patient during the scan to determine
the cardiac phase. A recent example of gated tomography utilising a multi-row
detector is the work of Pan and Shen (2000). Other examples of medical applica-
tion where fast scanning is a virtue are volume flow analysis and dynamic studies
of a contrast agent.

The medical importance of multi-row scanners is not only reflected in the nu-
merous clinical studies using such scanners presented at scientific meetings such
as the annual meeting of the Radiological Society of North America (RSNA) but
also in articles in more popular magazines such as the cover story by Kopecky,
Buckwalter, and Sokiranski (1999) in Diagnostic Imaging.
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1.2 Cone-Beam Reconstruction

Although the projections are obtained from a cone-beam rather than a fan-beam,
the so-called multi-slice reconstruction algorithms in contemporary machines are
firmly rooted in two-dimensional reconstruction of planar objects. The multi-slice
algorithms can be divided into short-scan and full-scan algorithms. The short-
scan algorithms are dominating and these are preferably classified according to
how redundant data are handled, using smooth sinogram windowing, comple-
mentary rebinning, or parallel rebinning, as will be explained below.

It is well known that the contemporary reconstruction algorithms for multi-
row data are far from optimal. Being adaptations and approximations of the two-
dimensional case, they are not giving full value in image quality for the extensive
measuring effort. Also, any further increase of the pitch and the cone-angle will
make them obsolete. In fact, several new, fully three-dimensional helical cone-
beam reconstruction algorithms are already waiting to take over. Most of these
are using three-dimensional backprojection and they are the topic of the second
half of this thesis. It might be surprising that none of these algorithms as of yet
have been employed commercially. One probable reason is that the algorithms
used today enable re-use of existent optimised hardware specially designed for
two-dimensional filtered backprojection. Another one is the natural tendency to
move slowly on new and unbroken paths.

Three-dimensional reconstruction algorithms are conveniently divided into
exact and non-exact algorithms. An exact algorithm is mathematically correct in
the following sense. Let ε be the largest allowable deviation between the object
function and the reconstructed result. Provided noise-free projection data, cap-
tured with sufficient density along the source trajectory with a detector array hav-
ing sufficient detector element density, an exact algorithm is able to deliver the
wanted result for any given ε. Non-exactness can depend on several things. Miss-
ing data is a common reason. In the two-dimensional case it is easy to understand
that if parallel projection data are lacking in a certain angular interval, certain fre-
quency components of the object function are simply missing and therefore exact
reconstruction is impossible. However, non-exactness may also be due to delib-
erate simplifications of an otherwise exact reconstruction algorithm. The gain in
speed and simplicity may outweigh the advantage of exactness.

The first successful fully three-dimensional algorithm is non-exact and due to
Feldkamp, Davis, and Kress (1984). It is presented in Section 3.2. The source tra-
jectory is a circle. See Figure 1.3. Each horizontal row of detector values is ramp-
filtered just as if they were projections of a two-dimensional object. The filtered
projection data are then backprojected along the original rays, a procedure we call
three-dimensional backprojection in the sequel. The mid-slice of the object will be
reconstructed exactly. Object points further away from this plane will exhibit arti-
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z

Source

Detector

Figure 1.3 A circular source trajectory. Image points exposed from all projection
angles are found within a truncated double cone.

facts with growing cone-angles. An object which extends above the given detector
can also be reconstructed with this algorithm, although the reconstructible part is
limited to the region where the object points are exposed in all projections. This
region is a truncated double cone as shown in Figure 1.3. Truncation of projections
in the transaxial direction is not allowed.

The exact algorithm due to Grangeat (1987) is an important milestone in three-
dimensional reconstruction. Mathematically, the algorithm is a generalisation of
two-dimensional filtered backprojection in the sense that it performs an inverse
three-dimensional Radon transform. This requires a first processing step where
the ray sums, line integrals, captured by the two-dimensional detector are con-
verted into three-dimensional Radon data, which means plane integrals. For par-
allel X-ray projections, such a conversion is easy. Each line integral in the detector
plane produces one plane integral. The divergent cone-beam projections pose a
greater problem, the solution of which is the core of the thesis of Grangeat (1987).
This algorithm requires non-truncated projections. This is unfortunate since a de-
tector that covers the patient from top to toe is unlikely to materialise.

Ideally, a helical cone-beam reconstruction algorithm should be able to output
results in a continuous fashion in near synchronism with the input data. Intu-
itively, this seems quite feasible. As soon as an object point has left the section
of exposure for good, it could appear that there is no more information to mea-
sure for this point. However, for exact reconstruction, this intuitive conclusion
seems to be at odds with the well-known Tuy-Smith sufficiency condition (Tuy
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1983), which states that all planes which intersect the object must be visited by
the source. This dilemma is sometimes called the long object problem. Recent ef-
forts by Defrise, Noo, and Kudo (1999) and Schaller, Noo, Sauer, Tam, Lauritsch,
and Flohr (1999) presented in Sections 4.1.3 and 4.1.3 have solved the long object
problem.

1.3 Main Contributions

The main contribution of this thesis is a collection of new algorithms for circular
and helical cone-beam reconstruction. These new algorithms are:

• the P-FDK method in Section 3.3.1

• the FDK-SLANT method in Section 3.3.3

• the FDK-FAST method in Section 3.4

• the PI-ORIGINAL method in Section 4.3.1

• the PI-SLANT method in Section 4.3.2

• the PI-2D method in Section 4.3.3

• the PI-FAST method in Section 4.3.4

The algorithm development has often been a team effort and it is difficult to after-
wards pinpoint which ideas originated from whom. Most of the ideas resulting
in the circular methods were by Henrik Turbell whereas the PI methods mainly
originate from ideas by Professor Per-Erik Danielsson.

A substantial part of the material in the thesis is a review of algorithms pub-
lished by other research groups world-wide. These sections hopefully contribute
as an introduction to cone-beam reconstruction using filtered backprojection and
as a unified source of references for further details. Chapter 6 contains a list on
the specific contributions in the review sections.

1.4 Outline of the Thesis

Table 1.2 shows one possible taxonomy of filtered backprojection algorithms with
one-dimensional ramp-filtering. This table also reflects the organisation of the
thesis.

Chapter 2 starts with an introduction to two-dimensional reconstruction algo-
rithms where the basic concepts of the following chapters are explained. One ap-
proach to the relatively new area of fast backprojection is presented in Section 2.3.
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Short-Scan
Type BP Full-Scan Parallel

Rebinning
Complementary

Rebinning
Smooth

Sinogram
Windowing

Circular 2D Section 2.2.2 Sections 2.2.1
and 2.2.3

Section 2.2.3 Parker (1982),
Section 2.2.3

3D FDK (Feldkamp
et al. 1984),
Section 3.2

P-FDK (Turbell
1999); HT-FDK
(Grass et al.
2000a), Section
3.3.1;
FDK-SLANT,
Section 3.3.3;
FDK-FAST
(Turbell and
Danielsson
1999b), Section
3.4

No known
implementation

Zeng and
Gullberg (1990),
Section 3.3

Helical 2D
to
parallel
slices

360◦LI, Section
4.2.1

Schaller et al.
(1998), Section
4.2.1

180◦LI, Taguchi
and Aradate
(1998), Hu
(1999), Section
4.2.1

CB-SSRB (Noo
et al. 1998),
Section 4.2.1

2D
to
nutating
slices

No possible
implementation

Larson et al.
(1998),
Heuscher
(1999), ASSR
(Kachelriess
et al. 2000a),
Section 4.2.2;
PI-2D (Turbell
and Danielsson
2000), Section
4.3.3

No known
implementation

No known
implementation

3D Kudo and Saito
(1991), Wang
et al. (1993), Yan
and Leahy
(1992), Section
4.2.3; n-PI
(Proksa et al.
2000), Section
4.3.5

IHCB (Silver
1997), Section
4.2.3;
PI-ORIGINAL
(Danielsson
et al. 1998a),
Section 4.3.1;
PI-SLANT
(Turbell and
Danielsson
1999a), Section
4.3.2; PI-FAST,
Section 4.3.4

CFBP (Schaller
et al. 1996),
Section 4.2.3

Wang et al.
(1994); IHCB
(Silver 1998);
SS-FDK (Noo
et al. 1998),
Section 4.2.3

Table 1.2 Categorisation of filtered backprojection algorithms using one-
dimensional ramp-filtering. The first row correponds to two-dimensional recon-
struction, whereas the other four rows correspond to three-dimensional reconstruc-
tion. The contributions of this thesis are written in bold.
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Chapter 3 deals with reconstruction from cone-beam data where the source
trajectory is limited to a circle. The chapter starts with a short presentation on
exact cone-beam reconstruction in general. The approximate FDK algorithm of
Feldkamp et al. (1984) is then presented. New rebinning and filtering approaches
for FDK are proposed in Section 3.3. The idea of fast backprojection is applied
to cone-beam data in Section 3.4. The resulting method, FDK-FAST, has some
shortcomings and the section may be temporarily skipped.

In Chapter 4 we present new and review existing algorithms for helical cone-
beam reconstruction. The exact methods are presented in Section 4.1. Space only
permits a brief and non-formal presentation, but many important concepts for the
following sections are introduced. The main focus of the chapter is on the approx-
imate algorithms in Section 4.2. The efficient and approximate PI-ORIGINAL is
presented in Section 4.3.1. New extensions and variations on this algorithm are
then presented in Sections 4.3.2 – 4.3.5.

When evaluating reconstruction algorithms it is useful to have synthetically
generated projection data as input. This provides the evaluator full control over
the geometry, noise, and related properties which are non-perfect and calibration-
dependent when using data from a real tomograph. A new method for the gen-
eration of projection data from discrete data sets is discussed and evaluated in
Chapter 5.

1.5 Publications

Certain results of the thesis have previously been published by:

• Turbell (1997)
Contains a description of the software used in the thesis to generate synthetical
projection data.

• Danielsson, Edholm, Eriksson, Magnusson-Seger, and Turbell (1998a), also
published as Danielsson, Edholm, Eriksson, Magnusson-Seger, and Turbell
(1998b)
Patent application with the first presentation of PI-ORIGINAL.

• Turbell and Danielsson (1998)
Presents PI-ORIGINAL and some of its properties in a new way.

• Turbell and Danielsson (1999b)
Presents P-FDK and FDK-FAST.

• Turbell (1999)
Licentiate thesis. Approximately half of the material in this Ph.D.-thesis is a revision
of the licentiate thesis.
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• Turbell and Danielsson (1999a)
Presents PI-SLANT and PI-2D.

• Clasén (1999), supervised by Turbell
A Master thesis on the use of teture mapping hardware for acceleration of three-
dimensional backprojection.

• Turbell and Danielsson (2000)
Review of methods for helical cone-beam reconstruction.

• Köhler, Turbell, and Grass (2000)
Presents a new method for line integration through voxel volumes.

Omitted from the list are some articles presented only at national symposia.
Parts of the work presented in the thesis has resulted in the following patent

applications:

• “Computer Tomography Method with Helicoidal Scanning of an Examina-
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2

Two-Dimensional
Reconstruction

The theory of reconstruction of two-dimensional functions from their projections
is well-known. Detailed presentations can be found in the books of Kak and
Slaney (1987), Herman (1980) and Natterer (1986) among others. Several solu-
tions to the reconstruction problem, such as transform-based, algebraic, and sta-
tistical, have been proposed and used in practice. In this brief introduction we
will concentrate on the transform-based methods in general and on the filtered
backprojection method in particular. Extensions of this method will be the base
for the new algorithms for three-dimensional reconstruction presented in Chap-
ters 3 and 4.

2.1 Projections and the Fourier Slice Theorem

Let f(x, y) represent the density of a two-dimensional object to be measured. The
applied intensity I0 from the X-ray tube is then attenuated by the object along the
line L according to the well-known formula

Iout = I0e
−

∫
L

f(x,y)dl (2.1)

By taking the logarithm of the relative attenuation, we obtain a line integral value
of the object function as ∫

L

f(x, y) dl = − ln
Iout

I0
(2.2)

11
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θ
θ

t

x ρx

ρy

Ft

y
ρ

f(x, y)

pP (θ, t)

Figure 2.1 The Fourier slice theorem. Left: A parallel projection pP (θ, t) of the
object f(x, y). Right: The one-dimensional Fourier transform of the projection is
found along a radial line of the two-dimensional Fourier transform of the object.

Hence, X-ray measurements may be considered as line-integration values after the
simple manipulation in (2.2).

Primary measurements in the form of line-integrals are the basis for all trans-
form-based CT reconstruction techniques. It should be observed, however, that
(2.2) describes an ideal situation. In a practical case, phenomena like beam-harden-
ing, partial occlusion, detector sensitivity etc., changes (2.2) to an approximation.
Nevertheless, for the sole purpose of discussing and investigating reconstruction
algorithms (2.2) is a widely accepted model.

Consider the line L as belonging to a set of parallel lines constituting a pro-
jection shown in Figure 2.1. At projection angle θ and detector position t, the
line-integral (2.2) can be written as

pP (θ, t) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(y cos θ − x sin θ − t) dxdy (2.3)

The superscript P in (2.3) indicates that the projection is parallel. It is illuminating
to imagine the projection values in the Cartesian (θ, t)-space. Edholm and Jacob-
sson (1975) named this space the sinogram since each object point contributes to
projection values along a sinusoidal curve in this space.

The Fourier slice theorem states that the values of the one-dimensional Fourier
transform of a parallel projection is found along a radial line in the two-dimen-
sional Fourier transform of the object. See Figure 2.1.

Ftp
P (θ, ρ) = F2f(−ρ sin θ, ρ cos θ) (2.4)

The Fourier transforms of parallel projections from an angular interval of length π

cover the complete two-dimensional Fourier space of the object. The object func-
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tion may then be obtained by the straight forward inverse transformation

f(x, y) = F−1
2 F2f(x, y)

=
∫ ∞

−∞

∫ ∞

−∞
F2f(ρx, ρy)ej2π(xρx+yρy) dρxdρy

(2.5)

Algorithms based on (2.5) are called direct Fourier methods. A problem when
using (2.5) in a practical implementation is that the Fourier slice theorem gives
us samples on a polar grid while the standard inverse Fourier transform requires
data on a rectangular grid. One solution to the problem is a technique known as
gridding first formulated in the context of medical imaging by O’Sullivan (1985)
and another is the use of linograms as investigated by Magnusson-Seger (1993).
The main advantage with direct Fourier reconstruction is that no step in the algo-
rithm requires more than O(N2 log N) calculations.

2.2 Filtered Backprojection

The most commonly used algorithm for tomographic reconstruction is filtered
backprojection (FBP). As the name suggests it consists of two steps, filtering of
projection data followed by backprojection (BP) . The latter can be seen as the
dual, or in a more strict mathematical sense the adjoint, of projection. Instead of
projecting density values to a projection value, a projection value is backprojected,
or smeared out, over the image points along the ray.

Although filtered backprojection has proven very popular in real implemen-
tations of image reconstruction, it is not without its shortcomings. One is the
computational complexity that slows down the reconstruction process. This is
partly rectified by the fast backprojection presented in Section 2.3. Image quality
can also be a problem. Small metallic objects may induce streaking artifacts on the
reconstructed image. Compared to so-called algebraic reconstruction techniques,
filtered backprojection is not so adaptable to missing data and partial occlusion
effects. However, algebraic techniques are typically more computationally expen-
sive and are beyond the scope of this thesis.

The computation steps in filtered backprojection depend on the ray geometry
and the following two sections present the algorithm for parallel beams and fan-
beams respectively. These sections were inspired by similar, but more extensive,
treatments by Kak and Slaney (1987) and Schaller (1998).
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2.2.1 Parallel-Beam Reconstruction

By inserting (2.4) and changing the integration variables from dρxdρy to the polar
|ρ|dρdθ, (2.5) can be simplified to

f(x, y) =
1
2

∫ 2π

0

∫ ∞

−∞
Ftp

P (θ, ρ)ej2πρ(y cos θ−x sin θ) |ρ|dρdθ

=
1
2

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞
pP (θ, t)e−j2πρt dt ej2πρ(y cos θ−x sin θ) |ρ|dρdθ

=
1
2

∫ 2π

0

∫ ∞

−∞
pP (θ, t)

∫ ∞

−∞
|ρ|ej2πρ(y cos θ−x sin θ−t) dρdtdθ

=
∫ 2π

0

∫ ∞

−∞
pP (θ, t)gP

∞(y cos θ − x sin θ − t) dtdθ

=
∫ 2π

0
(pP ∗ gP

∞)︸ ︷︷ ︸
Filtering

(θ, y cos θ − x sin θ) dθ

︸ ︷︷ ︸
Backprojection

(2.6)

where the distribution

gP
∞(t) =

1
2

∫ ∞

−∞
|ρ|ej2πρt dρ (2.7)

is often called a ramp-filter due to its shape in the Fourier domain. The right hand
side of (2.6) is a recipe for the two steps involved in filtered backprojection. First
the projection data are ramp-filtered. An image point is then reconstructed by
integrating the filtered projections along a sinusoidal curve in the sinogram over
all projection angles.

While the theoretical understanding of image reconstruction requires continu-
ous mathematics, practical algorithms only work on sampled data. Most continu-
ous variables therefore have to be translated to a corresponding discrete indexing
variable. Thus, the detector which is 2tmax length units (l.u.) long is sampled at
Nt equidistant position with a sampling distance of ∆t. Similarly, we have Nθ

projection angles sampled at a ∆θ radian interval. As Oppenheim and Willsky
(1997), we will denote sampled functions with brackets. The relationship between
the continuous projection pP (θ, t) and the sampled pP [i, k] is then given by

pP [i, k] = pP (θi, tk) (2.8)

where

θi = i∆θ, ∆θ =
2π

Nθ
, i = 0, . . . , Nθ − 1 (2.9)

and

tk = (k + Ok + 0.5)∆t − tmax, ∆t =
2tmax

Nk
, k = 0, . . . , Nt − 1 (2.10)
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where Ok is an offset constant to be discussed shortly in connection with Fig-
ure 2.3.

The sampled projections are filtered with a band-limited version of the ramp-
filter gP

∞(t), defined as

gP (t) =
∫ 1

2∆t

− 1
2∆t

|ρ|ej2πρt dρ =
1

2(∆t)2
sinc

2t

2∆t
− 1

4(∆t)2
sinc2 t

2∆t
(2.11)

The sampled values of this filter are given by

gP [k] = ∆t · gP (k∆t) =




1
4∆t , k = 0

0, k even

− 1
k2π2∆t , k odd

(2.12)

Note that we have inserted a scaling factor ∆t. This enables us to express the
filtering of discrete data as the discrete convolution

p̃P [n, k] = pP [n, k] ∗ gP [k] (2.13)

since

pP (θn, tk) ∗ gP (t) =
∫

pP (θn, tk − t′)gP (t′) dt′

≈
∑
k′

pP [n, k − k′]gP (k′∆t)∆t

=
∑
k′

pP [n, k − k′]gP [k] = pP [n, k] ∗ gP [k]

(2.14)

For efficiency reasons, the filtering is often performed as a multiplication in the
Fourier domain instead of this spatial convolution.

The reconstruction result is produced for Nx×Ny pixels with midpoints placed
on a Cartesian grid around the origin as specified by

xi1 = (i1 + 0.5)∆x − xmax, ∆x =
2xmax

Nx
, i1 = 0, . . . , Nx − 1

yi2 = (i2 + 0.5)∆y − ymax, ∆y =
2ymax

Ny
, i2 = 0, . . . , Ny − 1

(2.15)

Only pixels which are illuminated from all projection angles are reconstructed
correctly, and they constitute the field of view (FOV). These pixels are are placed
inside the circle of radius RFOV = tmax around the origin.

The ramp-filtered projections p̃P [n, k] are backprojected as

fFBP-P (x, y) =
2π

Nθ

Nθ−1∑
n=0

p̃P [n, k(x, y, θ)] (2.16)
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t
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∆x
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(x, y)

t(x, y, θ)

Figure 2.2 Backprojection in the sampled geometry. A linear interpolation gives
the filtered projection value to be delivered to the pixel (x, y).

where the index k(x, y, θ) of the ray intersecting the pixel (x, y) can be derived
from the continuous intersection coordinate

t(x, y, θ) = y cos θ − x sin θ (2.17)

using (2.10) to translate between the continuous and indexing variable. This ray
does not usually coincide exactly with the positions of the sampled rays, calling
for an interpolation in (2.16). See Figure 2.2. We will later have use of the coordi-
nate

v(x, y, θ) = x cos θ + y sin θ (2.18)

along the ray.
The measured projection data extend over a full projection angle interval of

2π. Note from (2.3) that the ray (θ1, t1) gives the same measurement as (θ1 +
π, −t1), rendering one of the two projections θ1 and θ1 + π redundant. However,
by offsetting the detector sampling pattern a quarter unit, i.e. setting Ok = 0.25 in
(2.10), the rays of the projections at θ1 and θ1 + π will interleave and form a beam
where the rays are ∆t/2 length units apart. This image quality enhancement trick
is called quarter offset and is often used in practice when data is collected over a
full turn.

For quarter offset to work optimally, the interlaced sampling patterns should
be merged into one set before filtration as shown in Figure 2.3. The filter and
backprojection interpolation function may then be designed for the double reso-
lution, while the backprojection of the merged projection data is performed over
the interval θ ∈ [0, π].
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2π
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∆t

2∆t

2∆t

pP (θ, t) = pP (θ ± π, −t)

Figure 2.3 By merging the two halves of the quarter offsetted projections, the res-
olution in the t-direction is doubled. Top: before merging. Bottom: after merging.

2.2.2 Fan-Beam Reconstruction

A modern tomograph does not create parallel beams but a set of rays diverging
from one and the same point, the X-ray source. See Figure 2.4. The source moves
in the (x, y)-plane along a circle of radius R. At projection angle β it is positioned
at the coordinate (−R cosβ, −R sin β). The detector may be flat or curved. In
medical tomography it is usually placed on an circular arc with its origin on the
source. From a physical point of view, this shape has the attractive property that
all detector elements are on the same distance from the source. The rays form a
fan and each ray is described by its angle to the central ray, the fan-angle, γ. The
projection values are written as p(β, γ. . The sampling positions along β and γ are
defined by

βj = j∆β, ∆β =
2π

Nβ
, j = 0, . . . , Nβ − 1

γo = (o + Oo + 0.5)∆γ − γmax, ∆γ =
2γmax

Nγ
, o = 0, . . . , Nγ − 1

(2.19)

Lakshminarayanan (1975) and Herman and Naparstek (1977) modified the fil-
tered backprojection formula for the parallel geometry into a formula for the fan-
beam geometry. The algorithm differs on the following three points:
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Figure 2.4 A divergent projection.

• The first step is a pre-weighting with cos γ.

• The rampfilter

g∞(γ) =
(

γ

sin γ

)2

gP
∞(γ) (2.20)

is a modified version of the original gP
∞(t) for parallel projections. Together

with the pre-weighting this yields

p̃(β, γ) = (p(β, γ) cos(γ)) ∗ g∞(γ) (2.21)

• The backprojection

fFBP(x, y) =
∫ 2π

0

R2

L(x, y, β)2
p̃(β, γ(x, y, β)) dβ (2.22)

includes a space dependent factor, L−2, calculated from the source-point
distance

L(x, y, β) =
√

(R + x cosβ + y sin β)2 + (−x sin β + y cosβ)2 (2.23)

The ray intersecting the pixel in (2.22) is given by

γ(x, y, β) = arctan
−x sinβ + y cosβ

R + x cosβ + y sin β
(2.24)

If a flat detector is used instead the rays are not sampled equiangularly but
equidistantly along the a-axis in Figure 2.4. This places the detector on the axis
of rotation, the z-axis, which of course is physically infeasible since the object
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to be measured should be positioned there, and we may therefore refer to the
detector as a virtual detector. The detector coordinate on an actual detector placed
further away from the source is then obtained by a pure scaling of a. We write
the projection data as pF (β, a) where the superscript F stands for flat. They are
related to the the equiangular projections as

pF (β, a) = p(β, arctan
a

R
) and p(β, γ) = pF (β, R tan γ) (2.25)

Reconstruction by filtered backprojection for this geometry requires that the data
are pre-weighted and ramp-filtered as

p̃F (β, a) =
(

pF (β, a)
R√

R2 + a2

)
∗ gP (a) (2.26)

Note that the ramp-filter is the same as for the parallel beam. The backprojection
is similar to (2.22) but with a different weighting function.

fFBP-F (x, y) =
∫ 2π

0

R2

U(x, y, β)2
p̃F (β, a(x, y, β)) dβ (2.27)

The detector position is given by

a(x, y, β) = R
−x sinβ + y cosβ

R + x cosβ + y sin β
(2.28)

The weighting in (2.27) is a function of the distance U(x, y, β) between the source
and the line parallel with the detector that intersects the image point (x, y) as
shown in Figure 2.4. This distance can be expressed as

U(x, y, β) = R + x cosβ + y sin β (2.29)

2.2.3 Short-Scan Reconstruction

The previous two sections presented two main categories of beam geometries,
parallel and fan-beam. The relationship between the two parameterisations (θ, t)
and (β, γ), seen in Figure 2.4, can be expressed as

θ = β + γ, t = R sin γ (2.30)

or equivalently

β = θ − γ, γ = arcsin
t

R
(2.31)

If a flat detector is used in the fan-beam case the γ above should be replaced by
γ = arctan a

R .
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−γmax−2γmax

π − γmax

Figure 2.5 Data measured in short-scan acquisition. Top: fan-beam sinogram
for data from a curved detector. Bottom: sinogram for parallel data containing
rebinned fan-beam data. The lightly shaded parts indicate sufficient data for recon-
struction.

When we derived the filtered backprojection formula in (2.6) we saw that par-
allel data from a projection interval θ ∈ [0, π] is sufficient for reconstruction. Us-
ing (2.31) we deduce that this corresponds to a fan-beam projection interval of
β ∈ [−γmax, π + γmax] as shown in Figure 2.5. Such a projection interval is re-
ferred to as short-scan acquisition as opposed to full-scan where the interval is
β ∈ [0, 2π]. The short-scan projection interval can of course start at any angle as
long as it is of length π + 2γmax. A short-scan acquisition measures some redun-
dant rays at the beginning and ending of the projection interval. The redundancy
increases with the fan-angle γmax.

Zeng and Gullberg (1991) list three possible approaches to reconstructing im-
ages from short-scan fan-beam data. They all play important roles in Chapter 4 on
helical cone-beam reconstruction. A good understanding of the two-dimensional
case is necessary for the discussions of the cone-beam case. The three methods
are named parallel rebinning, complementary rebinning, and smooth sinogram
windowing.
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Parallel Rebinning

Using (2.31), a parallel projection set can be constructed from the measured fan-
beam data as

pP (θ, t) = p(θ − arcsin
t

R
, arcsin

t

R
) (2.32)

This construction is referred to as rebinning, but it is not simply a rearrangement
of the data since an interpolation is always necessary. Redundant information in
the input data is discarded. The reconstruction is then made using the parallel
filtered backprojection algorithm, described by (2.13) and (2.16), over the interval
θ ∈ [0, π].

Complementary Rebinning

In the above discussion on quarter offset we noted that parallel data contains du-
plicate projection values as

pP (θ, t) = pP (θ ± π, −t) (2.33)

Combining this with (2.31), we derive a similar relation for fan-beam data as

p(β, γ) = pP (β + γ, R sin γ) = pP (β + γ ± π, −R sin γ) =

p(β + 2γ ± π, −γ) (2.34)

which can be used to fill out the missing parts of a short-scan fan-beam sinogram.
Because more than half of the fan-beam sinogram is measured, the missing part

Direct sources

Complementary source

x

y

2γmax

4γmax

Figure 2.6 A complementary projection is obtained from the original direct pro-
jections. [Based on a similar illustration by Schaller (1998)]
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Figure 2.7 Smooth sinogram windowing. Primed and unprimed letters corre-
spond to identical rays, measured in differnt directions. The darkly shaded areas
consist of data measured twice. Top: fan-beam sinogram. Bottom: parallel beam
sinogram.

only extends over π + γmax ≤ β ≤ 2π − γmax. The data for this region are found in
the lightly shaded parallelogram AB′A′D in Figure 2.7.

The complementary rebinning is followed by a full-scan fan-beam filtered back-
projection as described by (2.21) – (2.23). The set of rays for a specific projection
angle β constructed from (2.34) still form a fan as shown in Figure 2.6, referred to
as a complementary projection. The rays from a complementary projection all stem
from a complementary source. We will refer to the original non-complementary rays
as direct.

Complementary rebinning can be performed without any interpolation, pro-
vided that ∆γ = ∆β/2. This sampling situation is illustrated in Figure 2.6. For
a maximum fan-angle of γmax = π/6, this implies that Nβ = 6Nγ. Actual tomo-
graphs on the market take substantially fewer projections per turn.
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(a) Full-scan re-
construction

(b) Short-scan
reconstruction,
binary win-
dowing before
rampfiltering

(c) Short-scan
reconstruction,
smooth win-
dowing before
rampfiltering

(d) Short-scan
reconstruction,
smooth win-
dowing after
rampfiltering

Figure 2.8 Fan-beam reconstruction of the Shepp-Logan phantom. Nβ = 250,
γmax = 30◦. Greyscale interval [1.0, 1.04].

Smooth Sinogram Windowing

The short-scan fan-beam data can be windowed before filtering and backprojec-
tion so that the projection values of rays measured twice are weighted and nor-
malised to unity. The simplest window function is binary, which removes all data
outside a non-redundant area of the sinogram. Examples of such non-redundant
areas in Figure 2.7 are AC′A′C, AB′A′B, and AD′A′D. However, if the binary
truncated data is filtered and backprojected, heavy artifacts will appear due to
filtering over the sharp edge along the borders of the non-redundant area. See
Figure 2.8(b). Parker (1982) suggested the following smooth windowing function
to eliminate these artifacts:

w(β, γ) =




sin2(π
4

β+γmax
γmax−γ

)
ADB : −γmax ≤ β ≤ γmax − 2γ

1 AB′A′D : γmax − 2γ ≤ β ≤ π − γmax − 2γ

sin2(π
4

π+γmax−β
γmax+γ

)
B′D′A′ : π − γmax − 2γ ≤ β ≤ π + γmax

(2.35)

This function has the value 0 along the lines AB and D′A′, the value 0.5 along the
lines AC and A′C′ and the value 1 along the lines AD and B′A′. It furthermore has
continuous partial derivatives over the complete region. The only discontinuities
are in the points A and A′. However, if the detector width is somewhat larger than
the radius of the measured object, these discontinuities cause no problem. Again,
let us emphasise that it is necessary to apply the weight function before ramp-
filtering. Figures 2.8(c) and (d) show the substantial difference in image quality
for these two cases.

None of the three approaches are perfect. The interpolation necessary in the
two rebinning approaches introduces errors, no matter how carefully it is per-
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formed. The smooth sinogram windowing always affects the filtering somewhat,
no matter how smooth it is. The parallel rebinning approach discard redundant
information, which affects the noise behaviour of the reconstruction. An impor-
tant practical advantage of the parallel rebinning approach is that it is possible to
drastically optimise software or hardware implementations of the parallel back-
projection for speed.

It is possible to perform a variation of parallel rebinning where no interpola-
tion is used, but the data is purely re-organised. Due to the sin γ-term in (2.30), the
resulting parallel beam then consists of non-equidistantly sampled parallel rays,
sampled somewhat more densely at its outer parts. Besson (1996) calls this beam
a fan-parallel beam. The reconstruction approach is then to filter and backpro-
ject these beams and thereby obtaining a somewhat sharper image thanks to the
avoided interpolation. Besson (1996) showed that there exists no shift-invariant
ramp-filter that can be applied to the fan-parallel beam, but he later presented an
approximate shift-invariant filter (Besson 1998) that works well.

2.3 Fast Backprojection

An N × N image requires O(N3) backprojection summation steps which makes
the backprojection the most time-consuming part of the reconstruction process.
Brandt, Mann, Brodski, and Galun (1999), Basu and Bressler (2000), Brady (1998)
and Nilsson (1996) have seemingly independently invented fast backprojection
algorithms, which decrease this complexity to O(N2 log N). Here, we will give an
introduction of the fast backprojection formulated by Danielsson (1997). A more
extensive treatment is given by Ingerhed (1999).

2.3.1 Links and the Basic Step

The main idea behind fast backprojection is to perform the summation in (2.16)
step by step by recursively splitting it into intermediate sums, which may then
be used in several computations in the next step. Nilsson (1996, 1997) describes
this recursive process with the help of the image space, but as Brady (1998) and
Danielsson (1997), we prefer to present the algorithm in the projection space, the
sinogram. Here, backprojection consists of a summation of filtered projection val-
ues along a sinusoid for each pixel to be computed. The divide-and-conquer strat-
egy of the algorithm is to approximate this summation as the sum of summations
along shorter curves, which in their turn have been calculated from even shorter
curves, and so on. Danielsson (1997) introduced the term link for these sinusoidal
curves. We will only consider backprojection for parallel beams, since it is cum-
bersome to include the L−2-factor necessary in fan-beam backprojection.
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We denote the link between the grid points (θn1 , tk1) and (θn2 , tk2) as

(θn1 , tk1 ; θn2 , tk2) (2.36)

and its associated value as

Ĩ [n1, k1; n2, k2] (2.37)

We use the tilde to indicate that the link value is calculated from ramp-filtered
data. The value will be computed from the values of shorter links in the basic step
of the algorithm described below.

Geometrically, we may regard a point in the projection space as a ray in the
image space, and hence the two end-points of the link represent two rays that
intersect at an image point. Specifically, the link (θn1 , tk1 ; θn2 , tk2) corresponds to
the image point (

x

y

)
=

(
− sin θn1 cos θn1

− sin θn2 cos θn2

)−1(
tk1

tk2

)
(2.38)

Note that the two end points of the sinusoid uniquely define the link provided
that

θn2 �= θn1 + iπ, i ∈ Z (2.39)

The image point (x, y) will describe a sinusoid in the sinogram. The link value
Ĩ(n1, k1; n2, k2) should ideally be identical to∫ θn2

θn1

p̃(θ, y cos θ − x sin θ) dθ (2.40)

with (x, y) given by (2.38). As mentioned, we will formulate a recursive calcula-
tion of the link value instead of using (2.40) directly.

We define the length of a link as the θ-difference of its end points. We allow
ourselves to indicate the length in both radians (e.g. a π

2 -link) and indexing units
(e.g. a 2-link).

The basic step of the algorithm calculates a link value from the values of four
links of half the length. Consider the link (θn1 , tk1 ; θn2 , tk2) in Figure 2.9. We will
use four half-length links from θn1 to θnmid and from θnmid to θ2, where nmid is the
index of the middle projection angle given by

nmid =
n1 + n2

2
(2.41)

If we choose the number of projections Nθ to be a power of 2 it can be easily shown
that nmid is always an integer. We derive the index of the t-position of the link for
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Figure 2.9 The basic step, a link value is constructed from the values of four links
of half the length.

this middle projection angle using (2.17) as

kmid =
k1 + k2

2 cos( θn1−θn2
2 )

(2.42)

Note that all links have their end-points on the grid points of the discrete pro-
jection space, whereas kmid may be non-integer, which calls for an interpolation.
Using linear interpolation we formulate the basic equation of the algorithm as

Ĩ [n1, k1; n2, k2] = w ·
(
Ĩ [n1, k1; nmid, �kmid�] + Ĩ [nmid, �kmid�; n2, k2]

)
+

w′ ·
(
Ĩ [n1, k1; nmid, �kmid� + 1] + Ĩ [nmid, �kmid� + 1; ň2, k2]

) (2.43)

where the interpolation weights w and w′ are simply calculated as

w = 1 − w′, w′ = kmid − �kmid� (2.44)

The correspondence between (2.43) and Figure 2.9 should be obvious. Daniels-
son (1997) showed that the relative intercept relation between the shorter links
and the long link are constant throughout the [θn1 , θn2 ] interval, which motivates
(2.44) even further. It was also shown what follows from (2.42), namely that tm is
identical for all links with identical t1 + t2 and identical θ1 − θ2. If a table is used
to store the pre-computed interpolation weights, this observation can be used to
reduce the size of that table from O(N2

θ N2
t ) to O(NθNt).
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Figure 2.10 The 1-links needed for a 2-tree. (a) The value of a 1-link is calculated
as the average of the end-point values. (b) the value of a 1-link is equal to the value
of its left end-point.

Neglecting the link curvature, we may regard the short links as line segments.
This simplifies the calculation of kmid in (2.42) to kmid = (k1 + k2)/2, resulting in
rational interpolation weights w and w′, many of which are zero-valued. These at-
tractive weights speed up the basic step for short links considerably. Experiments
by Danielsson and Ingerhed (1997) have shown that this simplification does not
influence the image quality when used for links shorter than approximately

√
Nθ ,

which means that half of the lg Nθ steps in the backprojection can take advantage
of this simplification.

2.3.2 A Complete Algorithm

The algorithm starts with calculating all the necessary 1-links. At first sight, the
value Ĩ [n1, k1; n1 + 1, k2] could be assigned the average of the filtered projection
data at the link end-points as (p̃P [n1, k1] + p̃P [n1 + 1, k2])/2, illustrated in Figure
2.10(a). But since the end-points coincide with end-points of the links to the left
and right, it is sufficient and more efficient to only consider one end-point per
link, shown in Figure 2.10(b), giving

Ĩ [n1, k1; n1 + 1, k2] = p̃P [n1, k1] (2.45)

for all k2.
The next step of the algorithm constructs 2-links using the basic step described

in (2.43). After lg Nθ − 2 steps, we have constructed the necessary Nθ

4 -links (or
equivalently, π

2 -links), which are the longest links we are able to produce due to
the restriction in (2.39).
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Figure 2.11 A contribution to the pixel value is obtained by interpolation of the
values of four links of length π

2 .

If we set the pixel resolution ∆x = ∆y equal to the detector resolution ∆t

and the offset Ok = 0 in (2.10), the k-axis coincides with the i1- or the i2-axes for
θ = 0, π/2, . . . , 2π. The final step of the algorithm is then a summation without
any interpolation of four π

2 -links per pixel.
With quarter offset or arbitrary detector and pixel resolutions, an interpolation

in the t-direction has to be performed, utilising the four π
2 -links per π

2 -interval
shown in Figure 2.11. The interpolation used is

fFAST [i1, i2] =w1w2Ĩ [n1, �k1�; n2, �k2�] +
w1w

′
2Ĩ [n1, �k1�; n2, �k2� + 1] +

w′
1w2Ĩ [n1, �k1� + 1; n2, �k2�] +

w′
1w

′
2Ĩ [n1, �k1� + 1; n2, �k2� + 1] +

[similar expressions for the other three quadrants]

(2.46)

where

w1 = 1 − w′
1, w′

1 = k1 − �k1�
w2 = 1 − w′

2, w′
2 = k2 − �k2�

(2.47)

Since an interpolation is performed in every step of the algorithm, the net re-
sult differs from traditional backprojection where the interpolation is only made



2.3 Fast Backprojection 29

once for each point along the sinusoid. This iterative interpolation results in an ac-
tual interpolation kernel that is shift-variant and wider than the linear kernel of
(2.44). This actual kernel was first discussed in Danielsson (1997) and experiments
by Ingerhed and Danielsson (1998) show that it introduces a slight smoothing in
the resulting image. This is generally unwanted but in the special application of
Kreuder, Grass, Rasche, Braunisch, and Dössel (1999) it decreased a ripple effect
apparent when traditional backprojection was used. We will examine the actual
kernel and its implications on image quality closer in Section 3.4, when we extend
the algorithm to cone-beam data. Brandt, Mann, Brodski, and Galun (1999) de-
scribe a post-processing de-blurring method that reduces the smoothing due to
iterative interpolation.

2.3.3 Complexity Analysis

The links of the same length, l, starting from the same point, (θn1 , tk1), form a tree.
The length of a tree is the length of its links. The width of a tree is its number of
links, which is determined by the maximum and minimum slope of the sinusoids
in the actual region of the projection space. At the borders of the projection space,
the trees may be heavily pruned. In order for the interpolation in the basic step
to work, the shorter trees have to be somewhat wider than the longer ones. Ne-
glecting these effects we may assume that all trees employed in a certain step of
the algorithm have the same width. Typically, the 1-trees have a width of 3 or 5,
the 2-trees a width of 5 or 9, etc. With a slight but conservative approximation we
may assume that the 1-trees consist of c links, the 2-trees consist of 2c links, the
4-trees of 4c links, and so on.

Type Quantity ADD MULT MFLOPs Links per tree

Pixels 51468 15 16 1595508
128-links 207412 3 2 1037060 202.6

64-links 296376 3 2 1481880 144.7

32-links 327184 3 2 1635920 79.9

16-links 347104 3 2 1735520 42.4

8-links 377408 3 2 1887040 23.0

4-links 442752 3 2 2213760 13.5

2-links 571136 3 2 2855680 8.7

Total 3416732 14442368

Table 2.1 Calculation of FLOPs when N = Nt = Nx = Ny = Nθ/2 = 256.
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There are half as many 2-trees as 1-trees since there are half as many n-positions
for them to start from. The total number of links created in step i = 2 to step
i = lg Nθ − 1 is then

lg Nθ−1∑
i=2

NtNθ21−i︸ ︷︷ ︸
Number of trees

· c2i−1︸ ︷︷ ︸
Links per tree

= cNtNθ(lg Nθ − 2) ∈ O(N2 log N) (2.48)

Note that because of the technique introduced by (2.45) the 1-links come with-
out any extra storage space besides the original projection data.

The final performance of an algorithm is dependent on numerous factors, which
makes it difficult to compare two different algorithms. Even so, it seems worth-
while to estimate the number of floating point operations (FLOPs) on the pro-
jection data for the algorithm. The 1-links require no calculations, whereas each
basic step needs 3 additions and 2 multiplications, and the final pixel interpolation
needs 4 multiplications and 3 additions per π

2 -segment followed by 3 additions to
sum the segments, totalling 16 multiplications and 15 additions.

Traditional backprojection with linear interpolation needs 2 multiplications
and 2 additions for each summation step, and if only the pixels inside the circle of
radius tmax are reconstructed, the total number of backprojection FLOPs becomes

4 NxNy
π

4︸ ︷︷ ︸
Pixels inside FOV

Nθ = 2πN3 (2.49)

We have implemented the fast backprojection using a top-down approach as
explained later in Section 3.4.1, which performs a maximal pruning so that no
unnecessary link values are calculated. Table 2.1 shows the number of links used
by the program and how we estimate the number of FLOPs needed. It also shows
the average number of links per tree, which, just as the theory predicted, is almost
doubled in each step. Table 2.2 shows estimates made in a similar manner for
different values of N . The number of FLOPs for fast backprojection is according
to this table approximately 35N2 log N . This is in good correspondence with the
experiments of Ingerhed (1999).

N 32 64 128 256 512 1024

Trad. 2 · 105 2 · 106 1 · 107 1 · 108 8 · 108 6 · 109

Fast 1 · 105 7 · 105 3 · 106 1 · 107 6 · 107 3 · 108

Table 2.2 Number of FLOPs on projection data in traditional and fast two-
dimensional backprojection as a function of N = Nx = Ny = Nt = Nθ/2.



3

Circular Cone-Beam
Reconstruction

The two-dimensional algorithms discussed in the previous chapter can recon-
struct a slice of the measured object. If a volume segment needs to be recon-
structed, the complete procedure must be performed slice-by-slice with a small
movement of the object or of the source-detector system between each slice. A
more efficient acquisition setup for volumetric CT is to use a two-dimensional de-
tector. The rays then form a cone with its base on the detector and its apex on
the source. An X-ray source naturally produces a cone of rays, so cone-beam ac-
quisition not only increases the scanning speed, but also makes better use of the
emitted rays otherwise removed by collimation.

3.1 Exact Methods

Given noise-free data, an exact reconstruction algorithm produces a result where
the difference to the real object can be made arbitrarily small by increasing the
detector resolution and the number of projections. The derivation of the two-
dimensional filtered backprojection in (2.5) proves the exactness of that particular
algorithm. As this section will show, there also exist exact algorithms for cone-
beam data. In some cases these exact algorithms have some important shortcom-
ings and we will therefore also look at approximate algorithms, starting from Sec-
tion 3.2 and onwards.

The following subsections will discuss a simple condition on when exact re-
construction is possible. It turns out that the circular geometry does not fulfil this

31
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Figure 3.1 The cone-beam geometry with the cylindrical (γ, q) detector. The axes
of the planar (a, b) detector are also drawn.

condition. A supplementary trajectory, such as a line or an extra circle, is required.
Hence, in a strict sense this section on exact methods does not quite belong to this
chapter on circular cone-beam reconstruction.

3.1.1 The Cone-Beam Geometry

For a cone-beam we define the projection angle β and fan-angle γ as before in
(2.19). See Figure 3.1. The data is normally collected either on a planar or cylin-
drical detector. Both detector shapes are used in both medical and industrial ap-
plications. Cylindrical detectors are used in ordinary medical tomographs. We
will show how the different reconstruction algorithms can be modified to work
on data from either of the two detector shapes.

The actual radius of the cylindrical detector is not essential for our discussion
and we choose to set it equal to the source trajectory radius, R, which results in
the detector coordinates (γ, q) in Figure 3.1. Similiarly, we place a planar detector
plane (a, b) on the axis of rotation so that the b-axis of this detector coincides with
the z-axis. Both of these detectors may therefore be considered as virtual. The
data from the two detectors are placed in p(β, γ, q) and pF (β, a, b) respectively.
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The sampling of the rows of the cylindrical detector is defined as

qm = (m + 0.5)∆q − qmax, ∆q =
2qmax

Nq
, m = 0, . . . , Nq − 1 (3.1)

where 2qmax is the height of the virtual detector. The sampling of the planar de-
tector is defined in a similar way. The relationship between the two detector coor-
dinate systems is given by

a = R tan γ and b =
q

cos γ
(3.2)

The cone-angle, κ is defined as

κ = arctan
q

R
= arctan

b√
R2 + a2

(3.3)

It is constant along the rows of the cylindrical detector, but varying along the rows
of the planar detector.

3.1.2 The Three-Dimensional Radon Transform

Exact three-dimensional reconstruction algorithms are usually based on the three-
dimensional Radon transform. A three-dimensional Radon value is a plane inte-
gral in the object domain. Each plane can be represented by a unique point in the
object space. This point is the intersection of the plane and its normal passing the
origin. The three-dimensional Radon space consists of all Radon values placed at
the corresponding points.

The Radon values of all planes intersecting the object have to be known in
order to perform an exact reconstruction. The Tuy-Smith sufficiency condition
(Tuy 1983) states that exact reconstruction is possible if all planes intersecting the
object also intersect the source trajectory at least once. This condition makes intu-
itive sense, since the source must be positioned in a plane in order to measure its
integral.

We observe that the circular trajectory does not satisfy the Tuy-Smith condi-
tion since a plane parallel to the trajectory may intersect the object but not the
trajectory. It is therefore necessary to extend the trajectory with an extra circle or
line if exact reconstruction is required. The available Radon data from a circular
trajectory is confined within a torus shown in Figure 3.2. The area with missing
Radon data is usually referred to as a shadow zone.

Note that the arguments above assume that the plane integrals are taken over
complete planes, i.e. planes with no boundaries and infinite extensions. This is
only practically possible if the object has a limited extension and the detector fully
covers the projection of the object and the attenuation values outside the object can
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Figure 3.2 The circular trajectory measures Radon values within a torus. The
unmeasured data are positioned in a shadow-zone around the z-axis.

be assumed to be zero. Such projection data are untruncated. In medical tomogra-
phy it is not feasible to build a detector fully covering the patient in all directions.
The detector delivers untruncated data in the fan-direction, but truncated data in
the longitudinal direction. In Section 4.1 we discuss possibilities for exact cone-
beam reconstruction with truncated data, but for now we assume the data to be
untruncated.

3.1.3 Reconstruction Algorithms

If parallel projection data are available, a plane integral is obtained from one-
dimensional integration of projection data along a line on the planar detector.
Unfortunately, as we have seen, the source produces divergent cone-beams and
a plane integral is not equal to a one-dimensional integral of divergent projection
data. Grangeat (1987) showed how the radial derivative of the Radon transform
can be calculated from the divergent projections and how an exact reconstruction
can proceed from these intermediate values.

Defrise and Clack (1994) reformulated Grangeat’s method into a filtered back-
projection where the filtering is two-dimensional and shift-variant. One advan-
tage of this approach is that each projection image may be filtered and backpro-
jected once it has been acquired. The Grangeat method has to fully construct the
radial derivative of the Radon space using all projection data before the actual
reconstruction can start. Jacobson (1996) gives a lucid presentation of the above
methods together with investigations of how they may be efficiently implemented
using linogram techniques.
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3.2 The FDK Method

Feldkamp, Davis, and Kress (1984) describe an approximate reconstruction algo-
rithm for circular cone-beam tomography. We will call this algorithm the FDK
method. It is approximate in the sense that the reconstruction result will deviate
somewhat from the measured object regardless of the measurement resolution.
For moderate cone-angles, these differences are however small and often accept-
able. The simplicity of the FDK method has made it the most used algorithm
for cone-beam reconstruction. Another important advantage, discussed in Sec-
tion 3.2.3, is that FDK, in contrast to the exact methods, handles data truncated in
the longitudinal direction.

3.2.1 Reconstruction from Planar Detector Data

In the original form, FDK assumed the data to come from a planar detector. The re-
construction is a filtered backprojection very similar to the two-dimensional algo-
rithm presented in Section 2.3. Unlike the exact cone-beam filtered backprojection
of Defrise and Clack (1994) where the filtering is two-dimensional, the projection
data in the FDK method are handled row by row. In addition to the convolu-
tion with the ramp-filter gP (γ), a pre-weighting factor, dependent on both the
fan-angle and on the cone-angle, is applied, yielding

p̃F (β, a, b) =
(

R√
R2 + a2 + b2

pF (β, a, b)
)

∗ gP (a) (3.4)

The pre-weighting factor is geometrically interpreted as the cosine of the angle
between the ray and the central ray of the projection. It can be factorised into the
two cosine factors of the fan- and cone-angle as

R√
R2 + a2 + b2

=
R√

R2 + a2

√
R2 + a2

√
R2 + a2 + b2

= cos γ cosκ (3.5)

The pre-weighted and filtered projections are backprojected into the reconstruc-
tion volume as

fFDK(x, y, z) =
∫ 2π

0

R2

U(x, y, β)2
p̃F (β, a(x, y, β), b(x, y, z, β)) dβ (3.6)

where a(x, y, β) is given by (2.28) and

b(x, y, z, β) = z
R

R + x cos β + y sin β
(3.7)

In the discrete case, the integral is naturally replaced by a sum over the projection
angles. A two-dimensional interpolation of the filtered projection data is then
required for each term of the backprojection sum.
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The factor U−2 in (3.6) is identical to the factor (2.29) in fan-beam backprojec-
tion. Hence, it is independent of the z-coordinate of the voxel and only depends
on the distance between the source and the reconstructed voxel projected onto the
central ray as

U(x, y, β) = R + x cosβ + y sin β (3.8)

It is worth noting that this cone-beam backprojection is identical to the one
used in the exact method by Defrise and Clack (1994).

The mapping between the planar detector and a slice to be reconstructed is
a projection transform. Such a transform can be described by a 4 × 4 projection
matrix using homogeneous coordinates (Foley et al. 1990). This facilitates incre-
mental updates of a and b for fixed increments of x, y, and z in the inner loop
of the backprojection. Schaller, Karolczak, Engelke, Wiesent, and Kalender (1998)
present an implementation that utilises such incremental updates.

Projection transformations of two-dimensional data sets have been implemen-
ted in hardware for acceleration of computer graphics. In this context, the oper-
ation is known as texture mapping. The U−2-factor in (3.6) can be handled by a
graphics hardware feature called z-depth cueing, which normally is used to make
objects in a scene appear darker as they move away from the observer. Cabral,
Cam, and Foran (1994) implemented the backprojection in the FDK method using
texture mapping hardware as:

Algorithm 3.1 FDK backprojection using texture mapping hardware

1: for all slices do
2: setup depth queing as U−2

3: setup perspective texture coordinate matrix
4: for all projection angles j do
5: setup the rotation βj

6: render a circle with the filtered projection data of projection j as the tex-
ture

7: accumulate the rendered circle to the slice
8: end for
9: end for

The hardware performs the actual backprojection on line 6 almost instantaneously
for a complete projection. Cabral et al. (1994) claim to reconstruct a 1283 volume
in 3.5 seconds, but present no evaluation of the image quality.

Clasén (1999) has made further experiments to see if off-the-shelf hardware
aimed at the gaming consumer market could be used for backprojection. He con-
cludes that the limited bit-depth of the currently available graphics cards is an
important limiting factor. Although the texture pixels are stored using 24 bits
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each, only 8 bits are allocated for each colour channel. All interpolations are per-
formed on the colour channel separately, restricting the actual bit-depth to 8 bits.
Clasén shows that this bit-depth is sufficient for acceptable reconstructions of high
contrast objects, such as industrial parts or bone. For low contrast objects, like the
human body, it is on the other hand far from sufficient. He further notes that most
graphics cards not can perform the accumulation step on line 7 internally. The
backprojected data then has to be transferred back to the main memory and ac-
cumulated by the CPU for each projection. This requires fast bus communication
or a shared memory in order not to slow down the process considerably. None of
the alternative geometries that will be presented in Sections 3.2.2–3.3.2 can be per-
formed with a 4×4 matrix multiplication of homogeneous coordinates. Therefore
hardware acceleration only works with data from a planar detector.

Mueller (1998) describes hardware-accelerated backprojection for algebraic re-
construction techniques. The reconstructed images show that the image quality is
unacceptable for low contrast medical reconstruction.

3.2.2 Reconstruction from Cylindrical Detector Data

The above algorithm (3.4)-(3.6) applies to systems that use a planar detector such
as an image intensifier or a digital flat-panel detector. If the detector sampling de-
viates from the planar case the projection data can be interpolated onto a Cartesian
grid on the planar detector. As an alternative, Schaller, Flohr, and Steffen (1997)
have reformulated the FDK-method for the case of a cylindrical detector centred
on the source as in Figure 3.1.

In a detailed analysis in an appendix of his thesis, Schaller (1998) shows that an
algorithm identical to the FDK method should perform filtering not along straight
lines but along slightly bent curves on the cylindrical detector. As an approxima-
tion for the sake of simplicity, this is dispensed with in the proposed algorithm
by Schaller (1998), which we call C-FDK. Instead the filtering is performed along
the horizontal rows of the cylindrical detector. The computations in C-FDK then
become very similar to the FDK method in (3.4)–(3.8), starting with ramp-filtering
and pre-weighting as

p̃(β, γ, q) =

(
cos γ

R√
R2 + q2

p(β, γ, q)

)
∗ g(a) (3.9)

followed by backprojection

fC-FDK(x, y, z) =
∫ 2π

0

R2

L(x, y, β)2
p̃(β, γ(x, y, β), q(x, y, z, β)) dβ (3.10)
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where γ(x, y, β) is given by (2.24) and

q(x, y, z, β) = z
R√

(R + x cosβ + y sinβ)2 + (x sin β − y cosβ)2
(3.11)

The factor L(x, y, β) is independent of the z-value and is defined by (2.23).

3.2.3 Properties

Defrise and Clack (1994) noted that their algorithm reduces and becomes identical
to FDK reconstruction when the source trajectory is a single circle. This implies
that the FDK method handles the available projection data in a sound manner. The
result will be identical, apart from numerical implementation differences, with a
Radon based approach. However, it is still bound to be an approximate result
since the circular trajectory does not fulfil the Tuy-Smith condition.

The Defrise-Clack algorithm assumes the unmeasured Radon data in the sha-
dow zone of Figure 3.2 to be zero. Grangeat (1991) fills the shadow zone by in-
terpolation from the measured data on the surface of the torus. Experiments by
Grangeat (1991) and Jacobson (1996) show that this improves the reconstruction
quality considerably. So despite the fact that the FDK method uses all available
Radon data in a correct way, we should not assume that it is impossible to achieve
better image quality by modifying it.

The Radon-based methods only work for untruncated projections, something
which in many applications, such as medical, is unfeasible to obtain. An impor-
tant advantage of the FDK method is that it works well with truncated projections
since the filtering is only performed in the untruncated fan-direction.

Despite its approximate character, Feldkamp et al. (1984) observed the follow-
ing three properties of the FDK method:

• it is exact in the mid-plane, z = 0. This is obvious since it is identical to
the fan-beam reconstruction presented in Section 2.2.2 in this plane. The
reconstruction becomes more and more erroneous for planes further away
from the mid-plane.

• it is exact for objects homogeneous in the z-direction, i.e. when f(x, y, z) =
f(x, y). This can be intuitively understood if we first note that the pre-
weighting dependent on the cone-angle in (3.4) is equal to cosκ. Thus, the
longer attenuation path of a ray with a high cone-angle is weighted down
as if it was measured in the mid-plane. When the object is homogeneous,
the pre-weighted projections of different rows will therefore be identical, i.e.
p̃(β, γ, q) = p̃(β, γ) and the algorithm will reduce to the two-dimensional
fan-beam reconstruction of Section 2.2.2.
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Figure 3.3 How the line density along the line at (x0, y0) contributes to the line
intregral at (x, y). Left: FDK-filtering. Right: Slanted filtering.

• the integral value
∫

f(x, y, z) dz is preserved. This is due to the fact that all
three-dimensional Radon data at z = 0, i.e. all plane integrals of the planes
perpendicular to the mid-plane, can be computed from the projections ob-
tained with the single circular scan. A proof, following the proof by Feld-
kamp, Davis, and Kress (1984), is given in Appendix A.

The third property implies that the main distortion to be expected is blurring
in the axial direction. Linearity and the three properties furthermore imply that
this blurring only occurs for the parts of the object that are not z-homogeneous.

We can get more intuitive insight into the third property by studying the re-
construction of a short line segment parallel to the z-axis. Let us examine how
the arbitrary line segment at (x0, y0) shown in Figure 3.3(a) contributes to the re-
constructed image points along an arbitrary line at (x, y) parallel to the z-axis for
a specific projection angle. The line segment is magnified when projected onto
the detector. The projection signal is then transported along the filtering direction
on the detector and scaled with the ramp-filter. The geometrical demagnification
in the backprojection sets the length of the line segment at (x, y) that will get a
contribution. If we view the situation from above and integrate all values along
the z-axis we can compare the situation with two-dimensional fan-beam filtered
backprojection. The proof in Appendix A shows that the pre-weighting and U−2-
factor in the FDK method compensate for both magnification and demagnification
so that the line integral is reconstructed correctly.

We will now examine if the three properties above also hold for C-FDK. If
we project the filtering directions of C-FDK onto a planar detector we see that
the filtering is performed along curves. Such a curve, for a given constant q, is
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described by

b(a, q) = q cos
R√

R2 + a2
(3.12)

Thus the question is whether this new filtering direction alters the conditions for
the three properties. The first two properties hold because of the same reasons as
for the original FDK:

• The mid-plane is reconstructed exactly since (3.9) and (3.10) simplify to the
two-dimensional (2.21) and (2.22) when z = q = 0. The filtering for the
mid-plane is performed along the same line as in FDK.

• The pre-weighting in (3.9) makes the projection values for z-homogeneous
objects independent of the row q which simplifies C-FDK to exact two-dimen-
sional fan-beam reconstruction.

The third property does not hold for C-FDK. Figure 3.3(b) shows a situation with
non-parallel filtering directions. Although the filtering directions in this figure
are different from the filtering directions of C-FDK, the figure will still apply to
our argument. The critical point is that the filtering directions are non-parallel
and that the density of filtering lines, or curves, therefore will vary over the de-
tector. Again, consider the reconstruction of the line segment at (x0, y0). The
number of filtering curves that will contribute in the backprojection to the line at
(x, y) will be proportional to the filtering curve density in the b-direction at the
point of projection. The length of the segment at (x, y) that will receive backpro-
jected results will be inversely proportional to the filtering curve density at the
point of backprojection. These two curve densities will not necessarily be equal
for non-parallel filtering curves, resulting in a shorter or longer segment at (x, y)
that receives backprojection contributions compared to the FDK case above. The
integral along z might therefore be different and the third property will not hold
for C-FDK.

In a more formal study in Appendix A the line segment at (x0, y0) is short-
ened into a point. It is then showed that a pre-filtering and post-filtering density
compensation can modify C-FDK so that the third property holds. To this end the
projection values should be divided with the local filtering curve density before
ramp-filtering and multiplied with the local filtering curve density after ramp-
filtering. However, if these two compensation steps are incorporated into the al-
gorithm it is clear that the second property will no longer hold. The first property
is also in jeopardy but will hold as long as the filtering curves are horizontal to-
wards the centre of the detector.



3.3 Variations of the FDK Method 41

3.3 Variations of the FDK Method

The U−2-factor in (3.6) complicates the innermost loop of the backprojection and
is the main obstacle in formulating a fast backprojection algorithm for cone-beam
data. In Section 3.3.1 we therefore propose a rebinning of the projection data into
a geometry that rids this factor from the backprojection formula. The resulting
beam geometry is parallel in the fan direction but divergent in the cone direction
and the algorithm exploiting this geometry is named P-FDK, as in parallel FDK.

By modifying the filtering directions of P-FDK Grass, Köhler, and Proksa (2000a)
have formulated an algorithm, T-FDK, with attractive geometrical properties as
well as a seemingly increased image quality. A more elaborate filtering scheme
is introduced in the previously unpublished FDK-SLANT algorithm presented in
Section 3.3.3.

3.3.1 The P-FDK Method

Cone-beam data acquired from a circular trajectory cannot be rebinned to truly
parallel beam data. However, we may apply the two-dimensional parallel rebin-
ning of each row separately. This has been previously proposed for the helical
source trajectory geometry by Schaller, Flohr, and Steffen (1997). To the best of
our knowledge, this rebinning was first proposed by Turbell (1999) for the circu-
lar geometry.

Planar detector

From the projection data measured on a planar detector the rebinned data is ob-
tained as

pFP (θ, t, b) = pF (θ − arcsin
t

R
,

tR√
R2 − t2

, b) (3.13)

Note that the row coordinate b is left unchanged. The result is rebinned projection
data, the rays of which are parallel when seen from above, along the z-axis. See
Figure 3.4(a). The rays of a specific row b intersect the virtual planar detector (t, s)
on the z-axis along the curve segments

s(b, t) = b ·
(

1 − t2

R2

)
(3.14)

To the right in Figure 3.4(a) we also show a virtual detector where all rays of
a specific row b intersect the detector at the same z-value. When moved to the
centre of rotation this detector is positioned along the curve v = t2/

√
R2 − t2.
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(a) Original data from planar detector.
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(b) Original data from cylindrical
detector.

Figure 3.4 The beam geometry after parallel rebinning.

The reconstruction algorithm P-FDK for the cylindrical detector case proceeds
with pre-weighting and filtering of the rebinned data according to

p̃FP (θ, t, b) =
(

R2
√

R4 + R2b2 − b2t2
pFP (θ, t, b)

)
∗ gP (t) (3.15)

where the pre-weighting is the cosine of the cone-angle and gP (t) is the ordinary
ramp-filter for parallel beams. The backprojection formula lacks the U−2-factor in
(3.6) and is written as

fP-FDK (x, y, z) =
∫ 2π

0
p̃FP (θ, t(x, y, θ), b(x, y, z, θ)) dθ (3.16)

where the detector coordinates of the projected voxel (x, y, z) are

t(x, y, θ) = y cos θ − x sin θ (3.17)

as in (2.17), together with

b(x, y, z, θ) =
zR2

v(x, y, θ)
√

R2 − t(x, y, θ)2 + R2 − t(x, y, θ)2
(3.18)

where

v(x, y, θ) = x cos θ + y sin θ (3.19)

The derivation of b(x, y, z, θ) can be made with the help of Figure 3.5.
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Figure 3.5 Projection of the point (x, y, z) onto the detectors in the rebinned ge-
ometry. The figure is drawn parallel to the (v, z)-plane.

Cylindrical detector

P-FDK can also be formulated for data from a cylindrical detector. Keeping the
row coordinate q unchanged, the rebinned data is obtained as

pCP (θ, t, q) = p(θ − arcsin
t

R
, arcsin

t

R
, q) (3.20)

The resulting beam, shown in 3.4(b), intersects the virtual planar (t, s) detector
along the curves

s(q, t) = q
√

1 − (t/R)2 (3.21)

which are less curved than for the planar detector case in (3.14). The detector
where all rays of a specific row q intersect the detector at the same z-value is placed
on a cylinder of radius R, having its axis parallel to the z-axis and centred arbi-
trarily far away on the v-axis. The reconstruction continues with pre-weighting
and filtering

p̃CP (θ, t, q) =
R√

R2 + q2
pCP (θ, t, q) ∗ gP (t) (3.22)

followed by backprojection

fP-FDK (x, y, z) =
∫ 2π

0
p̃CP (θ, t(x, y, θ), q(x, y, z, θ)) dθ (3.23)
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Figure 3.6 The data used for reconstruction of the image point (x, y, z) lie on a
surface in the rebinned projection space. The data used for ramp-filtering are found
on the intersection of the surface and a (γ, q)-plane in the original projection space.

where

q(x, y, z, θ) =
zR√

R2 − t(x, y, θ)2 + v(x, y, θ)
(3.24)

with v(x, y, θ) defined as in 3.19. The intersection height q(x, y, z, θ) in (3.24) is
seen in Figure 3.5.

Discussion

Experiments show no difference in artifacts for FDK and P-FDK. The algorithms
are however not identical as the following argument will show. We will investi-
gate what projection data is used to reconstruct an arbitrary object point (x, y, z)
using P-FDK for a cylindrical detector. The three-dimensional backprojection uses
the filtered data pCP (θ, t, q) along the curve

{(θ, t, q) | θ ∈ [0, 2π), t = y cos θ − x sin θ, q =
zR√

R2 − t2 + x cos θ + y sin θ
} (3.25)

drawn in Figure 3.6(a). These filtered data are constructed by convolution as in
(3.22) and hence all data on the surface

{(θ, t, q) | θ ∈ [0, 2π), t ∈ [−tmax, tmax],

q =
zR√

R2 − (y cos θ − x sin θ)2 + x cos θ + y sin θ
} (3.26)
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shown in Figure 3.6(a) will be used for the object point. These projection values
are also found in the original cone-beam projection space on a surface found by
transformation using the rebinning equations (2.30). This surface is shown in Fig-
ure 3.6(b). The filtering in the parallel projection space corresponds to filtering
along the curved intersection between the surface and a (γ, q)-plane. Since the
shape of the surface depends on (x, y, z), it is not possible to formulate the P-FDK
algorithms as a pure filtered backprojection of the cone-beam data. The filtering
then has to be different for different object points.

The vertical divergence of the oblique parallel beam makes it impossible to
utilise quarter offset optimally and merge data from two opposite projections.

3.3.2 The T-FDK, HT-FDK, and S-FDK Methods

Seen on the planar virtual detector, the (t, s)-plane, the filtering in P-FDK is per-
formed along curves given by (3.14) or (3.21). Grass, Köhler, and Proksa (2000a)
proposed to rebin the projection data to horizontal lines on the (t, s)-plane. We
denote this projection data as pP (θ, t, s). It can be interpolated form pFP (θ, t, b)
using (3.14) or from pCP (θ, t, q) using (3.21). For the ramp-filtering to work, the
data needs to be untruncated. Projection data outside the lightly shaded rectan-
gles in Figure 3.4 are therefore discarded. The discarded area can also be found
on the original detector, shown in Figure 3.7(a). Collimation of the beam to this
area can be used to reduce the dose. The resulting beam after parallel rebinning
resembles a tent with a rectangular base. The algorithm is consequently named
T-FDK as in tent-FDK1.

The algorithm includes pre-weighting, ramp-filtering and three-dimensional
backprojection. For projection angle θ the voxel (x, y, z) gets a backprojection con-
tribution from the filtered detector value at the s-coordinate derived from Fig-
ure 3.5 as

s(x, y, z, θ) =
z
√

R2 − t(x, y, θ)2√
R2 − t(x, y, θ)2 + v(x, y, θ)

(3.27)

where t(x, y, θ) and v(x, y, θ) were defined in (3.17) and (3.19).
T-FDK has an unexpected image quality improvement in the reconstructions

which will be examined in Section 3.3.4. It furthermore has a geometry which
makes it simple to determine if a voxel receives backprojection contributions from
all projection angles, at least half of the projection angles, or fewer than half of
the projection angles. See Figure 3.7. The full-scan voxels are confined within a
truncated double cone as in FDK and P-FDK. Due to the collimation, the height of
this cone is a factor cos2 γmax smaller than for FDK if a planar detector is used and
a factor cos γmax smaller if a cylindrical detector is used. The half-scan voxels are

1As a consequence of German humour, T-FDK is also known as Zeltkamp reconstruction.
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(a) Perspective view (b) Side view

Figure 3.7 FDK and P-FDK are able to reconstruct object points within the dark
diamond shape. HT-FDK is able to reconstruct object points within the light cylin-
der.

placed within the cylinder circumscribing the double cone. Grass et al. (2000a)
propose to reconstruct all full-scan voxels with 360◦ backprojection and all short-
scan voxels with 180◦ backprojection. The algorithm is called hybrid tent FDK
reconstruction (HT-FDK). The hybrid approach allows for a larger reconstruction
volume.

Grass, Köhler, and Proksa (2000b) investigate how the reconstruction result
from HT-FDK is improved if the short-scan voxels are backprojected for more than
180◦. A smooth weighting function is applied such that the weights from two
opposing projections add to unity. An example of such a function is shown in
Figure 3.10. This gives a better signal to noise behaviour and also suppresses
certain artifacts.

If a volume larger than the cylinder mentioned above needs to be reconstructed
the source trajectory has to be extended. The natural extension is a helical trajec-
tory as described in Chapter 4. A shortcoming of the helical geometry in medical
applications is that voxels only illuminated from the beginning or ending parts
of the helix are unreconstructable and therefore exposed to radiation in vain. An
alternative to the helix is to use a number of circular trajectories. The patient is
then moved a certain distance Z along the z-axis between each circular exposure.

Köhler, Proksa, and Grass (2000) show that the beam geometry in HT-FDK is
propitious for this sequential circular source trajectory. The proposed reconstruc-
tion algorithm is called sequential FDK (S-FDK). If the detector is high enough



3.3 Variations of the FDK Method 47

t

z

Z

Figure 3.8 The beam geometry in S-FDK.

to make the height of the virtual rectangular detector on the (t, z)-plane exactly
Z, all voxels will get one backprojection contribution from each projection angle,
not more nor less. The voxels inside the double cones get their contributions from
the closest source trajectory circle whereas the other voxels get contributions from
either this circle or the adjacent circle. The fact that the backprojection intervals
from two adjacent circles are complementary in this sense can be understood from
Figure 3.8. Projected onto the cylinder on which the circular source trajectories are
placed, the rectangular detector window fills up an area limited by the two adja-
cent trajectory circles. If and only if an arbitrary image point (x, y, z) is not illumi-
nated from the closest circle at a certain projection angle θ, it will be illuminated
from the neighbouring circle at projection angle θ ± π. All voxels are therefore
illuminated for exactly 360◦. Both the geometry and illumination arguments for
S-FDK are highly related to the PI methods discussed in Section 4.3.

3.3.3 The FDK-SLANT Method

In the original derivation of the FDK method Feldkamp et al. (1984) considered an
object point at a projection angle. By viewing the situation as a two-dimensional
filtered backprojection in the plane containing both the source and the object point
and intersecting the planar detector along a vertical line, they derived the weight-
ing and filtering in the FDK method. For the next projection angle a new plane
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Figure 3.9 The intersection between the (t, s)-detector plane and the book page
determines the filtering direction.

was considered. Inspired by the successful nutating slice algorithms for helical
cone-beam reconstruction described in Section 4.2.2 we will derive a variation of
FDK by fixing the plane discussed above and not letting it move along the projec-
tion direction. The resulting algorithm is called FDK-SLANT.

The FDK algorithm would be exact if projection data from a circular or ellip-
tical source trajectory on the plane in the derivation were available. All image
points in the field of view on this plane would then participate in all filtering
events without any contamination from image points outside the plane. This is
clearly not feasible with projection data restricted to a single circular trajectory.
Our objective is to formulate an algorithm where the same image points involved
in the filtering for one projection angle also are, as much as possible, filtered to-
gether for the other projection angles. This will only be possible for a short-scan
algorithm. Section 2.2.3 discussed three ways of handling short-scan data and we
choose to use the parallel rebinning of P-FDK to restrict the backprojection for
each object point to half a turn.

Figure 3.9(a) shows a set of planes intersecting the source trajectory at projec-
tion angle θAi at the point (x, y, z) = (−R cos θAi , R sin θAi , 0) and having horizon-
tal intersections with the planar detector for this projection angle. The planes are
divergent as a set of pages in a half-opened book. The intersection point with the
source trajectory is called the anchor point for these book pages.

In contrast to the two-dimensional case, using data only from a short-scan in-
terval in the cone-beam case will not utilise all Radon data obtained from the
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wi(θ) 2d2d

θAi − π
2 θAi θAi + π

2 θ

Figure 3.10 The data is smoothly windowed to a θ-interval of length π + 2d.

full-scan. A full cone-beam scan is not redundant in the same way as a full fan-
beam scan. In order to make use of all projection data in a full scan, we therefore
propose to use NA books with corresponding anchor points evenly distributed
around the cirle. The placement of the anchor points will affect the artifacts of the
reconstructed image. With several books, the artifacts can be reduced by averag-
ing the results from all books after backprojection.

The filtering directions are given by the intersections of the book pages at an-
chor point θAi with the planar virtual (t, s)-detector at projection angle θ. See
Figure 3.9(b). These intersections are lines. We parametrise the lines with l such
that l = s at the centre of the detector where t = 0. Projection data pP (θ, t, s) from
the rebinning steps of T-FDK are interpolated along each column of the detector
into the new detector space (θ, t, l) as

pSi(θ, t, l) = pP (θ, t, l − t
l sin(θ − θAi)

R
) (3.28)

The interpolation for each θ and t is performed from a one-dimensional uniform
sampling pattern to another sparser or wider uniform sampling pattern. The
chirp-z transform (Oppenheim and Schafer 1975) could be used to perform this
interpolation ideally and efficiently via the Fourier domain.

An small extra margin of angular length d is added to each side of the π pro-
jection angle interval. This margin is used to introduce a smooth window wi(θ) in
the θ-direction, shown in Figure 3.10. The rebinned data are pre-weighted, ramp-
filtered and smoothly windowed as

p̃Si(θ, t, l) =

( √
R2 − t2√

R2 + s2 − t2
pSi(θ, t, l) ∗ gP (t)

)
wi(θ) (3.29)

where the window is given by

wi(θ) =




cos2(π
2 · θAi

− π
2 −d−θ

2d ) θAi − π
2 − d ≤ θ < θAi − π

2 + d

1.0 θAi − π
2 + d ≤ θ < θAi + π

2 − d

cos2(π
2 · θ−θAi

− π
2 −d

2d ) θAi + π
2 − d ≤ θ ≤ θAi + π

2 + d

0 otherwise

(3.30)
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The backprojection is made over the π + 2d interval as

fFDK-SLANT i
(x, y, z) =

∫ θAi
+ π

2 +d

θAi
− π

2 −d

p̃Si(θ, t(x, y, θ), l(x, y, z, θ)) dθ (3.31)

where t(x, y, z) is given by (3.17) and l(x, y, z, θ) is derived using (3.27) as

l(x, y, z, θ) = s(x, y, z, θ)
R

R − t(x, y, θ) sin(θ − θAi)

=
zR
√

R2 − t(x, y, θ)2

(
√

R2 − t(x, y, θ)2 + v(x, y, θ)) · (R − t(x, y, θ) sin(θ − θAi))
(3.32)

where v(x, y, θ) is given by (3.19). The contribution from all NA sets of book pages
are finally summed as

fFDK-SLANT (x, y, z) =
2
i

NA∑
i=1

fFDK-SLANT i(x, y, z) (3.33)

The main point of the algorithm is to keep the filtering events as much as pos-
sible as an interaction between voxels in the same book page. The book pages
are kept fixed during the source-detector rotation. Clearly, an unwanted non-
homogeneous handling of projection data from different projection angles is un-
avoidable. At the anchor point angles the projections of the pages almost take the
shapes of straight lines but the projections will be more dispersed for projection
angles that differ from these two anchor points. An unwanted abrupt change in
the filtering occurs at θ = θAi ± π

2 . The smoothing interval of length 2d has been
introduced to make the change less abrupt.

The projection interval per book page could be made shorter than 180◦. The
filtering curves would then fit the book pages better. However, the reconstruc-
tion on each book page would be from an incomplete projection interval. It is
interesting to note that FDK-SLANT becomes identical to T-FDK when the inter-
val approaches zero. An alternative way of motivating the filtering direction in
T-FDK is to consider the reconstruction volume as consisting of a number of slices
parallel to the (x, y)-plane. Using the same filtering direction arguments as we
will do for the PI-SLANT method in Section 4.3.2, the horizontal parallel filtering
directions in T-FDK are optimal for this set of planes.

3.3.4 Experimental Results

The three-dimensional Shepp-Logan phantom, defined in Appendiz B.2, is a sim-
ple model of a skull. We have synthetically generated noise-free cone-beam pro-
jections on a planar detector using the program take by Müller-Merbach (1996)
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Source trajectory radius R = 2.0 length units (l.u.)

Projections per turn Nβ = Nθ = 512
Detector rows Nb = 232
Detector row height ∆b = 0.01 l.u.

Detector elements per row Na = Nt = 232
Maximum fan-angle γmax = arctan Na∆a

2R = 30.1◦

Maximum cone-angle at a = 0 κmax = arctan Nb∆b
2R = 30.1◦

Reconstruction grid Nx × Ny × Nz = 232 × 232 × 232
Reconstruction grid resolution ∆x = ∆y = ∆z = 0.01 l.u.

Simulated rays per detector element 18

Anchor points in FDK-SLANT NA = 4
Smoothing width in FDK-SLANT d = 10.5◦

Table 3.1 Experiment parameters for the three-dimensional Shepp-Logan phan-
tom.

and Turbell (1997). The source was modelled as a small square of the same width
as a detector element. To reduce aliasing, each detector element value was calcu-
lated as the mean of eighteen line integrals from different positions on the source
to different positions on the detector element. The reconstruction parameters are
given in Table 3.1.

The reconstruction results are shown in Figures 3.12 and 3.14. FDK has a clear
drop in image level for voxels far away from the mid-slice. This is a well-known
shortcoming of FDK. T-FDK shows less drop and FDK-SLANT even less. The
profiles along the z-axis in Figure 3.14 illustrate this phenomenon clearly. None
of the methods reconstruct the top and bottom bone of density 2.0 correctly but
FDK-SLANT performs better than the other two.

In a second experiment the voxelised head phantom, defined in Appendix B.3,
was reconstructed using the parameters of Table 3.2. The reconstruction results in
Figure 3.13 show that the T-FDK reconstruction has a smaller intensity drop for
this phantom as well. FDK-SLANT shows even smaller drop, but also introduces
substantial artifacts. These are unfortunately not reduced much by introducing
more anchor points or a longer smoothing interval d.

These simple experiments indicate the superiority of T-FDK and FDK-SLANT
over FDK. A more extensive image quality comparison between the three algo-
rithms is under way.
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original data

FDK P-FDK T-FDK FDK-SLANT

Geometrically distorted (β, a, b) (θ, t, b) (θ, t, s) (θ, t, l)

(3.13) (3.14) (3.28)

Figure 3.11 The chain of resamplings can be short-cut.

3.3.5 Discussion

As it is formulated here, FDK-SLANT requires untruncated projections. If the
slanted lines spread outside the measured detector window, such that the rebin-
ning equation (3.28) generates values of s outside the measured range, it is not
clear what to do. Extrapolation of data from the top and bottom detector could be
one solution, but this needs to be experimentally verified.

The reconstruction results for FDK-SLANT could probably be slightly improv-
ed if the shape of the book pages were optimised in a similar manner to the nu-
tating surfaces described in Section 4.2.2. The planar book pages used in FDK-
SLANT are certainly not optimal in this sense, but do allow for relatively simple
computation steps. Although the helical geometry will be shown to be much bet-
ter suited for the concept of nutating surfaces, we believe that PI-SLANT shows
that the concept can be used for the circular geometry as well.

Figure 3.11 shows the chain of rebinning steps for the proposed methods. This
chain can be believed to introduce extra interpolation steps in the algorithms,
which could affect the image quality. However, it is important to note that sys-
tems an image intensifier detector have a built-in geometrical distortion. Calibra-
tion methods are commonly used to determine this distortion and rectify it by
a two-dimensional resampling to a true Cartesian grid before the reconstruction
commences. See for example the work of Reimann and Flynn (1992). This ex-
tra interpolation step could be dispensed with if the geometrical distortion equa-
tions were combined with the resampling equations in the new FDK methods.
The values on the (θ, t, s) or (θ, t, l) grid could then be obtained directly from the
original data by a single three-dimensional interpolation. The only extra inter-
polation introduced for the new FDK methods compared to the original is then
one-dimensional in the angular direction from β to θ.
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(a) Phantom (b) FDK

(c) T-FDK (d) FDK-SLANT

Figure 3.12 Reconstruction of the three-dimensional Shepp-Logan phantom. The
(x, z)-slice at y = −0.25 is shown. Parameters as in Table 3.1. Greyscale interval
[1.0, 1.04].
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(a) Phantom

(b) FDK

(c) T-FDK
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(d) FDK-SLANT, NA = 2, d = 0.

(e) FDK-SLANT, NA = 8, d = 10◦.

Figure 3.13 Reconstructed (y, z)-slice through the voxelized head phantom with
a 64-row detector. Parameters as in Table 4.4. Greyscale interval [980, 1080].
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Figure 3.14 Profile of the Shepp-Logan phantom along the z-axis at (x, y) =
(0, −0.25). Parameters as in Table 3.1.

Source trajectory radius R = 230.0mm

Projections per turn Nβ = Nθ = 512
Detector elements per row Na = Nt = 321
Detector element width ∆a = 270

321 mm ≈ 0.84 mm

Detector rows Nb = 321
Detector row height ∆b = 270

321 mm ≈ 0.84 mm

Maximum fan-angle γmax = arctan Na∆a
2R ≈ 30.4◦

Maximum cone-angle at a = 0 κmax = arctan Nb∆b
2R ≈ 30.4◦

Reconstruction grid Nx × Ny × Nz = 320 × 320 × 230
Reconstruction grid resolution ∆x = ∆y = ∆z = 221

320 mm ≈ 0.69 mm

Simulated rays per detector element 18

Table 3.2 Experiment parameters for the voxelized head phantom.
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3.4 The FDK-FAST Method

Armed with the oblique parallel backprojection of P-FDK and the general prin-
ciples for fast backprojection, it would seem to be a straight forward task to for-
mulate a fast backprojection for the FDK method. However, some fundamental
differences in degrees of freedom for lines in two and three dimensions will make
the extension from two dimensions non-trivial.

Most material of this section is taken from Turbell (1999) which contains the
first formulation and implementation of a complete cone-beam backprojection in
O(N3 log N) time. Nilsson (1997) briefly deals with the problem of a fast FDK
backprojection algorithm, but focuses on how long a piece of fan-beam source
path could be used without having to introduce the L−2-factor in the backprojec-
tion. He claims somewhat prematurely that the fast FDK method trivially reduces
to fan-beam reconstruction.

3.4.1 Links and the Basic Step

The main idea behind our fast cone-beam backprojection is identical to the two-
dimensional case in Section 2.3: recursive summation of link values. However,
since the wanted summation curves are now defined in three dimensions, the
divide-and-conquer strategy is less obvious.

In Section 2.3, the fast two-dimensional backprojection algorithm starts with
calculating the 2-links, and then continues with longer and longer links until,
eventually, the pixel values are calculated. This may be called a bottom-up ap-
proach. We also mentioned pruning of trees without discussing how it was done.
Approximate coarse pruning rules can be formulated, but the iterative and dis-
crete nature of the algorithm makes it difficult to predict exactly which shorter link
are necessary for constructing the longer links. But since most of the blindly com-
puted links will be used no major inefficiency occurs. Unfortunately, in three di-
mensions, pruning is essential while the approximate pruning rules become more
complex. We therefore feel compelled to introduce the following top-down ap-
proach, applicable to both two- and three-dimensional backprojection, to decide
in advance which link values to calculate.

Starting with the pixels (voxels), we decide which π
2 -links are necessary for

performing the interpolation in (2.46). The indexes of these links are tabulated,
but their values can of course not yet be calculated. The next step is to decide
and tabulate which π

4 -links are necessary to perform the basic step for the tabu-
lated π

2 -links. The process goes on with shorter and shorter links, ending when
the necessary 2-links have been tabulated. Preferably, the interpolation weights
obtained from (2.44) are also stored in the tables at the same time. Note that all
these table entries only depend on the scanning geometry, not on the object to be
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(θn1 , tk1 , qm1)

(θnmid , tkmid , qmmid)

(θn2 , tk2 , qm2)

t

q

θ

Figure 3.15 The basic step. The value of a link is calculated from the values of
eight links of half the length. The links are drawn as lines for simplicity, but are in
reality curved.

measured, and they may therefore be pre-calculated once and for all. Unfortu-
nately, the tables are large. Section 3.4.2 contains a discussion on the size of the
tables.

The link value calculation is simple once the tables are fabricated. It follows
the previous bottom-up approach, but does not include any mid-point or interpo-
lation weight calculations, only the computation of the basic equation (2.43).

The core of the algorithm is a straightforward generalisation of the basic step
in two dimensions, but this time we calculate the value of a new link from eight
links of half the length. See Figure 3.15. For this basic step to work we need to
know the midpoint (θmid, tmid, qmid) of a given link (θn1 , tk1 , qm1 ; θn2 , tk2 , qm2). If
we project the two end-point rays (θn1 , tk1 , qm1) and (θn2 , tk2 , qm2) onto the (x, y)-
plane (see Figure 3.16), their intersection (xmid, ymid, 0) is given by the solutions to
the following system of equations(

xmid

ymid

)
=

(
− sin θn1 cos θn1

− sin θn2 cos θn2

)−1(
tk1

tk2

)
(3.34)

as in the two-dimensional case in (2.38). The first two indexes of the mid-point
are identical to the two-dimensional case (2.41) and (2.42), repeated here for con-
venience, namely

nmid =
n1 + n2

2
(3.35)

and

kmid =
tk1 + tk2

2 cos( θn1−θn2
2 )

(3.36)
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(xmid, ymid, 0)

z1
zmid
z2

θn1

θnmid
θn2

Figure 3.16 The two rays corresponding to the link end points, do not necessarily
intersect. The mid-point (θnmid , tkmid , qmmid) is derived by letting the ray corre-
sponding to the mid-point intersect the point (xmid, ymid, zmid).

The problem is the third index mmid. Consider the following facts. The two
end-points of a link correspond to two rays in the image domain. Unlike the two-
dimensional case, these two rays almost never intersect in three dimensions as
illustrated in Figure 3.16. The mapping between links and image points is there-
fore ambiguous, but we propose to resolve the ambiguity with the following tech-
nique.

First we calculate zmid, as shown in Figure 3.16, as

zmid =
z1 + z2

2
(3.37)

where

z1 = qm1

√
R2 − t2k1

+ v1

R
(3.38)

and

z2 = qm2

√
R2 − t2k2

+ v2

R
(3.39)

finally giving us

qmid =
zmidR√

R2 − t2kmid
+ x cos θnmid + y sin θmid

(3.40)
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Figure 3.15 illustrates how the new link value is obtained from the two-dimen-
sional interpolation

I [n1, k1, m1; n2, k2, m2] =

wtwq

(
I [n1, k1, m1; nmid, �kmid�, �mmid�] + I [nmid, �kmid�, �mmid�; n2, k2, m2]

)
+

wtw
′
q

(
I [n1, k1, m1; nmid, �kmid�, �mmid� + 1] + I [nmid, �kmid�, �mmid�; n2, k2, m2]

)
+

w′
twq

(
I [n1, k1, m1; nmid, �kmid� + 1, �mmid�] + I [nmid, �kmid� + 1, �mmid�; n2, k2, m2]

)
+

w′
tw

′
q

(
I [n1, k1, m1; nmid, �kmid� + 1, �mmid� + 1] + I [nmid, �kmid� + 1, �mmid� + 1; n2, k2, m2]

)
(3.41)

where the weights, if bi-linear interpolation is used, are

wt = 1 − w′
t, w′

t = kmid − �kmid�
wq = 1 − w′

q, w′
q = mmid − �mmid�

(3.42)

Since the end-point rays of a π-link would not intersect even when projected
onto the mid-plane, we do not construct any links longer than π

2 . The voxel values
are evaluated as the sum of four interpolations of π

2 -links in a similar manner to
the two-dimensional case. The interpolation in the t-direction may be skipped if
quarter-offset is not used and the detector and voxel resolutions match, whereas
the q-interpolation may not. Each one of the four interpolations utilises 16 π

2 -links
according to

wt1wt2wq1wq2 · I [n1, �k1�, �m1�; n2, �k2�, �m2�] +
wt1wt2wq1w

′
q2

· I [n1, �k1�, �m1�; n2, �k2�, �m2� + 1] +
...

w′
t1w

′
t2w

′
q1

w′
q2

· I [n1, �k1� + 1, �m1� + 1; n2, �k2� + 1, �m2� + 1]

(3.43)

with the bi-linear weights

wt1 = 1 − w′
t1 , w′

t1 = k1 − �k1�
wt2 = 1 − w′

t2 , wt2 = k2 − �k2�
wq1 = 1 − w′

q1
, w′

q1
= m1 − �m1�

wq2 = 1 − w′
q2

, wq2 = m2 − �m2�

(3.44)

This concludes the reconstruction.

3.4.2 Complexity Analysis

With the introduction of tabulation of links, we need to analyse both the space
complexity, i.e. the amount of memory needed, and the time complexity of the
algorithm. We start with the latter.
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x

y

z

(tk1 , qm1)

θn1 θn2

q(t)

Figure 3.17 The branch endpoints of the π/2-tree with root in (θn1 , tk1 , qm1) are
geometrically described as the projection of the ray (θn1 , tk1 , qm1) onto the detector
at projection angle θn2 = θn1 +π/2. We only regard the part of the ray that passes
through the cylindrical FOV, indicated with a dashed circle.

Time complexity

As before, we define a tree as the collection of links that start from one and the
same point. The links of a tree extend in both the t- and q-directions, which ap-
pears troublesome from a computational complexity point of view. Should all
trees require the same angular span in the two directions, the total number of
links would be

lg Nθ−1∑
i=2

NtNqNθ21−i︸ ︷︷ ︸
Number of trees

· c2i−12i−1︸ ︷︷ ︸
Links per tree

= cNtNqNθ

lg Nθ−1∑
i=2

2i−1 =

cNtNqNθ(2lg Nθ−1 − 2) ∈ O(N4)

(3.45)

with, alas, no gain in the asymptotic behaviour compared to traditional backpro-
jection. Fortunately, as this section will show, the growth of trees is essentially a
one-dimensional process. The actual trees resemble bent fans, extending over an
angular span in the t-direction, while being curved in the q-direction.

To estimate the shape of a tree exactly, we have to take the discreteness of the
reconstruction volume into consideration, but we disregard this initially. Figure
3.17 shows how we geometrically can derive the shape of an ideal π

2 -tree with root
in (θn1 , tk1 , qm1). The image points that need the links of this tree lie in the FOV
along the ray (θn1 , tk1 , qm1). After a projection angle of π

2 , these image points have
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m

n1 nmid n2

Figure 3.18 Due to the interpolation margin necessary in the basic step, the thick-
ness of a tree (drawn dashed) is approximately preserved for a tree of half the length
(drawn solid).

branched out and are projected onto the detector along the curve

q(t) = qm1

√
R2 − t2k1

+ t
√

R2 − t2 + tk1

, −
√

t2max − t2k1
� t �

√
t2max − t2k1

(3.46)

It is exactly the links from (θn1 , tk1 , qm1) to the set of end-points described by
this equation that constitute the ideal tree. Since there is only one q-value for
each t-value in (3.46), we have now showed that the trees form fans rather than
cones, and their growth is one-dimensional rather than two-dimensional. The
ideal shape of shorter trees may be derived in a similar manner, changing the
projection angle difference, π

2 above, to the desired tree length.

It might also be illuminating to observe the following. The image points are
in R

3 while the set of possible rays through a 3D-volume is in R
4 . The set of rays

measured from the circular trajectory is only an R
3 -subset of these possible rays.

Hence, the number of curves (image points) passing through a (t, q)-plane is also
in R

3 . Therefore, the curves emanating from a certain (t, q)-value in such a plane
must form a fan rather than a cone.

To find out the computational complexity we have to examine the tree struc-
ture further. In the discrete reconstruction volume the ray (θn1 , tk1 , qm1) in Figure
3.17 traverses voxels in a 2 × 2 thick tube of voxels surrounding the ray. When
projected onto the detector, the tube thickness is scaled by a factor of approxi-
mately R/(R + tk1) due to the distance to the detector and a factor of approxi-
mately 1/ cosκ due to the cone-angle. Hence, the resulting projected thickness,
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Type Unique Duplicates Quantity [106] ADD MULT MFLOPs

Voxels 825088 1 0.8 63 64 105
64-links 3052781 4 12 7 4 134
32-links 2477849 8 20 7 4 218
16-links 1462633 16 23 7 4 257
8-links 845834 32 27 7 4 298
4-links 544317 64 35 7 4 383
2-links 380836 128 49 7 4 536

Total 9589338 167 1932

Table 3.3 Calculation of FLOPs when N = 128.

measured in detector rows, is

2R∆z

∆q(R + tk1) cosκ
� 5 (3.47)

for typical parameter values (∆z = ∆q, κmax = 10◦, tmax = R/2). To summarise, a
π
2 -tree looks like a non-planar fan, typically extending over a large interval in the
t-direction but having a thickness of only a few grid points in the q-direction.

An approximation of the thickness of shorter trees is made in Figure 3.18. Each
step, i, in the top-down construction process halves the thickness of the long tree,
di−1. However, it adds a margin needed in the basic step interpolation, and thus
giving the short tree the approximate thickness

di = �di−1/2� + 2 (3.48)

The thickness therefore converges to around 3 or 4 detector rows, regardless of the
resolutions chosen.

There are half as many 2-trees as 1-trees since there are half as many θ-positions
for them to start from. Assume that a 1-tree contains c links. The total number of
links created in step 2 to step lg Nθ − 1 is then

lg Nθ−1∑
i=2

NθNtNq21−i︸ ︷︷ ︸
Number of trees

· c2i−1︸ ︷︷ ︸
Links per tree

=

cNθNtNq(lg Nθ − 2) ∈ O(N3 log N) (3.49)

The number of links per step in a specific case is shown in Table 3.3. The to-
tal number of Floating Point Operations (FLOP) needed for computation of these
links is now possible to estimate. The basic step (3.41) requires 4 multiplications
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N 64 128 256 512 1024

Trad. 1 · 108 2 · 109 3 · 1010 5 · 1011 9 · 1012

Fast 2 · 108 2 · 109 2 · 1010 2 · 1011 1 · 1012

Table 3.4 Number of FLOPs on projection data in traditional and fast backprojec-
tion as a functrion of N = Nx = Ny = 2Nz = Nt = Nq = Nθ/2. The estimate
for fast backprojection when N = 1024 is extrapolated.

and 7 additions if all four interpolation weights are tabulated. The final link as-
sembly uses 16 multiplications and 15 additions in each quadrant. Table 3.3 shows
how the total number of FLOPs is estimated when N = 128.

Traditional backprojection requires a bi-linear interpolation for each voxel and
projection angle. A bi-linear interpolation consists of three linear interpolations,
each of which requires two multiplications and one addition. The result should
be accumulated, and the total number of FLOPS is therefore

(3 · 3 + 1) NxNyNz
π

4︸ ︷︷ ︸
Voxels in FOV

Nθ = 2.5πN4, N = Nx = Ny = 2Nz = Nθ/2 (3.50)

A comparison between fast and traditional backprojection based on the estimates
above is shown in Table 3.4. This comparison does not include indexing or geo-
metrical calculations, which, if included, would make our algorithm seem even
more efficient, due to the pre-calculated tables.

Space complexity

There are two major memory areas needed by the algorithm: the link value area
and the link construction table area containing interpolation coefficients and ad-
dress information to access link value data. The former needs a random access
memory (RAM), whereas the latter may be stored once and for all in a read-only
memory (ROM).

The link values produced in each of the lg Nθ−2 steps of the algorithm are only
needed as input data for the consecutive step and may be discarded thereafter.
Therefore, the RAM storing these values can be partitioned into two segments,
one large enough to store the values produced in the previous step and the other
one large enough to store the values produced in the present. After one step is
completed, the contents of the older segment is obsolete and can be used for the
upcoming step in a Ping-Pong buffer style. Table 3.3 shows that the number of
links decreases from step to step. Hence it is the number of 2-links that determines
the exact memory size which is always O(N3).
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For any long link in the top-down link construction approach of Section 3.4.1,
the information on all necessary links of shorter length must be placed in another
table. The basic idea of the fast backprojection algorithm is that each link value
will be used in several basic step calculations. Hence, as a child a link will serve
many fathers and its value will be accessed several times. In the top-down process
we are therefore forced to check if the child is already tabulated in order to avoid
duplicates.

Since we need O(N3 log N) links, a naive guess would be that the number
of ROM entries should also be of this magnitude, but thanks to a symmetry ex-
plained in the next paragraph, the required number of entries can be reduced to
O(N3).

The discussions on the ideal trees shapes in Section 3.4.2 only considered the
length of the trees, θn2 − θn1 , not the actual values of θn1 and θn2 . The shape of
an ideal tree is therefore independent on the θ-coordinate of its root. Taking the
discreteisation effects into account, this nice property is not completely true; a few
links at the border of the tree may differ between trees along the θ-axis. Despite
these small differences, we can make the link construction tables θ-independent.
In order for this to work, the union of all links of these slightly different trees is
tabulated, so that all necessary links are available. This results in that a few link
values will be calculated in vain, but reduces the total table size to

lg Nθ−1∑
i=2

NtNq︸ ︷︷ ︸
Number of trees

· c2i−1︸ ︷︷ ︸
Links per tree

= cNtNq(2lg Nθ−2 − 2) ∈ O(N3) (3.51)

entries, where each entry contains eight table indexes pointing to the children of
the link, and four interpolation weights. The table index pointers point into the
O(N3)-sized RAM and therefore require O(lg N3) = O(log N) bits each which
makes the actual ROM size O(N3 log N).

Another advantage of making the table θ-independent is that we may assume
all trees to start at θn1 = 0, and thereby significantly simplifying the geometry cal-
culations in (3.34) – (3.36). To save some memory on expense of computation, only
wt and wq of (3.42) are necessary to tabulate since the four interpolation weights
then are easily calculated using two subtractions and four multiplications.

A ROM table for traditional backprojection would require NxNyNzNβ ∈ O(N4)
entries, but as pointed out by Buck, Maisl, and Reiter (1996), it may be reduced to
NφNrNz ∈ O(N3) entries if the voxels to be reconstructed are placed on a cylin-
drical grid, (φ, r, z), centred on the axis of rotation. The projection geometry is
then independent on the projection angle, provided that ∆β is a multiple of ∆φ.
Buck et al. call their implementation of a traditional backprojection utilising such
a pre-calculated table The Cylinder Algorithm. It is only mentioned here to point
out that it is possible to perform traditional backprojection with a table of O(N3)
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Figure 3.19 (a) The projection curve of a voxel and its projections onto the (θ, t)-,
(θ, q)-, and (t, q)-planes. (b) The π

8 -links needed for this curve. Note how a tq-slice
of the lattice structure of links surrounding the ideal curve typically is 3 × 3 links
wide but narrows down to the ideal 2 × 2 links for θ = 0, π

2 , . . . , 2π.

size (but still with O(N4) calculations) and we will not use the cylindrical grid in
our work.

3.4.3 Iterative Interpolation

Due to the iterative interpolation, the smoothing effects of the actual interpolation
kernel become shift variant and wider than the kernel used in every step. As an
example, Figure 3.19 shows the π

8 -links needed for a certain voxel, all contributing
to the final voxel value.

We have studied the actual kernel in terms of how much a filtered measure-
ment p̃P [n, k, m] contributes to the voxel (xi1 , yi2 , zi3). This contribution is de-
noted w[i1, i2, i3, n, k, m]. For a specific voxel, the actual kernel has its support on
an intestine shaped volume around the projection curve of the voxel, being ide-
ally thin at θ = 0, π

2 , . . . , 2π. We searched for the voxel and the projection angle
where the actual kernel was at its widest, i.e. where it had the largest variance in
the (t, q)-plane, expressed as

max
i1,i2,i3,n

∑
k′

∑
m′

w[i1, i2, i3, n, k′, m′]
(
(k′ − k(xi1 , yi2 , θn))2 + (m′ − m(xi1 , yi2 , zi3 , θn))2

)
(3.52)

The ideal kernel centre (k(x, y, θ), m(x, y, θ)) is given by combining (2.10) and
(3.40) with (2.17) and (3.24). This actual kernel is shown in Figure 3.20 (a). The
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(b) Bi-cubic interpolation

Figure 3.20 The widest actual kernel for Nθ = 128. The plus indicates the centre
of gravity and the asterisk the ideal kernel centre. The geometry parameters are
(x, y, z) = (0.4, 0.5, 0.15), R = 2.0, and n = 107.

centre of gravity of the actual kernel is very close to the ideal kernel centre, with a
deviation never exceeding a quarter of a grid unit.

By replacing the triangular interpolation kernel of the bi-linear interpolations
in (3.42) with a sharper 2-point cubic kernel as in

wt = 2(kmid − �kmid�)3 − 3(kmid − �kmid�)2 + 1, w′
t = 1 − wt

wq = 2(mmid − �mmid�)3 − 3(mmid − �mmid�)2 + 1, w′
q = 1 − wq

(3.53)

the resulting actual kernel becomes somewhat sharper as shown in Figure 3.20
(b). If the interpolation weights are pre-calculated and tabulated, there is no per-
formance loss in using this seemingly more complicated bi-cubic interpolation.

3.4.4 Hardware Implementation

This section presents a sketch of two possible hardware architectures for imple-
mentation of the algorithm. These sketches should not be taken as serious hard-
ware designs, but are included to illuminate how the calculations may be organ-
ised and optimised. We concentrate on the basic step of the algorithm and assume
that the filtering, rebinning and final assembly of voxel values from π

2 -links is
performed elsewhere.

For simplicity and clarity, we neglect the optimisations of the size of the ROM
discussed in Section 3.4.2 and assume that the children and interpolation weights
of all links are tabulated. The architectures presented can easily be expanded to
incorporate the important optimisations.
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Figure 3.21 A simple but inefficient hardware architecture performing the back-
projection core of the algorithm.

Calculation of one link value every eighth clock-cycle

A first approach to a hardware architecture is shown in Figure 3.21. The pre-
computed interpolation weights and pointers to the children links are stored in
a large ROM with one child pointer and the corresponding interpolation weight
per address. Each basic step therefore uses eight words of the ROM. These eight-
word-blocks of a link only have to be sorted according to the length of the link,
the internal order of all links of the same length is arbitrary. The link values are
stored in a RAM that is partitioned into two swappable halves as discussed ear-
lier. Initially, the top half of the RAM is filled with the filtered projection data. For
each clock-cycle then on, the link value of a child is weighted and accumulated.
Every eighth clock-cycle a new complete link value is ready, and then the accu-
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mulation register is cleared and the counter addressing the lower half of the RAM
is incremented by one. After one step of the algorithm, i.e. when the values of all
links of a certain length have been calculated, the upper and lower halves of the
RAM are swapped. This swap is preferably realised by some addressing logic of
the RAM, instead of an actual data transfer. When the execution is completed, the
link values of all π

2 -links are stored in the bottom half of the RAM, ready to be
assembled into voxel values by some other piece of hardware or software.

The content of the ROM is read in sequential order and therefore lends itself to
be stored on a secondary storage device, e.g. a hard drive. Two shortcomings of
this simple approach are that it needs eight clock-cycles for each link value to be
calculated and that all interpolation weights are stored twice in the ROM.

Calculation of one link value per clock-cycle

In 2-point one-dimensional interpolation, we always use one grid point to the left
and one to the right of the desired point. In other words, we use one grid point
with an even index and one with an odd index. If we generalize this observation
for our basic step, we notice that the eight short links of length l, always can be
divided into the following eight disjoint classes:

• θn1/l is even, k2 is even, m2 is even

• θn1/l is even, k2 is even, m2 is odd

• θn1/l is even, k2 is odd, m2 is even

...

• θn1/l is odd, k1 is odd, m1 is odd

with exactly one link in each class. It is therefore possible to partition each of the
two halves of the link value RAM into the same eight classes and thus perform
the complete interpolation step in one clock-cycle as shown in Figure 3.22.

The new link values are stored in the correct section of the lower half of the
RAM. The decision on which section is correct does not have to be performed at
run time. It can be achieved by pre-sorting the links in the ROM in a suitable order
such that the three least significant bits of the counter addressing the lower half of
the ROM can simply cycle through the eight sections as indicated in the figure.

An architecture incorporating the θ-independence discussed in Section 3.4.2
would only require an O(N3)-sized ROM. For step i = 2, . . . , lg Nθ−1, the counter
addressing the ROM would then increment every Nθ21−i:th clock-cycle and a
multiple of a pre-calculated offset would be added to all RAM addresses.

The required size of each RAM segment is decided by the number of 2-links
and would according to Table 3.3 be 49 · 106 < 223 for N = 128. The pointers in
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Figure 3.22 A possible hardware architecture calculating one link value per clock
cycle.

the ROM would therefore require 23 bits each. Consider the link values of the first
four RAM segments and assume that the pre-sorting of the ROM is performed
so that they are sorted according to the descending priority θn1 , tk1 , qm1 , tk2 , qm2 .
The four first child value pointers would then have approximately the same value
for a given parent. It is therefore very efficient to store the difference, the offset, to
the first pointer for pointer 2, 3, and 4 instead of the actual pointer values. The
same scheme can be used for the last four RAM segments if they sorted in the
descending priority θn2 , tk2 , qm2 , tk1 , qm1 .

There are several possibilities of further parallelisation. The reconstruction
volume can be divided at the mid-plane into two halves, which may be recon-
structed separately, using projection data from the upper half and the lower half of
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the projection rows respectively. It can further be observed that no data is shared
in the computation of π

2 -links with roots in different θ-coordinates. Hence, the
projection data may be segmented into the following eight disjoint groups:

• 0 � θ < π
2 , q < 0

• 0 � θ < π
2 , q � 0

• π
2 � θ < π, q < 0

...

• 3π
2 � θ < 2π, q � 0

with hardware performing the backprojection core of the algorithm on each one
of the groups in parallel.

If both acquisition and reconstruction is seen as one system, the total data
throughput is delayed due to the rebinning to oblique parallel beams. The first
oblique parallel projection is available after a source rotation of 2γmax, but from
then on the data rate is constant. The fast backprojection may start once a quad-
rant of oblique parallel data is measured.

An architecture requiring less memory

The main objective to pre-calculate the ROM was to simplify and optimise the
pruning of unnecessary links. This pruning information is the only part of the
ROM that really requires the top-down construction approach. We will now sketch
an architecture that decreases the ROM size by only storing the pruning informa-
tion and calculating the interpolation weights and link value addresses on the fly.

We imagine a pruning table with only one bit per possible link that indicates
whether the link value should be evaluated or not. The entropy of such a pruning
table is low and a simple run-length coding would reduce its size considerably.
The unpacking of the run-length coding is essentially instant and the table could
therefore be used to create a stream of (tk1 , qm1 , 0; tk2 , qm2 , θn2) link identifiers.
Equations (3.35)-(3.42) could then be used to determine the identifiers of the eight
children and the corresponding interpolation weights. As discussed earlier, these
equations may be simplified by setting θn1 = 0 and then use the same interpola-
tion weights for the (Nθ

n2
− 1) duplicate links of the same length.

The remaining problem is the addressing of the link value RAM. A straightfor-
ward addressing scheme would require a O(N4)-sized RAM, with mainly unused
addresses, since there only exist O(N3) unpruned links in each step. However,
since the pruning is known in advance, we can design a hashing scheme with
pre-calculated look-up tables so that a O(N3)-sized RAM would suffice.
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Source trajectory radius R = 2.0 length units (l.u.)

Projections per turn Nβ = Nθ = 256
Detector rows Nq = 125
Detector row height ∆q = 2

125

Detector elements per row Nγ = Nt = 125
Maximum fan-angle γmax = 30◦

Maximum cone-angle at γ = 0 κmax = 26.6◦

Reconstruction grid Nx × Ny × Nz = 125 × 125 × 63
Reconstruction grid resolution ∆x = ∆y = ∆z = 2

125 l.u.

Simulated rays per detector element 9

Table 3.5 Experiment parameters for Figures 3.24 and 3.25.

3.4.5 Experimental Results

We have reconstructed the three-dimensional Shepp-Logan as defined in Appen-
dix B.2 using FDK-C, FDK-P, and FDK-FAST. The results in Figure 3.24 show no
apparent visible difference in image quality between the three techniques. As
mentioned above, the intensity drop for large cone angles is a well-known artifact
of all FDK-like algorithms.

To obtain a better measurement of the effects of the iterative interpolation, we
have used the methodology of Grangeat, Le Mason, Melennec, and Sire (1991)
and Rizo, Grangeat, Sire, Le Mason, and Melennec (1991) to study the modulation
transfer function (MTF) of the reconstruction. This function indicates how well
different frequencies are reconstructed which in our case is a space dependent
property. A small test object dominated by the wanted frequency is reconstructed
and the reconstructed response for this frequency is measured relative the phan-
tom. The procedure is repeated for each frequency to be measured. A set of small
concentric spheres centred on (x, y, z) = (0, 0.4, 0) was used as test objects. See
Figure 3.23. The results in Figure 3.25 show that the parallel rebinning does not
affect the MTF. A clearly visible decrease in response for high frequencies is on
the other hand seen for PI-FAST. This is due to the iterative interpolation. Fre-
quency response is dependent on many factors, one being the ramp-filter used.
We normally use the frequency weighted ramp-filter

gP
2 [k] =

1
2π

(
sinc
(k + 0.5

2
)
cos
(
π

k − 0.5
2

)
+ sinc

(k − 0.5
2

)
cos
(
π

k + 0.5
2

))
(3.54)

but in Figure 3.25(c)–(f), the band-limited pure ramp-filter

gP
1 [k] =

1
2

sinc(k) − 1
4

sinc2(k
2
)

(3.55)

is also used for comparison. The latter filter results in somewhat sharper images.
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(a) Voxelized ideal phan-
tom

(b) Reconstructed result
using fast backprojection

Figure 3.23 Test object for calculation of the modulation transfer function.

3.5 Discussion

The FDK algorithm has dominated circular cone-beam reconstruction since it was
introduced in 1984. Relatively little effort has been put into improving it. The
paper of Grass et al. (2000a) which is an outgrowth of the work of Turbell (1999)
shows that their algorithm FDK-HT not only produces reconstruction results su-
perior to FDK but also is computationally more efficient and is able to reconstuct a
larger volume than FDK, elegantly confined within a cylinder. Their image quality
observations are validated by the experiments in this chapter.

We have tried to improve FDK even further with FDK-SLANT. The results are
promising in some ways and discouraging in others. If one algorithm is to be
recommended it is bound to be FDK-HT.

We are somewhat ambigous about the practicality of FDK-FAST. The memory
requirements, the implementation complexity, the inherent smoothing effects, and
the rather modest decrease in computation time are obvious shortcomings. We
have nevertheless included it here as it is the first fast backprojection algorithm
for the cone-beam case. It also includes some techniques that will be used in PI-
FAST presented in Section 4.3.4.
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(a) FDK-C

(b) FDK-P

(c) FDK-FAST

Figure 3.24 Reconstruction results of the Shepp-Logan phantom. (x, z)-slices at
y = 0.25 for x ∈ [−1, 1] and z ∈ [0, 0.5]. Grayscale interval [1, 1.04]. Other
parameters as in Table 3.5



3.5 Discussion 75

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) FDK-C, MTFx

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) FDK-C, MTFz

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gP
1 [k]

gP
2 [k]

(c) FDK-P, MTFx
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(d) FDK-P, MTFz
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(e) FDK-FAST, MTFx
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Figure 3.25 Modulation transfer functions. In (c)-(f) two different kind of ramp-
filters, defined in (3.54) and (3.55), were used. Other parameters as in Table 3.5





4

Helical Cone-Beam
Reconstruction

The helical source trajectory is natural for volume scanning of long objects. A
continuously translated object and a rotating source-detector system yield a heli-
cal source trajectory around the object. Helical scanning has been used for many
years with one-dimensional detectors, and has now been extended for use with
multi-row detectors. Some radiologists, e.g. Berland and Smith (1998), claim
that the new helical multi-rows systems could be as important as the advent of
single-row helical CT was ten years ago. Manufacturers promise simultaneous
improvements in scanning speed, z-resolution, and image noise, but there is in
fact a trade-off between these factors.

4.1 Exact Methods

Exact reconsruction from helical cone-beam data was an open problem when the
work of this thesis began in 1996. Important contributions by Tam (1995) and
Kudo, Noo, and Defrise (1998) lead to developments of exact algorithms able to
cope with long objects not fully covered by the helix. Recent efforts aim to make
these computationally expensive algorithms more efficient.

Table 4.1 lists some important contributions in the area. The table classifies
the contributions into the following three cases: reconstruction from untruncated
data, already discussed in Section 3.1, reconstruction of short objects from trun-
cated data, discussed in Section 4.1.2, and reconstruction of long objects from trun-
cated data, discussed in Section 4.1.3. Short objects are fully covered by the helical
scan whereas long objects extend outside the helix in the z-direction.

77
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Radon-based Filtered backprojection

Untruncated projections
(arbitrary trajectory)

Grangeat (1987) Defrise and Clack (1994)

Truncated projections,
short object

Tam (1995) Kudo et al. (1998)

Truncated projections,
long object (with
additional circlular
trajectories)

Tam (1995) Tam et al. (2000)

Truncated projections,
long object (without
additional circlular
trajectories)

The PHI method
(Schaller et al. 1999)

The MS-CB-FBP method
(Kudo et al. 1999); The
ZB method (Defrise et al.
2000); The PHI method
(Schaller et al. 1999)

Table 4.1 Algorithms for exact helical reconstruction.

4.1.1 The Helix Geometry

The geometry of helical cone-beam scanning is a minor augmentation of the circu-
lar cone-beam geometry. See Figure 4.1. The pitch, P , is defined as the distance in
the z-direction of two points on the helix that are exactly one turn apart. It is mea-
sured in length units. Many variations on the pitch concept exist in the literature.
One of these is the relative pitch, defined as P

∆q or sometimes as P
Nq∆q . We use

the integer parameter λ = 0, . . . , Nλ − 1 to distinguish between the Nλ turns of
the helix. The source S is moving constantly in the z-direction with the projection
angle β as

zS(β) = β
P

2π
+ zS0 (4.1)

where zS0 denotes the source starting position. We use Nβ to denote the number
of projections for one turn as in the two-dimensional case, and hence we have a
total of NλNβ projections.

All exact algorithms are derived using a planar detector (a, b) as shown to the
right in Figure 4.1. In the figure the detector is placed at a distance of 3R from
the source but it is customary to define it on the axis of rotation. The coordinate
system (a′, b′), obtained by rotating the (a, b) system by η = arctan P

2πR , will be
shown to be useful. The rotation is such that the a′-axis is parallel with the source
velocity vector.
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Figure 4.1 The PI-detector and its projection on a planar detector.

4.1.2 Reconstruction of Short Objects

Grangeat’s method for exact cone-beam reconstruction, briefly mentioned in Sec-
tion 3.1, is not restricted to a circular source trajectory, but can also be used for the
helical case. An implementation using linograms is described by Eriksson (1998).
The main limitation of a direct use of the Grangeat method is that the projections
need to be untruncated. To overcome this limitation Tam (1995), Eberhard and
Tam (1995), and Tam, Samarasekera, and Sauer (1997) suggested the use of a spe-
cially shaped detector window. Projected as a detector onto the same cylinder as
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x

y

z

Figure 4.2 Any plane can be triangulated by the source points intersecting the
plane. To avoid truncation problems when scanning long objects, the helical source
trajectory is augmented with two extra circles.

the helical source trajectory, it takes the appearance shown in Figure 4.1. The win-
dow is limited by two consecutive helix turns in height and by two vertical lines
in width. We refer to this detector window as the Tam window and, for reasons
apparent in Section 4.3, to detectors shaped accordingly as PI-detectors. Note that
the physical detector still may be planar or cylindrical around the source, as long
it is limited by this window. The projection of the Tam window onto the planar
detector (a, b) is confined within the curves

b1(a) = P (1 +
a2

R2 ) ·
(

arctan a
R

2π
+

1
4

)
(4.2)

and

b2(a) = P (1 +
a2

R2 ) ·
(

arctan a
R

2π
− 1

4

)
(4.3)

The first step of Grangeat’s method is to calculate the derivative of all plane
integrals through the object. Figure 4.2 shows how an arbitrary plane can be tri-
angulated by the source points at the intersection of the source trajectory and the
plane. For the moment, we ask the reader to ignore the two circles at the top and
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the bottom of the helix in this figure. The Tam window limits the measured rays
perfectly so that all areas of the plane are covered exactly once. Thus, in princi-
ple, the complete derivative of the plane integral can be obtained by adding the
contributions from all triangular patches. As a corollary we conclude that the
PI-detector is sufficient for exact reconstruction.

Kudo, Noo, and Defrise (1998) have showed that a mere addition of the con-
tributions from the triangular patches will not produce an exact result. A small
but essential boundary term must be included in the piece-wise computation of
the Radon plane derivatives. Intuitively, this can be seen as a compensation for
the fact that the triangles change area slightly when the plane is moved along its
normal in the differentiation process. Also, Kudo et al. (1998) reformulated Tam’s
Radon-based algorithm into a filtered backprojection version, called CB-FBP, in a
similar fashion to what Defrise and Clack (1994) did to the original algorithm of
Grangeat (1987). The filtering is two-dimensional and shift-variant and although
the unfiltered data is truncated, the support of the filtered data is unbounded.
Hence, the filtered projection data has to be calculated over a detector region that
covers the complete object. Conversely, each measured and truncated projection
data affects all voxels in the complete object.

4.1.3 Reconstruction of Long Objects

The non-locality of the above algorithms implies that the whole object has to be
scanned before reconstruction. This is unwanted in medical applications where
only a section of the body is to be imaged.

Two extra circles

To handle long objects Tam (1995) suggested to add two circular paths at the start
and the end of the helix, which are already included in Figure 4.2. The reconstruc-
tion may then be limited to a region of interest (ROI) restricted by the cylindrical
FOV and the planes of these two circles. It is then possible to only consider rays
within the ROI for all Radon planes. Without the two circles, complete data cap-
ture for a cylindrical ROI would have to employ rays passing through the object
both inside and outside the ROI which would corrupt the result. Such rays are re-
ferred to as contaminated. Tam, Lauritsch, Sourbelle, Sauer, and Ladendorf (2000)
formulated this Radon-based approach as a filtered backprojection. In practice,
the two extra circles will become a severe burden, since they require acceleration
and deceleration of the patient table.

A result by Kudo, Park, Noo, and Defrise (1999) shows that a ROI of a long
object can be exactly reconstructed without the two extra circles needed by Tam
(1995). The resulting algorithm uses the filtered backprojection technique of CB-
FBP and is called multi-slice cone-beam filtered backprojection (MS-CB-FBP). The
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authors show that the measurements from the extra circles are only needed in a
boundary term calculation. Such boundary rays intersect the top or bottom of the
Tam window. In other words, they intersect the helix and are therefore not only
measured from the circles but also, in the opposing direction, from the helix as
well. Figure 4.2 contains two examples of such rays. The only data needed from
the circles can therefore be replaced by identical data measured from the helix.
The circles can be thought of as virtual and actually placed anywhere along the
helix. In an alternative algorithm called single-slice cone-beam filtered backpro-
jection (SS-CB-FBP) the reconstruction is split up on a slice by slice basis. The vir-
tual circles are placed on each side of the slice and the slice is then reconstructed.
This makes the algorithm faster and more local.

The PHI method

The so-called PHI-method of Schaller, Noo, Sauer, Tam, Lauritsch, and Flohr (1999)
avoids the extra circles by defining ROIs with shapes such that no contaminated
rays are needed in the reconstruction. The shapes of the ROIs change with the
vertical elevation angle φ of the normals of the Radon planes. This variation of
the ROI shape is allowed since the Radon value backprojection algorithm of Marr,
Chen, and Lauterbur (1981) only considers Radon planes of identical φ in its first
stage. A full detailed description of the algorithm is found in Schaller et al. (2000).

Sourbelle, Lauritsch, Tam, Noo, and Kalender (2000) have compared a Radon-
based implementation and a filtered backprojection implementation of the PHI-
method. The filtered backprojection was found to be slightly better in all aspects.

The ZB method

The CB-FBP method discussed above only uses data within the Tam window. De-
frise, Noo, and Kudo (2000) show that CB-FBP simplifies considerably if the object
is such that the projection values tend smoothly to zero along the borders of the
Tam window. The boundary term then becomes zero and the shift-variant filter-
ing reduces to shift-invariant ramp-filtering along lines parallel to a′. The values
within the region B contribute to ramp-filtered projection values in the parallelo-
gram area B̃. These filtered data are then backprojected as in FDK and the recon-
struction is consequently called B-FDK. It is essential that the original data tend
smoothly to zero along the border since the ramp-filter is operating over the edge
and would introduce artifacts if the transition was sharp. See Figure 2.8(b).

Projections with vanishing values along the detector borders are said to have a
zero boundary. Note that a smooth windowing of the projection data of an arbitrary
object would alter the projections and result in non-exact reconstruction. It is the
object that has to generate projections with zero boundary. No real object fulfils the
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Backprojection
along PI-lines

Forward projection B-FDK
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1 = pF − pF
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Figure 4.3 Calculation steps in the ZB method.

zero boundary property, but the following geometrical property of the helix makes
it possible to write any object f as a sum of two hypothetical objects f(x, y, z) =
f1(x, y, z) + f2(x, y, z) where the projections of f2(x, y, z) have the zero boundary
property.

We define a PI-line as a line that connects two points on the helix separated
by less than one pitch. The lines separating the triangles in Figure 4.2 are all ex-
amples of PI-lines, apart from the four lines connected to the circles. Danielsson,
Edholm, Eriksson, and Magnusson-Seger (1997) geometrically showed that each
image point within the helix cylinder belongs to one and only one PI-line. An an-
alytic proof was made by Defrise et al. (2000). The one-to-one mapping between
image points and PI-lines are essential in the PI-methods discussed in Section 4.3.

The algorithm described by Defrise et al. (2000) is called the zero boundary
(ZB) method. Figure 4.3 illustrates the main steps of the algorithm. The one-to-
one mapping between PI-lines and image points is used to separate the projection
data pF (β, a, b) into projection data pF

1 (β, a, b) and pF
2 (β, a, b) from the two objects

f1(x, y, z) and f2(x, y, z) respectively. The construction of f1(x, y, z) is made by
smearing back all detector border values along the corresponding PI-lines. This
process can be thought of as backprojection of the border values. The one-to-
one mapping ensures that all image points will receive exactly one backprojection
contribution. In the actual sampled situation this is not exactly true calling for
interpolations with proper normalisations. A border value may be distributed
anywhere along the PI-line, as long as the integral over the PI-line is equal to the
border value. In the ZB method the backprojection is weighted with a bell-shaped
profile in order to obtain a smooth volume f1(x, y, z). A final smoothing with a
three-dimensional Hamming filter is then applied.

The projections pF
1 (β, a, b) are produced by numerical line integration through

the constructed volume f1(x, y, z). The line integration is implemented using the
method of Joseph (1982), described in Section 5.1.2.
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The projections pF
2 (β, a, b) are calculated as pF

2 (β, a, b) = pF (β, a, b)−pF
1 (β, a, b).

The values of pF
2 (β, a, b) will vanish along the border, allowing for reconstruction

of f2(x, y, z) using B-FDK. The final result is then computed as the sum fZB(x, y, z) =
f1(x, y, z) + f2(x, y, z). However, the two volumes are obtained in different ways
and therefore have unmatched spatial resolution. An extra smoothing of f1(x, y, z)
is therefore applied before the summation.

With these new contributions the previously mentioned long object problem
has been solved. It is indeed possible to reconstruct a ROI separately and exactly
without waiting for the whole long object to be scanned.

4.2 Approximate Methods

Just as in circular tomography, the relatively complex exact reconstruction meth-
ods are often rejected in favour of more efficient, albeit approximate, ones. This
section surveys several different approaches to approximate helical cone-beam re-
construction. We follow the taxonomy of Table 1.2, starting with methods employ-
ing two-dimensional backprojection and continuing with more complicated meth-
ods with three-dimensional backprojection. The three ways of handling short-
scan data, discussed in Section 2.2.3, will be used for both kinds of backprojection.

4.2.1 Two-Dimensional Backprojection

We distinguish between the reconstruction algorithms for single-row detector sys-
tems and multi-row systems. The former have been in used since the introduc-
tion of helical scanning, whereas the latter are developed for and used in the new
multi-row tomographs.

Single-Row Data

A typical reconstruction algorithm for single-row detector systems using two-
dimensional backprojection works as follows when a slice at z = zslice is to be
reconstructed. In general, there is no projection data measured for a ray of a spe-
cific projection angle β = β0 that lies perfectly in the slice. Instead it must be
obtained from linear interpolation between data from two rays emitted from the
two closest turns of the helix. This is commonly illustrated as in Figure 4.4(a).
These rays are 360◦ apart, and the method is therefore referred to as full-scan or
360◦LI, where LI stands for Linear Interpolation. Once this planar projection set
pzslice(β, γ) is constructed, the two-dimensional fan-beam filtered backprojection
algorithm of Section 2.2.2 can be applied.

Kalender (1995) has published a thorough investigation, comparing helical
single-slice methods to older methods with circular trajectories and slice-by-slice
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Figure 4.4 A projection value for the projection angle β = β0 in the plane z =
zslice is obtained by linear interpolation. (a) 360◦LI. (b) 180◦LI, solid: direct ray,
dashed: central complementary ray.

scanning. He concludes that the helical methods give a better or comparable im-
age quality in every aspect. An important difference, which also speaks in favour
of helical scanning, is that the exact z-position of each single slice may be selected
arbitrarily at reconstruction time without loss of image quality. This is possible
since the projections produce a continuous flow of measurements, which are not
predetermined to be separated into sets before reconstruction.

The three methods to handle short-scan fan-beam data discussed in Section 2.2.3
can also be applied to helical single-row reconstruction. They are then generally
known as 180◦LI-algorithms.

Parallel Rebinning

Parallel rebinning produces data sets originating from parallel rays that are dis-
tributed over a helix angular interval of 2γmax. Unlike the original fan-beam sets,
these rays can be used in both directions. Therefore, they produce twice as many
parallel projections as original fan-beam projections. The backprojection of a slice
utilises such projections over an angular θ-interval of π, which correspond to orig-
inal fan-beam data captured over a β-interval of π + 2γmax. On the average, the
interpolation distance in the z-direction is then only half of what it is in the 360◦LI-
algorithm.

Complementary rebinning

Complementary rebinning produces data sets originating from a fan of rays mea-
sured at different projection angles. See Figure 4.5. The complementary virtual
fan-beam source will not be a single point, but a line segment parallel to the z-
axis. Still, the rays in this beam are parallel to the (x, y)-plane and their end points
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Figure 4.5 Perspective and side view of a complementary fan above a direct fan.
The spheres indicate the direct source positions. The complementary source be-
comes a line segment. Compare with the two-dimensional case in Figure 2.6.

.

are positioned on the original helix. The central ray (γ = 0) in a complementary
fan will be positioned exactly halfway in the z-direction between its two near-
est direct fans. Other rays are more than halfway or less than halfway from rays
of the same direction in the two nearest direct fans. Therefore, on the average,
the z-interpolation width is halved by interpolating between one direct and one
complementary fan as shown in Figure 4.4. The reconstruction of one slice uses
original data from the same short acquisition interval π + 2γmax as in the previous
case which means rays as close as possible to the desired slice.

Smooth sinogram windowing

The smooth sinogram windowing technique is also possible to employ for helical
single-row reconstruction but does not decrease the z-interpolation distance and
we refrain from outlining the details here.

Multi-Row Data

All of the above methods for single-row data are naturally extended to multi-row
detectors. The z-interpolation is then still performed between the two measured
rays that are closest, in some sense, to the desired ray. These may now belong
to different rows of the same or adjacent turns of the helix. Figure 4.6(a) shows
how this interpolation is performed for a 3-row detector. For the non-central fans
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Figure 4.6 Interpolation in the z-direction for a 3-row detector with pitch P =
6∆q. The lines indicate the z-coordinate of the intersection of the central (γ =
0) ray and the z-axis. (a) 360◦LI. (b) 180◦LI, solid: direct ray, dashed: central
complementary ray.

(q �= 0), the z-position varies along each ray, so we only indicate the z-coordinate
of the intersection of the z-axis and the central ray of each fan in the figure.

Taguchi and Aradate (1998) have investigated different ratios between the pitch
and the detector row width, ∆q. For smaller pitches the saw-tooth curves in Fig-
ure 4.6 overlap and interlace. They claim the sampling to be “optimal” for non-
integer pitches such as 2.5∆q or 3.5∆q for a 4-row detector. Wang and Vannier
(1999) investigate the role of the pitch using the concept of sensitivity of signal re-
construction. Their conclusion is also to avoid pitches of integer multiples of ∆q.
Both of the above articles consider the situation in a small neighbourhood along
the z-axis where only the central rays of the fan are used. The situation is more
complex for non-central voxels. This observation together with the fact that one
manufacturer (Hu 1999) has chosen to use a integer pitch of P = 6∆q as a stan-
dard value indicates that the above recommendations of “optimal” pitch should
be taken with a pinch of salt. A complete simulation including the full recon-
struction algorithm and evaluations of the dose and the resulting image quality is
necessary for an optimal choice of pitch.

As mentioned, all three ways of handling short-scan data have been extended
to the multi-row case. Here follows a presentation compliant with the order in
Table 1.2.

Parallel Rebinning

Rebinning to parallel projections was investigated by Schaller, Flohr, Wolf, and
Kalender (1998) and seems to give a flexible and fast algorithm. This algorithm
also uses a interpolation kernel with a modifiable width to control the mentioned
trade-offs.
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Figure 4.7 Perspective and side view of a complementary cone above a direct cone.
The spheres indicate the direct source positions.

Complementary rebinning

A complementary projection set pC(β, γ, q) is constructed as

pC(β, γ, q) = p(β + π + 2γ, −γ, q) (4.4)

Note that the row coordinate q is left unchanged. This results in a complementary
cone as shown in Figure 4.7.

An example of the resulting z-interpolation is shown in Figure 4.6(b). We no-
tice that the interpolation is sometimes performed between data from different
turns, sometimes between direct and complementary data, which may introduce
artifacts. Furthermore, for certain high-speed, low-resolution imaging modes the
slice thickness indicate that the interpolation function should extended over more
than two rows of data, some of which might be direct, some complementary. This
problem has been studied by Taguchi and Aradate (1998), who propose an inter-
polation function stretching over several detector rows, or rather several measure-
ments in the z-direction. See Figure 4.8. Each interpolation is individually nor-
malised so that the weights of the linear combination of filtered projection values
add up to unity. Clearly, many trade-offs between fast scanning, high z-resolution
and signal-to-noise ratio can be achieved with appropriate interpolation kernels.

Smooth Sinogram Windowing

A multi-row algorithm called Cone-Beam Short-Scan Rebinning (CB-SSRB) em-
ploying smooth sinogram windowing was presented by Noo, Kudo, and Defrise
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Figure 4.8 A kernel with a modifiable shape and width is used in the z-
interpolation.

(1998). A two-dimensional short-scan fan-beam projection data set is assembled
for each specific slice using only the single closest turn of the helix. For each (β, γ)
within this short-scan interval one ray along the detector column is picked. This
ray is chosen such that it intersects the slice exactly halfway between its two in-
tersections with the cylindrical field of view (FOV). See Figure 4.9(a). This is in a
sense the ray closest to the given slice. Normally, such a ray hits the detector be-
tween two rows, which requires interpolation to get the wanted projection value.
The reconstruction of the slice then comprises pre-weighting with cosκ, smooth
sinogram windowing, ramp-filtering, and two-dimensional backprojection. Noo
et al. (1998) show that CB-SSRB requires a detector that is slightly larger than the
minimal Tam window.

x

y

z

(x, y, zslice)

(a) Two-dimensional backprojec-
tion.

x

y

z

(x, y, zslice)

(b) Three-dimensional backprojec-
tion.

Figure 4.9 Ray positions of filtered data used to reconstruct the voxel (x, y, zslice).
[Based on a similar plot by Thomas Köhler and Roland Proksa.]
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Figure 4.10 By tiliting the slice to be reconstructed the geometrical mismatch
between measuring and reconstucting rays is decreased.

4.2.2 Nutating Surface Reconstruction

The only severe approximation used in the methods employing two-dimensional
backprojection is the assumption that the original rays are fully positioned in the
slice, while they in reality intersect the slice at more or less oblique angles. This
approximation becomes critical, however, since it introduces a geometrical mis-
match between measuring rays and reconstructing rays. Larson, Ruth, and Craw-
ford (1998) describe a way to reduce the mismatch by tilting the slice so that it no
longer is parallel to the plane. See Figure 4.10. Regard one projection angle, which
will be the central projection angle of the short scan interval used to collect data
for the slice. One axis of the slice is identical to the central ray of this projection
and hence parallel to the (x, y)-plane. The other axis of the slice is tilted. The tilt
angle α between the normal of the slice and the z-axis is constant but the slices
are rotated relative to each other along the z-axis, forming a nutating set of planar
slices.

The optimal tilt angle α∗ is found as follows. Object points in a slice with this
tilt are projected by the cone-beam onto a detector (γ, q) on the source-centred



4.2 Approximate Methods 91

0 2 4 6 8
0

0.01

0.02

0.03

0.04

0.05

Slice tilt α [degrees]

T
ot

al
 s

ta
nd

ar
d 

de
vi

at
io

n

Tilted planar slice       
Horizontal planar slice   
PI−plane                  
PI−surface                
Optimal 2nd degree surface

Figure 4.11 Total standard deviation of the projection of image points indside the
FOV from the optimal filtering curves as a function of the slice tilt for R = 2,
RFOV = 1, P = 1. The PI-plane and PI-surface are discussed in Section 4.3.2.

cylinder for all projections employed in half-scan reconstruction. For each projec-
tion angle β, the projection spread out over a banana-shaped area on the detector.
For each column in the detector the variance σ2

α(β, γ) in the q-value is computed.
The sum over all projection angles β and all fan angles γ of the variances is taken
as an error measure and minimised with respect to α. See Figure 4.11. Once this
optimal tilt angle α∗ is found, the point of gravity qα∗(β, γ) is computed for each
projection angle β and each column γ yielding a set of curves qα∗,β(γ) on the detec-
tors. These curves are pre-computed for the given scanning geometry. The recon-
struction algorithm then starts with interpolating data along the curves qα∗,β(γ)
on the detectors. From the resampled detector values a two-dimensional short-
scan fan-beam sinogram is assembled for each nutating slice. This is followed
by rebinning to parallel data, ramp-filtering and two-dimensional backprojection.
The final voxels sampled on a Cartesian grid are obtained from interpolating, in
z-direction only, between the reconstructed nutating slices.

It is important to note that the reconstruction grid of the nutating surfaces
only is modified in the z-direction. The sampling distances in x, y, t, and are kept
constant, so that seen along the z-axis, the situation is identical to the non-nutating
methods. Identical ramp-filters are thus employed, despite the fact that filtering
is performed along curves of different physical lengths.

The idea of tilting the slices has also been proposed by Heuscher (1999), Kachel-
riess, Schaller, and Kalender (2000b) and Turbell and Danielsson (1999a). As far
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as we know, these proposals were made independently of each other, although
Larson et al. (1998) were undoubtedly first. The methods are very similar, with
slightly different definitions of the optimal shape and tilt of the nutating surfaces.

Heuscher (1999) describes an iterative approach to construct a non-planar sur-
face that has minimal dispersion in the z-direction when projected onto the detec-
tor for a half-scan interval. The iteration starts from the centre of the surface and
continues outwards radially. Once the surface is found the algorithm becomes
principally identical to the Larson algorithm above. The optimality of the surface
found by the above methodology is not proved.

To get a better control of the optimality we here propose to use a polynomial
surface

{(x, y, z) | z = θ
P

2π
+ c0 + c1t + c2v + c3t

2 + c4v
2 + c5tv + . . . ,

t = y cos θ − x sin θ, v = x cos θ + y sin θ} (4.5)

where the coefficients (c0, c1, . . . ) are found by a standard gradient descent min-
imisation. The total deviation when using such an optimal second order surface
is shown in Figure 4.11. The tilt angle was calculated from the coefficient for the
first-degree v-term in (4.5) as α = arctan c2.

Kachelriess, Schaller, and Kalender (2000a) present an algorithm called Ad-
vanced Single-Slice Rebinning (ASSR). As in the algorithm of Larson et al. (1998)
the reconstruction is made on tilted planes. The only difference is the way to opti-
mise the tilt angle α. Instead of looking at the projection of the plane, Kachelriess
et al. (2000b) minimise the distance between the plane and a 180◦-segment of the
source trajectory. They show that the optimal angle is such that the trajectory in-
tersects the plane at the centre of the segment and at the two points 60◦ off the
centre. The plane in Figure 4.10 has this optimal tilt angle. Using these planes the
reconstruction is then made by two-dimensional filtered backprojection as in Lar-
son et al. (1998) or by a standard two-dimensional direct Fourier method in each
slice. The potential increase in image quality by using direct Fourier techniques on
generalised rays, as will be discussed in Section 4.2.4, is hinted at but never used
by the authors. Kachelriess and Kalender (2000) have also showed that is easy to
modify ASSR to handle geometrical deviations from the perfect helical path. An
example of such a deviation is the sheared helix geometry resulting from tilting
the gantry. This is used clinically when trying to avoid radiating sensitive body
parts, such as the eyes, close to the area of interest. More details on ASSR can
be found in the articles of Kachelriess, Schaller, and Kalender (2000b) and Bruder,
Kachelriess, Schaller, and Mertelmeier (2000).

The methods PI-SLANT and PI-2D of Turbell and Danielsson (1999a) also use
nutating surfaces. These will be presented in more detail in Sections 4.3.2 and
4.3.3.
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The good fit between a helix segment and a plane is the basis for the nutating
slice algorithms. It is important to note that the fit is good only for a short-scan
segment of the helix. It is impossible to fit a plane to a complete helix turn, not to
mention over-scan geometries where the slice is illuminated for several turns. As
over-scan methods are used in most medical tomographs to trade image quality
for dose and scanning time, it is remarkable that none of the above mentioned
articles discuss this obvious limitation of the nutating slice algorithms. We will
look at over-scan algorithms more closely in Section 4.3.5.

4.2.3 Three-Dimensional Backprojection

The algorithms in the previous two sections all start with a z-interpolation in or-
der to construct a set of projection data for the slice to be reconstructed. Filtering
and backprojection are then performed in a completely two-dimensional fashion.
As illustrated in Figure 4.9(b) a backprojected value accumulated to a voxel may
not then necessarily belong to a ray that has passed the voxel. This obvious short-
coming should be possible to avoid with three-dimensional backprojection.

Kudo and Saito (1991) and Wang, Lin, Cheng, and Shinozaki (1993) have gen-
eralised the FDK-method for a helical trajectory. The derivations of the two pro-
posals are quite different but they both end up with the following algorithm that
is almost identical to the original FDK method:

Algorithm 4.1 Full-scan cone-beam filtered backprojection

1: pre-weighting with cos γ cosκ.
2: one-dimensional ramp-filtering along each detector row.
3: cone-beam backprojection with the L−2-factor of filtered projection data from

the closest turn.

Each voxel receives backprojection contributions from a full scan interval of
2π. Yan and Leahy (1992) present a similar algorithm, the difference being that
the ramp-filtering in step 2 is performed along tilted lines parallel to the a′-axis
defined in conjunction with Figure 4.1. In all three algorithms (Kudo and Saito
1991; Wang et al. 1993; Yan and Leahy 1992), for a given voxel and a given projec-
tion angle, only rays of the cone stemming from the closest turn are backprojected.
Therefore, all interpolations take place between rays within the same cone-beam
projection. As pointed out by Schaller, Flohr, and Steffen (1996), this and other
facts give the full-scan methods the following shortcomings:

• Many of the measured and filtered projection data are wasted, since only the
ray stemming from the closest turn is used.
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• The pitch is severely restricted by the detector height according to

P ≤ Nq∆q
R − RFOV

R
(4.6)

Typically, for a given detector height, this pitch is only one fourth of what is
required with a PI-detector.

• The average interpolation width in the z-direction is ∆q since the possibility
of using interlaced rays from nearby turns has been neglected.

Several authors have modified the full-scan algorithms into short-scan algo-
rithms using one of the three previously discussed approaches. For the fourth
and final time of this thesis, we here present the approaches one by one.

Parallel Rebinning

By performing parallel rebinning on the helical data in a similar manner as for the
circular data in (3.20), we obtain the data set

pP (θ, t, q) = p(β, γ, q) (4.7)

where the relationships between (θ, t) and (β, γ) are described by (2.31), and the
row coordinate q is left unchanged.

Silver (1997) uses these oblique parallel beams in an algorithm called Inconsis-
tent Helical Cone-Beam Reconstruction (IHCB). It is formulated in general terms
allowing for a smooth sinogram windowing of the parallel rays to cope with re-
dundancy. Unlike other algorithms, these weights are applied after ramp filter-
ing, and can therefore be very sharp or even binary. No reconstructed images
are presented in the article, but the two-dimensional experiment presented in Fig-
ure 2.8(d) indicates that one should expect severe artifacts due to the weighting.

If binary weights are used, the backprojection interval used for pixel (x, y, z) is
chosen as θ ∈ [θz−π/2, θz+π/2], where θz is the projection angle where the central
source is positioned at height z. Silver (1997) contrasts IHCB with an algorithm
where the θ-interval is fixed and therefore requires a much smaller pitch for a
given detector height.

Complementary Rebinning

The complementary filtered backprojection algorithm (CFBP) by Schaller, Flohr,
and Steffen (1996) uses complementary rebinning together with a true cone-beam
backprojection incorporating the wide normalised interpolation discussed earlier
in Figure 4.8. The complementary rebinning is identical to the one later used by
Taguchi and Aradate (1998) and Hu (1999) and results in the complementary beam
geometry already shown in Figure 4.7. The CFBP algorithm consists of the follow-
ing steps:
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Algorithm 4.2 Complementary filtered backprojection

1: Complementary rebinning as in (4.4).
2: Preweighting of projection data with cosκ.
3: Ramp-filtering along each row of both direct and complementary data.
4: Cone-beam backprojection with an L−2-factor where all rays, both direct and

complementary, from nearby rows and turns are weighted together as a func-
tion of the z-distance between the voxel and the ray.

The L−2-factor used in the backprojection is dependent on the distance be-
tween the voxel and the direct or complementary source.

Smooth Sinogram Windowing

Wang, Liu, Lin, and Cheng (1994), Silver (1998), and Noo, Kudo, and Defrise
(1998) have presented short-scan cone-beam algorithms using smooth sinogram
weighting. The short-scan FDK algorithm, SS-FDK, presented by Noo et al. (1998)
is closely related to the CB-SSRB algorithm by the same authors. For a given
slice, the projection is smoothly windowed, pre-weighted, ramp-filtered along
each row, and then 3D-backprojected. The smooth sinogram window is applied so
that the slice receives projection contributions from a β-interval of length π+2γmax

centered around the slice. This interval changes for different slices and the smooth
sinogram windowing and ramp-filtering therefore has to be performed separately
for each slice.

The study by Noo et al. (1998) shows that the short-scan algorithms outper-
form the full-scan algorithms in image quality, reconstruction time, and the ration
between pitch and detector height noise-free data. A comparison between the two
short-scan algorithms CB-SSRB and SS-FDK gave no conclusive results on differ-
ences in image quality.

Silver (1998) reformulates the fact that rays with small cone-angles are used
relatively more frequently in short-scan cone-beam algorithms than in full-scan
algorithms into the equivalent observation that data from the central rows of the
detector are used more often than data from the outer rows. He suggests that the
detector resolution therefore could be reduced for the outer rows.

4.2.4 Multirow Fourier Reconstruction

The Fourier slice theorem is the basis of most two-dimensional reconstruction al-
gorithms. A direct use of the theorem results in the direct Fourier methods, e.g.
the gridding method of O’Sullivan (1985), where the projections are Fourier trans-
formed, ramp-filtered, and placed on a polar grid in the two-dimensional Fourier
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Figure 4.12 Construction of a generalized projection. At every point along the
projection, the value is interpolated from the nearby rays.

domain. Resampling to a Cartesian grid followed by inverse two-dimensional
Fourier transform and a certain post-weighting then yields the reconstructed im-
age. A straightforward use of direct Fourier methods in the helical cone-beam
case would be to construct, by interpolation, a two-dimensional parallel projec-
tion data set for each slice. These data could then be handled by the standard two-
dimensional gridding algorithm. Compared to the filtered backprojection meth-
ods discussed in Sections 4.2.1 and 4.2.2, the computational complexity might then
be decreased. The main shortcoming would be identical to the one in the filtered
backprojection methods, namely that the cone-angle of the rays is neglected.

In an attempt to incorporate the three-dimensionality of the rays in a direct
Fourier method, Schaller, Flohr, and Steffen (1997) introduced the concept of gen-
eralised parallel projections. A generalised parallel projection can be thought of as
being generated by a set of horizontal parallel rays confined in the slice to be re-
constructed. Unlike conventional projections the value of a generalised projection
can change value along the projection direction v. We denote a generalised paral-
lel projection for the slice z = zimg by pG

zimg
(θ, t, v).

To construct generalised projections, the cone-beam data is first rebinned into
oblique parallel data as in (4.7). A generalised projection value is constructed by
interpolation of the projection values of all rays in the same position when pro-
jected onto the slice. These rays belong to oblique parallel projections taken at
θ + iπ, four of which are shown in the vertical slice in Figure 4.12. The gener-
alised projection will have a smoothly changing value along its direction v. The
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Figure 4.13 Sampling patterns in the Fourier space of the slice. The drawn lines
are truncated and should normally extend further out.

interpolation is given by

pG
zimg

(θ, t, v) =∑
λ

∑
m

R√
R2+q2

m

(pP (θ + 2λπ, t, qm)w1,λ,m + pP (θ + 2λπ + π, −t, qm)w2,λ,m)∑
λ

∑
m(w1,λ,m + w2,λ,m)

(4.8)

where the weights w1,λ,m and w2,λ,m depend on the distance between the slice
and the ray at the position v.

The reconstruction is performed by applying direct Fourier methods on the
generalised projections and the complete algorithm is called multi-row Fourier
reconstruction (MFR). Since a generalised projection changes value in both the
t- and the v-direction, its Fourier transform will not be a single line in the two-
dimensional Fourier domain of the object, but a complete image. However, since
the variation along the projection is smooth and relatively slow, it can be approx-
imated by a truncated Fourier series with Nµ terms. The generalised projection
will then contribute to Nµ parallel lines in the two-dimensional Fourier space of
the object. See Figure 4.13(a). The Fourier series coefficients can be pre-calculated
since they only depend on the geometry, not on the actual projection values. The
standard cosκ-factor, compensating for the different lengths of rays of different
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cone-angles, may be incorporated into these weights. This leads to the following
algorithm:

Algorithm 4.3 Multi-row Fourier reconstruction

1: Rebinning to oblique parallel projections, pP (θ, t, q).
2: for all slices do
3: Construct Nµ vectors of projection data for each projection angle. These

correspond to the Fourier series of the generalised projection, and are calcu-
lated as a linear combination of projection data from all rows and all turns
with pre-calculated weights.

4: Perform an FFT in the t-direction of the vectors
5: Place the result in the two-dimensional Fourier-transform of the image along

Nµ parallel lines for each projection angle.
6: Perform an inverse two-dimensional FFT using the gridding technique to

obtain the image of the slice.
7: end for

Note that the generalised projections are never explicitly calculated. Experi-
ments by Schaller et al. (1997) have shown that Nµ = 7 is sufficient to obtain high
quality results for cone-angles up to κmax = 1.6◦. The computational complexity
of the algorithm is O(N3 log N).

It is obvious that MFR is an approximate method. The reconstructed slice will
be contaminated by objects outside the slice. The contamination signal is carried
by the rays oblique to the slice. The innovative concept of generalised rays com-
bined with direct Fourier techniques makes it difficult to analyse and compare the
approximations in MFR with the approximations found in the filtered backpro-
jection algorithms discussed above. The ramp-filtering is inherent in the gridding
step which makes the actual filtering direction in MFR unclear.

Gridding is a commonly used reconstruction technique in magnetic resonance
imaging. For this imaging modality the measurements are made directly in the
Fourier space, also known as the k-space, on a typically non-uniform grid, such
as points along a set of interleaving spirals. The gridding is generally performed
by the following steps:

Algorithm 4.4 Gridding

1: Density compensation of the non-uniform samples
2: Interpolation to a uniform grid
3: 2D IFFT of uniform data to the image domain
4: Post-compensation by the inverse of the inverse transform of the interpolation

kernel
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The interpolation kernel in step 2 must be shift-invariant in the frequency
space. It is this property that enables the post-compensation in step 4. The in-
terpolation is thus preferably performed using a input-data-driven approach.

In two-dimensional parallel beam CT the measurements are given on sam-
pling points placed equidistantly on radial lines. This gives a sampling density
inversely proportional to the distance ρ to the origin in frequency space. The den-
sity compensation in step 1 above can therefore be performed by ramp-filtering of
each projection.

Figure 4.13(b) shows the sampling pattern for MFR when all projection angles
are considered. Although the sampling density of this pattern also asymptotically
decays as 1

ρ , it has a more complicated behaviour around the origin. The pro-
posed density compensation in MFR is nevertheless performed by applying the
ramp-filter on each line. We expect that a more careful density compensation, us-
ing Voronoi polygons as described by Schomberg and Timmer (1995) or singular
value decomposition techniques as described by Rosenfeld (1998) and Sedarat and
Nishimura (2000), will result in better image quality. Another approach might be
the direct Fourier method of Lanzavecchia and Bellon (1996) for electron tomog-
raphy in a conical tilt geometry that handles sampling pattern similar to the one
in Figure 4.13(b).

4.3 The PI Methods

The PI methods are a collection of approximate short-scan methods with three-
dimensional backprojection. By only considering projection data within the Tam
window and rebinning them to oblique parallel beams, algorithms with fast and
simple filtering and backprojection steps are obtained. The first PI method was
first proposed by Danielsson, Edholm, Eriksson, Magnusson-Seger, and Turbell
(1998a). It is discussed in the following section where we refer to it as PI-ORIGINAL.
A number of extensions and alternatives have emerged since and are presented in
the subsequent sections.

4.3.1 The PI-ORIGINAL Method

A major concern in many of the algorithms presented so far is how to handle re-
dundancy. Silver (1997) has investigated different combinations of parallel rebin-
ning and smooth sinogram windowing to ensure that each voxel obtain backpro-
jection contributions from an interval of the exact length π. However, to achieve
this, Silver applies the weighting after filtering, something which, as mentioned
in Section 2.2.3, is undesirable. A solution to this problem is the PI-ORIGINAL
method by Danielsson, Edholm, Eriksson, Magnusson-Seger, and Turbell (1998a)
which uses the Tam window to ensure non-redundant and complete data capture.
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Figure 4.14 The beam geometry after parallel rebinning. The rays intersect the
(t, z)-plane in a perfectly rectangular area. Top: two side views. Bottom: a per-
spective view with a cylindrical grid for visual guidance.
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Figure 4.15 The rows of the PI-detector projected onto the cylindrical detector
centered around the source (γmax = π/6).

Algorithm and properties

Imagine a detector, the PI-detector, fitted to the Tam window and located on the
helix cylinder as shown in Figure 4.1. This cylinder is different from the cylinder
centred on the source on which the real detector is likely to be placed. We will refer
to the two cylinders as the helix and the outer cylinder respectively. The detector
rows of the PI-detector on the helix cylinder follow the borders (two neighbouring
turns of the helix) with equidistant spacing. These detector rows become slanted
but straight if the PI-detector is rolled out onto a plane. Projected onto the outer
cylinder, the slanted rows end up along the curves

q(s, γ) =
s + γ P

π

cos γ
s ∈ [−P

4
,
P

4
] (4.9)

of constant s as shown in Figure 4.15. The division with cos γ is due to the magnifi-
cation when projecting the inner cylinder onto the outer cylinder. For comparison
we note that a magnification of cos−2 γ appears when the projection is made onto
the planar detector as in (4.2) and (4.3). The addition with γ P

π in (4.9) is due to the
tilted rows of the PI-detector. We will use the integer variable c to index the rows
as sc when necessary.

Developing and manufacturing two-dimensional detectors is an enormous en-
gineering feat. A physical detector shaped as the PI-detector is not likely to be de-
signed. Instead, a tomograph using the PI-method would probably use a standard
outer cylinder detector collimated to the Tam-window. PI-detector data along
rows of constant s would be obtained after interpolation using (4.9).
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Figure 4.16 Projection of the object point (x, y, z) onto the detector in the re-
binned geometry. The figure is drawn in the plane parallel to the (v, z)-plane
which contains the object point.

With a slight abuse of notation we denote the projection data from the PI-
detector in an identical manner to the data from the outer cylinder detector as
p(β, γ, s). PI-ORIGINAL starts with a parallel rebinning row by row performed as

pP (θ, t, s) = p(β, γ, s) (4.10)

with the standard parallel rebinning relations in (2.31). This leads to the beam
geometry in Figure 4.14.

The rebinned data is pre-weighted and ramp-filtered row by row

p̃P (θ, t, s) = (pP (θ, t, s) cosκ) ∗ gP (t) (4.11)

where the expression of the pre-weight

cosκ =
√

R2 − t2√
R2 − t2 + (γ P

2π + s)2
, γ = arcsin

t

R
(4.12)

is derived from the rebinned projection geometry in Figure 4.16. The pre-weighting
may be performed before or after the parallel rebinning. Just as in the FDK algo-
rithm, this pre-weighting compensates for the longer path of oblique rays which
makes the method collapse into two-dimensional reconstruction if the object is
z-homogeneous.
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Figure 4.17 The PI-detector restricts the illumination interval of a voxel (x, y, z)
to exactly 180◦. Note that the entrance and exit rays are identical except from
direction.

The rebinned geometry has several interesting properties. Imagine a planar
virtual detector on the (t, z)-plane. Although the oblique parallel rays start at
different z-positions and have different cone-angles, they have a symmetry that
results in a perfectly rectangular window of height P/2, drawn in Figure 4.14.
The sampling points in this window lie on a Cartesian grid so that one horizontal
row on the virtual planar detector corresponds to a slanted row on the cylindrical
detector. The virtual planar detector is hence the (t, s)-space.

An even more appealing property of the rebinned geometry is that every point
(x, y, z) will be illuminated for exactly half a turn. Figure 4.17(a) shows the pro-
jection angle θ = θin(x, y, z) where the projection of the object point (x, y, z) first
appears on the detector at the top border (s = P/4). The detector and source will
then move upwards as the projection of the object point moves downwards on
the detector along a sinus-like curve. Finally, when θ = θout(x, y, z), the projec-
tion of the object point disappears from the detector, shown in Figure 4.17(b). The
entrance and exit rays are identical apart from direction. Hence, they are parallel
and belong to projections exactly 180◦ apart, which we write as

θout(x, y, z) = θin(x, y, z) + π (4.13)

This is the key property of the method.



104 Chapter 4 Helical Cone-Beam Reconstruction

ωx

ωy
ωz

u

U

φin

φout

Figure 4.18 The Fourier component at u is measured when the projection direc-
tion vector φ lies in the plane U .

In the original, non-rebinned, geometry, the length of the illumination inter-
val changes for different voxels. However, seen from the point itself, the angle
between the first and final illuminating source positions is always π. This is true
both when looking at the situation two-dimensionally as projected along the z-
axis as in (4.13) and for the truly three-dimensional geometry. Consider an arbi-
trary object point. We define the projection direction φ ∈ R

3 as a unit vector on
the line between the object point and the source. The first projection direction φin

is then the negative of the final direction φout = −φin. The angle between them is
therefore π. Danielsson, Edholm, Eriksson, and Magnusson-Seger (1997) used a
theorem of Orlov (1975) to show that this property guarantees that the complete
three-dimensional Fourier space of any small neighbourhood in the object is with-
out missing data. We now present an alternative argument for this conclusion.

Consider a small neighbourhood of an arbitrary object point. Each original
cone-beam projection can for this small neighbourhood be seen as a truly parallel
projection. The Fourier-Slice theorem says that this projection measures all Fourier
components on the plane through the origin that is orthogonal to the projection
direction φ. Consider an arbitrary position u in Fourier space and the correspond-
ing normal plane U through the origin. See Figure 4.18. Clearly, if the projection
direction vector φ is positioned in this plane, the Fourier component at u will be
measured. The plane U divides the Fourier space in half. Consider a projection
direction trajectory with start and end directions φin and φout = −φin diametri-
cally apart. Inevitably, the trajectory will intersect U at least once. The projection
will then measure the Fourier component at u. Therefore, all Fourier components
are measured. This fact is not used explicitly in PI-ORIGINAL, but served as a
starting point for developing an algorithm that only uses projection data within
the Tam window.



4.3 The PI Methods 105

Note that the above argument only guarantees completeness of the local Fourier
data, but not non-redundancy. With a helical source movement, there exist planes
U that have three intersections with the projection direction trajectory. An exam-
ple of such a plane, although illustrated in the signal space for quite a different
context, is shown in Figure 4.10. Some of the local Fourier components are there-
fore measured three times. They are very rare and closely connected to the concept
of redundant segments discussed by Kudo et al. (1998). In the Radon based al-
gorithms it is possible to handle this small redundancy in the input data, whereas
PI-ORIGINAL makes no such attempts. The redundancy is not the main reason
for PI-ORIGINAL being approximate. The reason for inexactness is rather the
simplified one-dimensional filtering.

Both of the above illumination arguments apply to the acquisition of projection
data as well as to the backprojection. The PI-detector restricts the illumination of
voxels perfectly so that the backprojection can be performed without any redun-
dancy as

fPI-ORIGINAL (x, y, z) =
2

Nθ

nin(x,y,z)+Nθ
2 −1∑

n=nin(x,y,z)

p̃P (θn, t(x, y, θn), s(x, y, z, θn)) (4.14)

where the detector coordinates (t, s) are given by

t(x, y, θ) = y cos θ − x sin θ (4.15)

and

s(x, y, z, θ) =

√
R2 − t2(z − zS0 − (θ − γ) P

2π )√
R2 − t2 + v(x, y, θ)

− γ
P

2π
, γ = arcsin

t

R
(4.16)

indicate the position on the detector where the voxel is projected. The integer nin

is the index of the projection angle θin and the coordinate v(x, y, θ) is defined in
(3.19). Figure 4.16 shows the projection geometry used to derive (4.16).

To summarise, PI-ORIGINAL contains the following computation steps:

Algorithm 4.5 PI-ORIGINAL

1: Parallel rebinning of data restricted by the Tam window
2: Pre-weighting with cosκ

3: One-dimensional ramp-filtering along each row on the virtual planar detector
4: Three-dimensional backprojection without any L−2-factor

We note that the concept of quarter offset, just as for the oblique parallel beam
in the circular trajectory of Section 3.3.1, not can be utilised in the PI-method.
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Implementation of the backprojection

The backprojection can be implemented in many ways. A direct implementation
of (4.14) is

Algorithm 4.6 Voxel driven backprojection

1: for all (i1, i2, i3) inside the FOV do
2: find nin

3: for n = nin to nin + Nθ/2 − 1 do
4: calculate t and s

5: interpolate between the four detector elements around (t, s)
6: accumulate the interpolated value in fPI-ORIGINAL [i1, i2, i3]
7: end for
8: end for

At the outer halves of the two outer detector rows, interpolation on the detec-
tor is not possible. If extrapolation is used to handle data in this region artifacts
will occur. A remedy is to extend the detector with an extra row so that the centre
of the outermost measurement lies exactly on the source helix which allows for in-
terpolation everywhere inside the PI-window. This is shown to the left in Figure
4.19.

A difficulty with the voxel driven approach is to calculate nin on line 2. We
have found no closed form solution, so an iterative search or look-up table has to
be used. To eliminate this problem we consider all voxels inside the FOV at the
specific height z = zslice and the rebinned beam centred at this height. This beam
has the projection angle

θslice = (zslice − zS0)
2π

P
(4.17)

We now ask ourselves if all of these voxels within the field of view in the slice
are illuminated by this beam. A geometrical argument gives that this is the case
provided that

P
4

√
R2 − t2

P
4 + P

2π arcsin t
R

>
√

t2max − t2, |t| < tmax (4.18)

which, independently of P and R, is satisfied for fan-angles up to somewhat more
than ±55◦. For such systems we then know one illuminating projection angle,
namely θ = θslice, for each voxel. It is straightforward to formulate a backprojec-
tion that starts with this projection angle and iterates in the two opposite direc-
tions away from it until the voxel is out of illumination as:



4.3 The PI Methods 107

Algorithm 4.7 Voxel driven backprojection in two steps

1: for all i3 do
2: calculate nslice according to (4.17)
3: for all (i1, i2) inside the FOV do
4: set n = �nslice�
5: calculate t and s

6: while s < P/4 do
7: interpolate between the four detector elements around (t, s)
8: accumulate interpolated value in fPI-ORIGINAL [i1, i2, i3]
9: decrement n

10: calculate t and s

11: end while
12: set n = �nslice� + 1
13: calculate t and s

14: while s > −P/4 do
15: interpolate between the four detector elements around (t, s)
16: accumulate interpolated value in fPI-ORIGINAL [i1, i2, i3]
17: increment n

18: calculate t and s

19: end while
20: end for
21: end for

Not utilising the above observation, we may change the order of the loops to
obtain:

Algorithm 4.8 Projection driven backprojection

1: for all n do
2: find upper and lower z-bound for voxels illuminated by the current beam
3: for all (i1, i2) inside the FOV do
4: incrementally update t

5: for all i3 limited by the upper and lower z-bound do
6: incrementally update s

7: if −P/4 < s < P/4 then
8: interpolate between the four detector elements around (t, s)
9: accumulate interpolated value in f [i1, i2, i3]

10: end if
11: end for
12: end for
13: end for
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z

v

∆s

Figure 4.19 Interpolation in the z-direction. A space-invariant linear interpola-
tion kernel of width 2∆s is used for the outer halves of the outer detector rows and
a space-variant linear kernel is used for the other detector positions. The space-
variant kernel is space-invariant on the detector and vice versa. The dashed lines
indicate the exact borders of the beams. To the left is shown a detector with one
extra row needed to avoid extrapolation if the space-invariant kernel is not used.

The incremental update of s on line 6 is possible since ds
dz is constant for a given

(x, y). The iteration over voxels in the z-direction on line 5 will visit many vox-
els outside the beam. This could be avoided by a bi-directional traversal as in
Algorithm 4.7. A safe starting voxel is then given by (4.17).

A problem with the two above approaches are the while-statements on line
6 and 14 in Algorithm 4.7 and the if-statement on line 7 in Algorithm 4.8 that
check whether the voxel is inside the cone or not. The calculation of s has to
be performed with high precision to ensure that all voxels get illumination from
exactly Nθ/2 projection angles. This can be critical in an implementation using
fixed-point arithmetic. Since this number of backprojection contributions should
be constant for all voxels, no normalisation with the actual number is made. A
single extra contribution could thus change the reconstructed value with several
parts per thousand for typical values of Nθ, which results in clearly visible arti-
facts. Note that this problem does not appear in the voxel driven algorithm 4.6
since the for-statement on line 3 loops over a fixed number of projection angles.

The interpolation in Algorithms 4.6, 4.7, and 4.8 is performed with a fixed sized
kernel on the detector, which corresponds to a space-variant kernel in the object.
They can be reformulated to use a space-invariant kernel by adjusting the width
of the kernel on the detector according to the magnification due to the divergence.
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The extra row necessary to allow for interpolation at the detector borders can
be discarded if the interpolation is performed between the top row of one pro-
jection angle the bottom row (mirrored in the t-direction) of a projection with an
angular difference of π. As seen in Figure 4.19, the distance between these two
rays is constant throughout the object which calls for a space-invariant interpola-
tion in this region. This corresponds to a space-variant kernel on the detector. The
smooth edges at the top and bottom of the cone do not violate π-illumination but
eliminates the problem of ensuring exactly Nθ/2 contributions.

All of the above backprojection algorithms have complexity O(NxNyNzNθ).
The actual performance depends heavily on the hardware architecture of the sys-
tem the implementation is executed on. The voxel and projection memories may
for example have different bandwidths or caching schemes if special hardware is
used. Such factors then have to be taken into account when evaluating the algo-
rithm performance.

4.3.2 The PI-SLANT Method

For large pitches with detectors of many rows PI-ORIGINAL is known to produce
artifacts in the reconstructed result. The aim of this section is to improve the per-
formance of PI-ORIGINAL while still keeping the algorithmic simplicity of the
one-dimensional ramp filtering together with the redundancy handling of the PI-
window. The new reconstruction method presented here, called PI-SLANT, is still
approximate but better capable of handling large pitches.

In order to track the inexactness of PI-ORIGINAL, we study the set of image
points entering the rectangular window of the planar detector at the same time.
These points lie on a surface, which we will call a PI-surface, defined as

{(x, y, z) | x2 + y2 < R2, z = θ
P

2π
+ zS0 +

P

4
+ v

γP
2π + P

4√
R2 − t2

,

t = y cos θ − x sin θ, v = x cos θ + y sin θ, γ = arcsin
t

R
} (4.19)

This definition can be derived from (4.16) or Figure 4.16 by setting s = P/4. The
top rays in a rebinned parallel beam all lie in the same PI-surface. These rays
intersect the helix twice and are therefore PI-lines as defined on page 83. From
the fact that each image point lies on one and only one PI-line, it follows directly
that each image point belongs to one and only one PI-surface. The complete set
of PI-surfaces has a nutation around the rotation axis and fills up the complete
volume to be reconstructed. See Figure 4.20.

We assume that the projection system is rotating upwards in which case the
points of a PI-surface enter the rectangular detector window on a perfect line on
the upper border simultaneously. As the rotation of the projection system contin-
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Figure 4.20 The nutating PI-surfaces fill up the reconstuction space.

ues, the projection of the PI-surface moves downwards on the detector but it im-
mediately starts to deviate from the line shape. Instead, the PI-surface is projected
within an elongated area with a non-horizontal mid-line. See Figure 4.21(b). How-
ever, after a rotation of exactly 180◦, all points on the PI-surface are again lined up
horizontally, now along the lower border of the window, and exit the rectangular
window simultaneously.

We note that if the PI-surface would be projected along lines, or any other one-
dimensional curve, during the complete 180◦-illumination interval, the projection
values along these curves would be constructed from line-integrals fully inside the
PI-surface. It would then be straightforward to extract the projection values along
the curves and put them in a two-dimensional sinogram. A mathematically exact
reconstruction of the density values of the PI-surface would then be obtained by
performing two-dimensional filtered backprojection on this sinogram data. The
exactness is obvious since all points on the PI-surface are involved in all filtering
events without any contamination from neighbouring PI-surfaces.

The procedure in the previous paragraph is not feasible since the projection
of a PI-surface extends in both the t- and s-directions. A detector value there-
fore consists of line integral contributions from several PI-surfaces. Ideally, these
contributions should be separated before the reconstruction of a PI-surface can
be performed as a two-dimensional filtered backprojection. An attempt to such a
separation is presented in Section 4.3.4.
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Figure 4.21 Projection of points on a nutating surface onto the virtual planar
detector at different projection angles over an interval of length π with R = 2,
RFOV = 1, P = 1.

As an approximation of a PI-surface we define the corresponding PI-plane as
the plane spanned by the uppermost central ray (t = 0) of an oblique parallel
projection and the uppermost boundary (s = P/4) of the virtual planar detector.
These two lines both lie in the PI-surface.

Both the PI-surfaces and PI-planes are nutating around the z-axis, just like the
planes described by Larson, Ruth, and Crawford (1998). We have indicated their
performance in Figure 4.11 using the same deviation measure as in Section 4.2.2.
The PI-plane is identical to a nutating plane with the tilt angle α = arctan P

4R . We
have positioned the deviation value of both the PI-plane and the PI-surface at this
tilt angle in the figure. The PI-surface has lower deviation than the PI-plane but
higher deviation than the optimally tilted plane.

The intersection of the PI-plane and the virtual detector is a slanted line on the
detector given by

s(l, t) = l + t
ds

dt
(l) = l − t

P

4R

√
1 +
(
1 +
(

P
4R

)2)
tan2

(
l 2π

P

) (4.20)

for constant values of l ∈ [−P/4, P/4]. For typical fan-angles (γmax ≈ π/6), the in-
tersection lines given by (4.20) are virtually identical to the lines obtained by per-
forming least square line-fitting on the projection of the points on the PI-surface
inside the FOV.
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In the modified PI-method, called PI-SLANT, we replace the horizontal filter-
ing with filtering along these slanted lines resulting in the following algorithm:

Algorithm 4.9 PI-SLANT

1: Parallel rebinning from (β, γ, s) to (θ, t, s) of data within the Tam window
2: Pre-weighting with cosκ as in (4.12)
3: Column-wise resampling from (θ, t, s) to (θ, t, l) using (4.20)
4: One-dimensional ramp-filtering along the slanted lines
5: Three-dimensional backprojection without any L−2-factor

The backprojection requires the calculation of the value of l given the values
of t and s. We have found no way to derive this relation from (4.20). Instead we
use the following iterative approach in our implementation. Given (s, t) calculate
l iteratively as

l(i+1) = s − t
ds

dt
(l(i)) (4.21)

Start with l(0) = s. A small number of iterations (≈ 5) then give a sufficiently
accurate estimate of l. For faster performance a look-up table could be used. A
third alternative is to resample the filtered projection values back to the original
(t, s)-system with extra fine sampling in the s-direction before backprojection. The
original backprojection formula (4.16) can then be used.

The slanted filtering lines are nicely confined to the same rectangular window
on the planar detector as in the original PI-method, which means that the 180◦

illumination property is unaffected and that no filtering over truncated data is
necessary. This is however not true for large fan-angles (γmax > 39.5◦) where the
lines in (4.20) sprawl outside the PI-window. For such systems, the PI-plane used
to derive (4.20) is no good approximation of the PI-surface. Curves optimally
fitted to the projection of the PI-surface can then be used instead.

4.3.3 The PI-2D Method

Figure 4.21(a) shows the points on the nutating planes in the algorithm of Lar-
son et al. (1998). When we compare to the respective plot of PI-SLANT in Fig-
ure 4.21(b) we make the observation, not mentioned elsewhere, that the all rays
needed in the Larsson algorithm almost perfectly fit the Tam window. The filter-
ing directions in this algorithm are also very similar to the ones in PI-SLANT. The
major difference between the Larsson algorithm and PI-SLANT is that PI-SLANT
performs the backprojection three-dimensionally whereas the Larsson algorithm
backprojects in two-dimensions onto each nutating slice.
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Based on the comparison above, it is straight forward to propose a variation
of the PI-method where step 5 in PI-SLANT is replaced by a two-dimensional
backprojection to the nutating PI-surfaces, followed by a z-interpolation of the
reconstructed PI-surfaces to a Cartesian grid. This algorithm, which we call PI-
2D, then becomes almost identical to the algorithm of Larson et al. (1998).

Algorithm 4.10 PI-2D

1: Parallel rebinning from (β, γ, s) to (θ, t, s) of data within the Tam window
2: Pre-weighting with cosκ as in (4.12)
3: Column-wise resampling from (θ, t, s) to (θ, t, l) using (4.20)
4: One-dimensional ramp-filtering along the slanted lines
5: Two-dimensional backprojection onto each PI-surface
6: Resampling in the z-direction to a Cartesian voxel grid

4.3.4 The PI-FAST Method

The PI-SLANT and PI-2D algorithms utilize the observation that the image points
on the PI-surface are concentrated along slanted lines in-between entrance and
exit. The fact that some of the image points on the PI-surface are projected above
such a slanted line and some below is not handled in the filtering step of these al-
gorithms. Consider a neighbourhood of points on a PI-surface. They are projected
onto a neighbourhood on the detector. They furthermore have similar velocities
in the t-direction on the detector. The projection values of this detector neighbour-
hood are however contaminated by image points belonging to other PI-surfaces.
The projections of these points have velocities different from the considered point
projections. This observation lead to the development of an algorithm that tries
to use the velocity in the t-direction as a further way of discriminating between
projection values of different PI-surfaces. We initially tried to use the frequency-
distance relation of Edholm, Lewitt, and Lindholm (1986) for such discrimination.
This resulted in algorithms with many computation steps, and poor discrimina-
tion. We will now instead present our preferred algorithm, PI-FAST, which uses
some of the fast backprojection concepts as a way to discriminate between con-
tributions from different PI-surfaces. Defrise and Noo (1997) describe a different
way of utilising the frequency-distance for helical cone-beam reconstruction.

Switching the order of backprojection and filtering

Before tackling the cone-beam problem we return to fast backprojection in two
dimensions described in Section 2.3. We simplify this algorithm by not dividing
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Figure 4.22 A pixel value is the sum of interpolations between groups of four
links.

the computation into lg Nθ-steps but only into 2 steps. The first step calculates the
values of links of a certain length Nl, and the second step sums these values along
sinusoids in the sinogram into pixel values. A further simplification is to use links
short enough to be validly approximated by line segments. The link value can
then be calculated as

Ĩ [n1, k1; n2, k2] =
n2−1∑
n=n1

p̃P [n, k1 +
n − n1

n2 − n1
(k2 − k1)] (4.22)

Although tk1 and tk2 are sample points in the sinogram, the intermediate values
along the link require an implicit one-dimensional each in (4.22). The link is of
length Nl = n2 − n1, which gives Nθ

Nl
link starting positions in the θ-direction.

The second step sums the link values into pixel values. Using the notation in
Figure 4.22, we write this as

f(x, y) =

Nθ
Nl∑

i=1

(
wi

(
wi+1Ai + w′

i+1Bi

)
+ w′

i

(
wi+1Ci + w′

i+1Di

))
(4.23)

where Ai, Bi, Ci, and Di are the link values and wi and w′
i = 1 − wi are interpola-

tion coefficients.
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If we insert the ramp filter convolution (2.13) into (4.22), the link value can be
written as

Ĩ [n1, k1; n2, k2] =
n2−1∑
n=n1

(
pP [n, k1 +

n − n1

n2 − n1
(k2 − k1)] ∗ gP [k]

)

=
n2−1∑
n=n1

∑
k′

pP [n, k′ − k1 − n − n1

n2 − n1
(k2 − k1)]gP [k′]

=
∑
k′

n2−1∑
n=n1

pP [n, k′ − k1 − n − n1

n2 − n1
(k2 − k1)]gP [k′]

=

(
n2−1∑
n=n1

pP [n, k1 +
n − n1

n2 − n1
(k2 − k1)]

)
∗ gP [k]

= I [n1, k1; n2, k2] ∗ gP [k]

(4.24)

where I [n1, k1; n2, k2] naturally denotes the link value calculated from unfiltered
projection data. The change of order between summation and convolution is pos-
sible since the links are linear and equidistantly spaced along the t-axis. Equation
(4.24) tells us that we may wait with the filtering of projection data until the link
values have been calculated and then perform the filtering on the link values in-
stead. The right hand side convolution should be seen as a one-dimensional con-
volution where all links with the same starting projection angle θn1 and the same
slope dt

dθ will participate in one filtering event. Although the end result evidently is
independent of the order of filtering and link construction in the two-dimensional
case, it is exactly this possibility to switch order that is the key for handling points
projected off the filtering line in PI-SLANT.

Algorithm

We now return to the cone-beam geometry. For each PI-surface let us construct a
complete set of link values I [n1, k1; n2, k2] from the pre-weighted data. These will
later be ramp filtered and finally summed together into pixel values. The links
are positioned in the three-dimensional (θ, t, s) projection space. See Figure 4.23.
The (θ, t)-coordinates of the links are identical to the two-dimensional case and
we may regard the reconstruction as two-dimensional when seen from along the
rotation axis. The s-coordinates require some further analysis.

Given a PI-surface and the values of θn1 , θn2 , tk1 , and tk2 we use (2.38) to
compute the (x, y)-coordinate of the point on the PI-surface corresponding to the
link. Knowing x and y, the z-coordinate of the point is uniquely given by the
equation of the PI-surface (4.19). The link endpoint coordinates sc1 and sc2 can
then be calculated by projecting the point (x, y, z) onto the virtual planar detector
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Figure 4.23 The links needed for a PI-surface of a helix of pitch P = 1. To simplify
the illustration the number of links in both t- and θ-rirection is small compared to
a typical case. This makes the links sprawl out in the s-direction more than in a
typical case.

from projection angles θn1 and θn1 respectively. These endpoints will typically not
end up on integer values of c1 and c2.

The complete set of links for a PI-surface will approximately follow the projec-
tion tracks of the points in the PI-surface from their movements in the projection
space. At the entrance projection angle θnin of the PI-surface, the links will all start
at s = P/4 and at the final projection angle θnout the links will all end at s = −P/4.
In-between these two angles, the links will spread out in the s-direction.

When the end-points of the links have been determined it is possible to calcu-
late each link value along the line segment between the link end point as

I [n1, k1; n2, k2] =
n2−1∑
n=n1

pP [n, k1 +
n − n1

n2 − n1
(k2 − k1), c1 +

n − n1

n2 − n1
(c2 − c1)] (4.25)

The implicit one-dimensional interpolation in the t-direction for the two-dimen-
sional case in (4.22) has here become an implicit two-dimensional interpolation on
each (t, s)-plane.
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If we insert the parallel rebinning step (4.10) into (4.25), we may construct the
link values directly from the cone-beam data p(β, γ, s) without the intermediate
re-sampling step in (4.10). There is furthermore no need to initially re-sample the
original cone-beam data to rows of constant s since the mapping (4.26) between
the actual physical detector sampling points and the (β, γ, s)-system also can be
inserted into (4.25). The sampling points of the terms of the summation in (4.25)
will then not coincide with the projection data sampling points even in the projec-
tion angle direction. An implicit three-dimensional interpolation is thus necessary
for each term in (4.25). To avoid aliasing, it may be necessary to have a smaller
step size in the summation along the θ-direction than the sampling distance step
used in (4.25).

Equation (4.25) says that each link can be seen as a linear combination of the
projection data. Since the coefficients in this linear combination only depend on
the acquisition geometry and not on the actual projection measurements, they
may be computed in advance. A substantially smaller step size to avoid aliasing
would then not lead to more computations in the actual reconstruction, but would
only result in more correct coefficients in the linear combination.

Once the link values of a PI-surface have been computed they may be ramp-
filtered as described in the right hand side of (4.24). The filtered links are then
combined into pixel values as in (4.23).

This backprojection step is identical to the two-dimensional case, but will nev-
ertheless perform a three-dimensional backprojection. It does not have to consider
the link positions in the s-direction, since this information is already taken care of
in the link construction step in (4.25). The pixels on the PI-surfaces are finally
interpolated in z-direction onto a Cartesian grid, for presentation and analysis.

We summarise the computation steps in the PI-FAST algorithm as

Algorithm 4.11 PI-FAST

1: Pre-weight the projection data with cosκ, where κ is the angle between each
ray and a plane orthogonal to the rotation axis.

2: for all PI-surfaces do
3: Compute the link values according to (4.25) using the appropriate map-

pings to the acquisition geometry of the original data.
4: Ramp-filter the link values as in (4.24).
5: Compute the pixel values of the PI-surface using (4.23).
6: end for
7: Resample the pixels of the PI-surfaces in the z-direction onto a Cartesian grid.
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(a) 4 sets of 128-links, σ = 0.189 (b) 8 sets of 64-links, σ = 0.073

(c) 16 sets of 32-links, σ = 0.038 (d) 32 sets of 16-links, σ = 0.034

(e) 64 sets of 8-links, σ = 0.034 (f) 128 sets of 4-links, σ = 0.035

Figure 4.24 Reconstruction of the sphere clock phantom using PI-FAST with
links of different lengths. Parameters as in Table 4.2. Greyscale interval
[−0.05, 0.05].
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Computational complexity

The computational complexity for reconstructing one PI-surface is derived as fol-
lows. With a link length of

√
Nθ we have Nt

√
Nθ trees. Each tree consists of

O(
√

Nθ) links. The first step of the algorithm calculates the value of each link from√
Nθ interpolation points along the link. The total number of interpolations and

accumulations therefore becomes O(Nt

√
Nθ

√
Nθ

√
Nθ). The link values are then

filtered using FFT. Switching the order of filtering and backprojection does not al-
ter the total filtering effort. A total of O

√
Nθ

√
Nθ ramp-filterings with O(Nt log Nt)

operations each totals O(NθNt log Nt) operations.
The second step of the algorithm sums the filtered links values along the si-

nusoids for each voxel. This requires NxNy

√
Nθ interpolations and accumula-

tions. The total complexity of the algorithm is thus O(NtN
1.5
θ + NθNt log Nt +

NxNy

√
Nθ) = O(N2.5) per PI-surface and O(N3.5) in total for normal setups.

Discussion

The length of the links is a critical parameter in PI-FAST. If the links are too long
they can not be approximated by line segments, which will result in artifacts. But
short links do not discriminate between the contributions of different PI-surfaces
as good as long links. Figure 4.24 shows how the reconstruction of the sphere
clock phantom performs best when the link length is around 8−16. The number of
projection angles was Nθ = 1024 in this experiment, which means that the optimal
links length is slightly shorter than the previously mentioned rule of thumb that
linear links can be used for links shorter than

√
Nθ/2. Since the recursive nature

of the algorithm is replaced by a two-step procedure the length of the links is not
limited to a power of 2.

We may obtain a further insight into the actual filtering in PI-FAST by refor-
mulating the fast backprojection as an ordinary backprojection. The frequency-
distance relation of Edholm et al. (1986) says that sinusoids with the same slope
dt
dθ for a specific projection angle θ in the sinogram correspond to image points on
the same distance v from the virtual planar detector. The links are restricted to a
few discrete slopes. The links of the same slope and starting angle therefore corre-
spond to a swath of pixels extending all along the t-axis but restricted to a shorter
segment along the v-axis. As the discretisation of the link slope becomes finer, the
swaths become narrower in the v-direction. PI-FAST filters links with the same
slope together. This implies that the shape of the projection of points belonging to
the same PI-surface and with the same v-value determine the filtering curve to be
used for these points. See Figure 4.25.

With this observation we can formulate PI-FAST as a filtered backprojection
where each projection is filtered several times.
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t1

v1

θ1

t2

v2

θ2

x
y

z

Figure 4.25 Reconstruction of the PI-surface at θ = θ1. The curves of constant
v2 for projection angle θ = θ2 on this PI-surface are projected onto the PI-detector.
The projected curves determine the filtering direction in the reformulation of PI-
FAST.

Algorithm 4.12 Reformulation of PI-FAST

1: Paralell rebinning of data restricted by the Tam window
2: Pre-weighting with cosκ

3: for all projection angles θ do
4: for all PI-surfaces within the parallel cone do
5: for all swaths of equal v do
6: Projection of the swath on the PI-surface onto the planar virtual detec-

tor to determine the filtering curve
7: One-dimensional ramp-filtering along this curve
8: Three-dimensional backprojection of the filtered projection data onto

the pixels of the swath
9: end for

10: end for
11: end for
12: Resampling in z-direction to a Cartesian voxel grid
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The final interpolation on line 12 may be dispensed with if the backprojection on
line 8 is made to the discrete voxel positions. Care must then be taken so that
each voxel only gets one contribution from each projection angle. The order of the
loops on line 3 and 4 may be switched.

The filtration curves are in essence the same as the ones in PI-SLANT. The dif-
ference is that in PI-SLANT the projection of the single line at v = 0 determines
the filtration for the complete PI-surface. Image points projected outside this fil-
tration line are filtered by filtration lines derived from neighbouring PI-surfaces.
The filtration curves of one projection in PI-FAST may cross, which is why the
projection data has to be filtered and backprojected swath by swath.

This reformulation shows that PI-FAST is approximate because the reconstruc-
tion of one PI-surface is made from projection data contaminated by nearby sur-
faces. The filtering is different from other proposed methods, although rather
similar to PI-SLANT. Unfortunately, we have no better analysis tool than the ex-
perimental results in Section 4.3.7 to evaluate the actual performance of the algo-
rithm.

4.3.5 The n-PI Methods

Proksa, Köhler, Grass, and Timmer (2000) have introduced a new important fam-
ily of PI methods named the n-PI methods. By using properly shaped detector
windows, some of the problems with the Tam-window are reduced while many
of the nice properties of PI-ORIGINAL are retained.

Geometry and interrupted illumination

The PI-window is restricted in height by two consecutive turns of the helix. An
n-PI-window is restricted by segments of the helix that are n turns apart. See
Figure 4.26. Valid values of n are all odd positive integers, but only n = 1, 3, 5, 7
are used in practice. The beam is thus restricted by lines from the source to points
on the helix approximately n/2 turns up or down. These lines are called n-PI-lines.
Note that the PI-detector and PI-lines discussed in the sections above become a
special case of the n-PI-detector and n-PI-lines when n = 1. We will therefore
sometimes refer to the PI-detector as the 1-PI-detector.

Proksa et al. (2000) show how the Radon planes are triangulated in a similar
fashion to the 1-PI case. The triangles are overlapping such that each point in
each Radon plane is measured exactly n times. An adaptation of the exact Radon-
based algorithm of Kudo, Noo, and Defrise (1998) is formulated for the n-PI case.
Furthermore, PI-ORIGINAL is reformulated for the n-PI geometry. We will call
this algorithm n-PI-ORIGINAL.
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Figure 4.26 The 3-PI-detector.

The sampling of the n-PI-detector is performed along curved detector rows,
projected onto the outer cylinder as

q(s, γ, n) =
s + γ P

nπ

cos γ
, s ∈ [−nP

4
,
nP

4
] (4.26)

These rows become less tilted as n increases. A larger portion of the actual physical
(γ, q)-detector on the outer cylinder can therefore be used.

Proksa et al. (2000) observe that some image points enter illumination more
than once on the n-PI-detector when n ≥ 3. This does not happen for the 1-PI
geometry since every object point belongs to one and only one PI-line. But in the
n-PI case, some points belong to more than one n-PI-line.

Figure 4.27 shows the points on a 3-PI-surface as projected onto the virtual
planar detector during a projection interval of 3π. For θ = 0 and θ = 3π they
line up on the top and bottom rows of the detector respectively. But some points
enter the detector window before and after the 3π interval and also enter and exit
during the 3π interval.
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Figure 4.27 Points on a 3-PI-surface as projected on the (t, s)-detector space. The
detector window is limited to s ∈ [−3P

4 , 3P
4 ] = [−0.75, 0.75], indicated with two

lines.
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Algorithm

The n-PI-ORIGINAL algorithm is very similar to PI-ORIGINAL. The slightly al-
tered geometry is implemented by exchanging the occurrences of the factor P

2π

with P
2nπ in the pre-weighting equation (4.12) and in the calculation of s in (4.16).

Algorithm 4.13 n-PI-ORIGINAL

1: Paralell rebinning of data restricted by the n-PI window
2: Pre-weighting with cosκ

3: One-dimensional ramp-filtering along each row on the virtual planar detector
4: Three-dimensional backprojection without any L−2-factor

The interrupted illumination makes the two voxel driven backprojections in
Algorithm 4.6 and 4.7 unusable. However, the projection driven approach in Al-
gorithm 4.8 will still work if the detector limits [−P

4 , P
4 ] are replaced by [−nP

4 , nP
4 ].

Possible extensions

As we have noted before, the use of nutating planes only makes sense for short-
scan geometries. The projections of the 3-PI-surface in Figure 4.27 show that the
methodology used in PI-SLANT and PI-2D does not work for n > 1. Filtering
curves derived by curve fitting would intersect each other and extend outside the
window.

The n-PI-detector can be seen as consisting of n segments separated by the
source trajectory. The mid-segment is always a 1-PI-detector. For this segment
of the n-PI-detector, the filtering directions of PI-SLANT could be applied. For
the other segments it is fruitless to find any nutating surfaces with projections
that stay within the segment. Nothing but the original horizontal filtering can be
recommended there. This combination of different filterings for different parts of
the n-PI-detector has not been implemented.

The exact ZB and PHI methods are still to be reformulated for the n-PI geom-
etry. An obvious problem with the ZB method is that it relies on the one-to-one
correspondence between image points and PI-lines, something which does not
hold for n-PI-lines.

4.3.6 Noise Homogeneity

Although the Tam-window ensures 180◦ illumination of all points after rebinning,
the β-interval of real X-ray illumination before rebinning will be different for dif-
ferent points. This is an important observation that is likely to affect the noise
properties of the PI methods. The images in Figure 4.28 show an (x, y)-slice such
that the source trajectory intersects the slice to the left at (−R, 0). The greyscale
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1-PI detector 3-PI detector 5-PI detector

Figure 4.28 Illumination maps of an (x, y)-slice with a source trajectory inter-
section in (−R, 0). R = 2.0, RFOV = 1.0, P = 0.1. The images are normalized
such that the central pixel value is unity. Greyscale interval [0.7 1.3].

of the voxels within the circular field of view is set to the number of X-ray pro-
jections each voxel receives before rebinning. This number is proportional to the
real exposure time of the voxel. Slices above and below the one illustrated have
identical uneven exposure maps apart form a rotation. Voxels close to the source
are exposed for a shorter time than voxels further away.

The X-ray source-detector system is adequately modelled as a Poisson process.
Each detector cell generates a stochastic intensity value I . For a Poisson distribu-
tion the variance σ2

I is equal to the expected number of photons µI . In this sense
the noise in the projections is signal dependent. Line integral values are obtained
by taking the logarithm according to (2.2). This results in a new stochastic vari-
able P = − log( I

I0
). The non-attenuated intensity I0 can be seen as a constant. We

write the conversion using the non-linear function h(·) as P = h(I). The variance
of P is given by the approximation rule of Gauss (Blom 1989) as

σ2
P = σ2

I · (h′(µI))2 = µI
1
µ2

I

=
1
µI

(4.27)

In contrast to the intensities, the line-integrals therefore have smaller variance as
the intensity increases.

The line-integration values P can be placed in a long one-dimensional vector of
length Nβ ·Nγ ·Nq . Each element Pi is then an independent stochastic variable. In a
similar way, we place all reconstructed values in a vector of length Nx ·Ny ·Nz. All
steps in the PI methods are linear. The reconstructed value Fj is therefore a new
stochastic variable that can be written as a linear combination of the projection
values Pi:

Fj = w1,jP1 + w2,jP2 + . . . + wNβ ·Nγ·Nq,jPNβ ·Nγ ·Nq,j (4.28)
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The variance σ2
Fj

of the voxel value Fj becomes

σ2
Fj

= w2
1,jσ

2
P1

+ w2
2,jσ

2
P2

+ . . . + w2
Nβ ·Nγ·Nq,jσ

2
PNβ ·Nγ ·Nq,j

(4.29)

The values of wi,j are independent of the projection data but depend on the illumi-
nation geometry, the interpolation method used in the different rebinning steps,
the ramp-filter convolution, and the backprojection implementation. It is the net
effect of all these steps that determines the actual noise behaviour. We will not
present any analytical expression of σ2

Fj
. Instead, we will use our reconstruction

algorithm implementation to get an estimation of the noise in the slice as follows.
We add signal-dependent noise to synthetically generated noise-free projec-

tions of a homogeneous cylinder with a radius slightly smaller than RFOV. The
simple noise generation method described by Fuchs (2000) is used. The line-
integral measurements p(β, γ, q) are first turned into photon intensity values as

I(β, γ, q) = e−p(β,γ,q) (4.30)

Signal dependent noise is then added as

IN (β, γ, q) = I(β, γ, q) +
√

I(β, γ, q)X, X ∈ N(0, σX) (4.31)

where we have set the variance of the normal distribution N(0, σX) to 10% of
the intensity of the central ray, σ2

X = 0.1I(0, 0, 0). The noisy intensity values are
converted back into line-integral values as pN (β, γ, q) = − log IN (β, γ, q).

A slice of the volume reconstructed form the noisy data using PI-ORIGINAL
is shown in Figure 4.29(a). The reconstruction used the parameters listed in Ta-
ble 4.2. The local noise level σf is calculated using neighbouring slices from a
noisy reconstruction fN and a noise-free reconstruction f as

σf [i1, i2, i3] =

√√√√ 1
125

i1+2∑
i′
1=i1−2

i2+2∑
i′
2=i2−2

i3+2∑
i′
3=i3−2

(fN [i′1, i′2, i′3] − f [i′1, i′2, i′3])
2 (4.32)

and plotted in Figure 4.29(b). The slices are very thin compared to the pitch, so that
the averaging between the slices will not eliminate any possible non-rotationally
symmetric component due to the helix. There is a clear increase in noise towards
the centre of rotation. This is the case for most reconstruction algorithms. It can be
explained by that fact that the reconstruction of the central parts mainly relies on
projection values of rays intersecting the object at its widest. According to (4.27)
such rays correspond to line-integral values with large variances.

No non-rotationally symmetric component due to the short-scan is apparent.
We have no explanation for the centred circular wave pattern. The Figures 4.29(c)
and (d) show similar plots for the 3-PI geometry. Naturally, the noise level is
smaller due to the longer illumination interval. No non-rotationally symmetric
component is visible here either.
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(a) PI-ORIGINAL (b) σf

(c) 3-PI-ORIGINAL (d) σf

Figure 4.29 Reconstruction from noisy data of a homogeneous cylinder of den-
sity 1.0. Parameters as in Table 4.2. Greyscale interval: [0.0, 1.5] in (a) and (c);
[0.0, 0.15] in (b) and (d).
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Source trajectory radius R = 2.0 length units (l.u.)

Projections per turn Nβ = Nθ = 512
Pitch P = 1.0 l.u. (P = 1

n
l.u. for n = 3, 5)

Detector rows Ns = 64
Detector row height ∆s = P

2Ns
= 1

128 l.u.

Detector elements per row Nγ = Nt = 255
Maximum fan-angle γmax = 30◦

Maximum cone-angle at γ = 0 κmax = arctan P
4R ≈ 7.13◦

Reconstruction grid Nx × Ny × Nz = 256 × 256 × 5
Reconstruction grid resolution ∆x = ∆y = ∆z = 1

128 l.u.

Simulated rays per detector element 18

Table 4.2 Experiment parameters for the sphere clock phantom and for the noise
simulations.

The variations of the exposure time for different voxels is obviously an insuf-
ficient model for the noise behaviour. Our experiment shows that noise inhomo-
geneity is not a major problem in 1-PI-ORIGINAL. The motivation for the n-PI
methods should not be stated in terms of noise homogeneity but rather in their
ability to obtain better SNR in general and reconstruct images with less artifacts.

4.3.7 Experimental Results

We will use two different experimental setups when comparing the algorithms
presented above. The first phantom is designed to disclose artifacts stemming
from the one-dimensional filtering employed by the different approximate algo-
rithms. The second setup is an attempt to simulate the behaviour of the different
algorithms in a possible future medical tomograph.

The sphere clock phantom

All algorithms employing one-dimensional ramp filtering presented in this chap-
ter become exact if the object is homogeneous in the z-direction. We have there-
fore used a high contrast phantom named the sphere clock phantom presented in
detail in Appendix B.1. This phantom has many sharp density variations in the z-
direction to illustrate the image quality degradation due to the non-exactness ap-
proximations in eight of the algorithms presented above. The (x, y)-slice at z = 0
of the phantom is shown in Figure 4.30(a). The spheres at 12 o’clock are centred in
this slice and the large sphere at 10 o’clock and the small sphere at 5 o’clock touch
the slice. Because of the slice width, these touching spheres should be visible, but
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(a) Phantom (b) Two-dimenisional reconstruction

Figure 4.30 The sphere clock phantom. Greyscale interval [−0.05, 0.05].

the spheres at 11 o’clock and 6 o’clock outside the slice should not appear in the
reconstructed result. For comparison, the result using a circular trajectory and a
two-dimensional filtered backprojection with corresponding parameters is shown
in Figure 4.30(b).

Figures 4.31 and 4.32 shows reconstruction results using the parameters in Ta-
ble 4.2. To emphasise the differences we have used a tight greyscale window
and a detector with relatively many rows where none of the methods give per-
fect results. However, the experiment clearly shows that both the introduction of
nutating slices and three-dimensional backprojection improve image quality. This
conclusion is supported by the values of the root mean square error reported in
the subfigure captions.

The artifacts in the nutating slice reconstruction resemble the ones in PI-2D.
This is not surprising due to the similarities between the algorithms. PI-2D shows
somewhat larger artifacts. We believe that this difference should be explained
by the fact that the PI-surfaces are less optimal than the nutated planes as seen in
Figure 4.11. The artifacts are similar and PI-2D will be used in the next experiment
to indicate the expected performance of the other nutating slice algorithms.

The voxelised head phantom

Figures 4.33 and 4.35 show reconstruction results from simulated projections thro-
ugh the voxelised head phantom defined in Appendix B.3. The forward projection
method of Köhler, Turbell, and Grass (2000), described in Section 5.1.4, has been
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(a) Multi-slice, σ = 0.134 (b) Nutating slice, σ = 0.056

(c) PI-ORIGINAL, σ = 0.050 (d) PI-SLANT, σ = 0.042

Figure 4.31 Reconstruction of the sphere clock phantom. Parameters as in Ta-
ble 4.2. Greyscale interval [−0.05, 0.05].
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(a) PI-2D, σ = 0.080 (b) PI-FAST, σ = 0.034

(c) 3-PI-ORIGINAL, σ = 0.029 (d) 5-PI-ORIGINAL, σ = 0.028

Figure 4.32 Reconstruction of the sphere clock phantom. Parameters as in Ta-
ble 4.2. Greyscale interval [−0.05, 0.05].
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64-row detector 16-row detector
σ σsoft σ σsoft

PI-ORIGINAL 70.2 25.1 68.1 22.2

PI-SLANT 65.5 21.6 64.1 20.9

PI-2D 77.1 26.7 67.6 21.9

PI-FAST 73.5 24.1 71.8 23.3

3-PI-ORIGINAL 67.2 21.7 - -

Table 4.3 Total reconstruction error for all slices of the voxelised head phantom.

used. Severe artifacts are shown for PI-ORIGINAL in Figures 4.33(b) and 4.3.7(b).
The parameters for this experiment are found in Table 4.4. The detector consists
of 64 rows which is more than expected in the next generation of tomographs. An
alternative, less challenging, geometry with a 16-row detector is given in Table 4.5.
The artifacts for PI-ORIGINAL are reduced greatly for this smaller detector as
shown in Figure 4.35(b).

The reconstruction has been made on the same grid as the voxelised phantom
was given on. It is thereby simple to calculate

σ =

√√√√ 1
NxNyNz

Nx−1∑
i1=0

Ny−1∑
i2=0

Nz−1∑
i3=0

(fRECONSTRUCTED [i1, i2, i3] − fPHANTOM [i1, i2, i3])
2

(4.33)

as an error measure. Voxels close to bone contribute greatly to σ. As an alternative
we picked out the voxels

S = {(i1, i2, i3) | 1000 < fPHANTOM [i1, i2, i3] < 1060} (4.34)

that contain soft tissue. The set S was used to create a binary volume. To avoid
contributions from soft tissue voxels close to bone this binary volume was mor-
phologically eroded. The set of remaining voxel positions, S′, were used for the
error measurement

σsoft =

√√√√ 1
|S′|

∑
(i1,i2,i3)∈S′

(fRECONSTRUCTED [i1, i2, i3] − fPHANTOM [i1, i2, i3])
2 (4.35)

We observe that the worst artifacts in PI-ORIGINAL disappear with the intro-
duction of nutating PI-surfaces. The result from PI-SLANT is clearly superior to
that of PI-2D. The major differences are found in the soft tissue close to the bone,
where PI-2D produces “bleeding” effects.

PI-FAST produces a smoother result than the other algorithms. We expect this
to be a result of the extra interpolation step due to the intermediate link value
calculations.
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Source trajectory radius R = 570 mm

Projections per turn Nβ = Nθ = 1000
Pitch P = 88.4 mm (29.47 mm for n = 3)

Detector rows Ns = 64
Detector row height ∆s = P

2Ns
≈ 0.69 mm

Detector elements per row Nγ = Nt = 320
Maximum fan-angle γmax = 12◦

Maximum cone-angle at γ = 0 κmax = arctan P
4R ≈ 2.2◦

Reconstruction grid Nx × Ny × Nz = 320 × 320 × 64
Reconstruction grid resolution ∆x = ∆y = ∆z = 221

320 mm ≈ 0.69 mm

Simulated rays per detector element 18

Table 4.4 Experiment parameters for the voxelised head phantom using a 64-row
detector.

Pitch P = 22.1 mm

Detector rows Ns = 16
Maximum cone-angle at γ = 0 κmax = arctan P

4R ≈ 0.56◦

Table 4.5 Experiment parameters for the voxelised head phantom using a 16-row
detector, other parameters as in Table 4.4.

The main artifact of PI-ORIGINAL in 4.33(b) is substantially reduced but still
visible in the result of 3-PI-ORIGINAL in 4.33(f). The comparison may be consid-
ered unfair since 3-PI-ORIGINAL required a three times larger projection data set
for the reconstruction.

From the experiments we draw the conclusions:

• PI-SLANT produces the best results of the four 1-PI methods.

• in particular, PI-SLANT outperforms PI-2D, indicating that all nutating slice
algorithms would benefit substantially if the two-dimensional backprojec-
tion was replaced by three-dimensional backprojection.

• 3-PI-ORIGINAL clearly outperforms 1-PI-ORIGINAL.

The results give no definite answer when comparing PI-ORIGINAL with PI-
2D, or PI-SLANT with 3-PI-ORIGINAL.
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(a) Phantom

(b) PI-ORIGINAL, σsoft = 19.95

(c) PI-SLANT, σsoft = 16.01

(d) PI-2D, σsoft = 21.46

(e) PI-FAST, σsoft = 17.77

(f) 3-PI-ORIGINAL, σsoft = 15.98

Figure 4.33 Reconstructed (y, z)-slice through the voxelised head phantom with
a 64-row detector. Parameters as in Table 4.4. Greyscale interval [980, 1080].
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(a) Phantom

(b) PI-ORIGINAL, σsoft = 29.30
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(c) PI-SLANT, σsoft = 24.00

(d) PI-2D, σsoft = 29.67
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(e) PI-FAST, σsoft = 26.97

(f) 3-PI-ORIGINAL, σsoft = 24.14

Figure 4.34 Reconstructed (x, y)-slice through the voxelised head phantom with
a 64-row detector. Parameters as in Table 4.4. Greyscale interval [980, 1080].
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(a) Phantom

(b) PI-ORIGINAL, σsoft = 16.50

(c) PI-SLANT, σsoft = 15.38

(d) PI-2D, σsoft = 17.04

(e) PI-FAST, σsoft = 16.42

Figure 4.35 Reconstructed (y, z)-slice through the voxelised head phantom with
a 16-row detector. Parameters as in Table 4.5. Greyscale interval [980, 1080].
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4.4 Discussion

In this chapter we have reviewed the existing methods for helical cone-beam re-
construction and presented a number of new methods. Different algorithms are
suitable for different detector setups. An approximate general consensus is that
multi-slice algorithms work for 4-row detectors and that the approximate algo-
rithms using nutating slices or three-dimensional backprojection work for detec-
tors with up to approximately 32 rows. Exact algorithms are required for larger
detectors.

Our experiments indicate that the nutating slice algorithms presently investi-
gated by several manufacturers can be improved upon by using three-dimensional
backprojection as in PI-SLANT. Given these results, statements such as “ASSR,
compared with other approximate cone-beam reconstruction algorithms, is the
most promising method available today” (Kalender 2000) seem somewhat pre-
mature.

The experiments furthermore show that the n-PI-methods have a remarkable
ability to reduce many of the artifacts appearing in the short-scan methods. They
also provide control over the trade-off between scanning time and signal to noise
ratio.

Most of the compared algorithms require O(N4) operations to reconstruct a
complete volume. PI-FAST requires O(N3.5) and the algorithms with two-dimen-
sional backprojection can be accelerated to O(N3 log N) using direct Fourier tech-
niques or fast backprojection on each slice. The actual resulting performance
depends on many intricate implementation details. Our experience says that
three-dimensional backprojection, as in PI-ORIGINAL, PI-SLANT, and n-PI-ORI-
GINAL, gives a computationally more expensive algorithm than the two-dimen-
sional backprojection with pre- and post-interpolation found in the nutating sur-
face algorithms.





5

Forward Projection through
Voxel Volumes

Forward projection through voxel volumes is a major step in all iterative recon-
struction methods. In the work of this thesis we have used forward projection
when generating synthetic projections of the voxelized head phantom defined in
Appendix B.3.

Most of the material in this chapter, apart from Section 5.3, is based on the
presentation by Köhler, Turbell, and Grass (2000). Additional experiments have
also been designed in collaboration with Thomas Köhler.

5.1 Methods

We present four different approaches to forward projection. All of these methods
can be classified as ray-driven, in the sense that they traverse each ray through
the voxel volume while accumulating the line-integration value. Alternative ap-
proaches are discussed in Section 5.3.

5.1.1 Siddon’s Method

Figure 5.1(a) shows a three-dimensional voxel grid along one axis. The sample
points are centred in the voxels. If nearest-neighbour interpolation is used, the
line-integral can be easily calculated as a weighted sum of the values of the in-
tersected voxels. The weights in the sum are naturally the length of intersection
between each voxel and the ray. Siddon (1985) formulated an efficient way of

141



142 Chapter 5 Forward Projection through Voxel Volumes

(a) Siddon’s method (b) Joseph’s method

(c) Simple approach (d) Köhler’s method

length of intersection

h

Figure 5.1 Four methods of line-integration as seen along one axis. Triangles
indicate bi-linear interpolation, squares indicate tri-linear interpolation.

calculating this length while traversing the ray. Other efficient ways of incremen-
tally stepping through voxel volumes have been developed for use in computer
graphics, see Cohen (1994) for further references.

The nearest neighbour interpolation is a too simplified model for most appli-
cations. Goertzen, Beekman, and Cherry (2000) present CT reconstruction experi-
ments from data obtained using Siddon’s method. They draw the conclusion that
the input voxel volume has to be of at least the double resolution in each dimen-
sion compared to the desired resolution of the reconstruction.

5.1.2 Joseph’s Method

Joseph (1982) describes a somewhat more elaborate forward projection method
for the two-dimensional case. It is easily extended to three dimensions. Assume
that the integral of the line segment between (x1, y1, z1) and (x2, y2, z2) is to be
computed. By comparing |x1 − x2|, |y1 − y2|, and |z1 − z2|, the principal direction
of the ray is first determined. We will now discuss the case where the principal
direction is along the x-axis, i.e. when |x1 − x2| is the largest of the three absolute
differences. The other cases are handled in similar ways.
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Figure 5.1(b) shows how a bi-linear interpolation is performed on the intersec-
tion points of each (y, z)-plane of the sampling grid. The sum of these interpola-
tions is finally weighted with the factor√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

|x1 − x2|
(5.1)

to compensate for the longer traversal of rays deviating from the principal direc-
tion.

5.1.3 A Simple Method

Köhler, Turbell, and Grass (2000) noted that the problem of calculating line-integrals
can be separated into the two steps:

1. Construction of a continuous volume by interpolation from the discrete data

2. Line-integration in the continuous volume

A simple algorithm is obtained if the interpolation is chosen to be tri-linear and the
integration through the continuous volume is approximated by summing values
at equidistant points along the ray. See Figure 5.1(c).

The step width h is a free parameter that can be used to trade off between
image quality and computation time. We introduce the quantity

N =
∆x

h
(5.2)

A value of N = 1 corresponds to a sampling distance equal to the voxel sampling
distance. The quantity N is therefore reffered to as an oversampling factor.

5.1.4 Köhler’s Method

The Simpson rule of integration (Råde and Westergren 1990)∫ b

a

f(l) dl ≈ b − a

6
(f(a) + 4f(

a + b

2
) + f(b)) (5.3)

can be used to numerically approximate the integral of a function given the func-
tion values at the integration borders and at the centre of the integration interval.
For functions which are polynomials of third order the Simpson rule can be shown
to be exact.

Let us define a cell as a box of sides ∆x, ∆y, and ∆z with sampling points at its
corners. The cells can be seen as voxels shifted half a sampling distance. Köhler
et al. (2000) showed that tri-linear interpolation in step 1 above results in a volume
where the density along a ray varies as a polynomial of third order within each
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cell. It is therefore possible to calculate the line-integral in step 2 above analytically
within each cell using the Simpson rule of integration.

The resulting method is illustrated in Figure 5.1(d) and consists of the follow-
ing steps:

Algorithm 5.1 Köhler’s method of line-integration

1: for each cell intersected by the ray do
2: calculate the function value at the two intersections of the cell wall using

bi-linear interpolation
3: calculate the function value at the point halfway between the two intersec-

tion points above using tri-linear interpolation
4: combine the three values using Simpson’s rule (5.3)
5: accumulate the result
6: end for

The values obtained by bi-linear interpolation at the wall intersections can be
reused for the neighbouring cells. The free parameter h appearing in the simple
approach is not used in the Köhler method.

5.2 Experimental results

We have calculated forward projections through the voxelized head phantom us-
ing the simple approach and Köhler’s method. Figure 5.2(a) shows the root mean
square difference between the two methods for different oversampling factors. A
high oversampling factor is clearly needed in the simple approach to obtain the ac-
curacy of Köhler’s method. Figure 5.2(b) shows that the simple approach requires
substantially more computation time for such a high oversampling factor.

In a second experiment we used an analytically described phantom with known
projection values. The phantom was discretized as input to the algorithms. The
results could then be compared with the ideal analytical values.

In order to avoid most of the aliasing a phantom such as a solid box or ellipsoid
would result in we have chosen a spherically symmetric Kaiser-Bessel window as
phantom. This window has only small frequency components above the Nyquist
frequency related to our sampling distance ∆x. It is defined as

f(x, y, z) =
I0(α

√
1 − x2+y2+z2

a2 )

I0(α)
(5.4)

where I0 is the modified Bessel function of order 0. The free parameters a and
α have been chosen as a = Nx/2 = 4 and α = πa. The phantom was sampled
at (Nx · M)3 = 512M 3 voxels of side 1/M , where M is a variable oversampling
factor.
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Köler’s method. as a function of the over-
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(b) Average time needed by the simple ap-
proach as a function of the oversampling
N . The line indicates the time needed using
Köhler’s approach.

Figure 5.2 Comparisons between the simple approach and Köhler’s method.

Lewitt (1990) showed that the projection of a Kaiser-Bessel window only de-
pends on the distance d between the ray and the window centre as

p(d) =
2a

αI0(α)
sinh

(
α

√
1 − d2

a2

)
(5.5)

The root mean square of the difference between these ideal projection values and
the calculated ones are plotted in Figure 5.3 as a function of the oversampling
factor M . The Siddon method is clearly inferior to the methods of Joseph and
Köhler that perform similarly.
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Figure 5.3 Root mean square error of the projection values for three different for-
ward projection methods as a function of the oversampling rate M .
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5.3 Discussion

At first sight, it might be surprising to see that the method of Joseph performs as
good as the method of Köhler. We will now present an non-formal explanation.

The Siddon method can easily be expressed in the two steps mentioned above.
The first step is an interpolation with the box function shown in Figure 5.4(a). The
resulting volume is constant within each voxel. The weighting with the length
of intersection clearly evaluates the line-integral through this volume analytically
correct.

The Joseph method can also be expressed in the two steps. The interpolation
should then be seen as being performed with a sheared tri-linear kernel as shown
in Figure 5.4(b). The kernel axis parallel to the principal direction of the ray is
sheared to be parallel with the ray. The other two kernel axes are kept unchanged.
When the sheared axis of the kernel is parallel to the ray it is clear that an an-
alytical integral through the kernel is identical to the bi-linear interpolation and
compensation factor (5.1) in Joseph’s method. Any smoothing in the direction of
the ray is eliminated by the integration.

The only difference between the Joseph and Köhler methods is hence that the
interpolation kernel in the Joseph method is a skewed version of the Köhler kernel
in Figure 5.4(c). This should not have dramatic effects on the obtained quality. It
is not obvious which kernel is optimal.

Figure 5.4(d) shows a rotated tri-linear kernel which could be considered as an
alternative. However, the sum of the kernel values at the sample points not will
be constant over the volume. It is therefore hard to formulate a practical algorithm
for this kernel.

The four presented methods are all ray-driven. Alternative methods also exist.
Lewitt (1992) has proposed the use of spherically symmetric interpolation kernels,
also known as blobs. Mueller, Yagel, and Wheller (1999) investigate voxel driven
approaches where a projection, a footprint, of each voxel is accumulated, splatted,
onto the detector.
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(a) Siddon (b) Joseph

(c) Köhler

(d) Rotated

Figure 5.4 Four interpolation kernels as seen along one axis. The line indicates
the ray along which the integration is performed.





6

Summary

We have in this thesis reviewed existing algorithms and presented new methods
for cone-beam reconstruction. The main focus has been on approximate algo-
rithms employing filtered backprojection with one-dimensional ramp-filtering.

In Chapter 3 we introduced the concept of parallel rebinning for the circular
cone-beam geometry. The resulting algorithm P-FDK was the basis for the T-FDK
method of Grass et al. (2000a). Our experiments confirmed that T-FDK gives re-
construction results of higher quality than the original FDK method. We also pro-
posed the new FDK-SLANT method as an attempt of transferring the successful
nutating slice algorithm from the helical to the circular case. The experimental re-
sults show both promising and discouraging features in the reconstructed images.
A more thorough image quality investigation is under way.

We formulated the FDK-FAST method, which is the first cone-beam algorithm
employing fast backprojection, reducing the asymptotic computational complex-
ity from O(N4) to O(N3 log N). We indicated that the practicality of FDK-FAST
could be limited, despite several schemes of reducing the memory requirements
of the algorithm.

In Chapter 4 we presented both exact and approximate methods for helical
cone-beam reconstruction. Central in the presentation was the detector window
of Tam (1995), which has been used by other authors for exact reconstruction. We
named this window the PI-detector since it restricts the illuminatation interval
length of all object points to π as seen from the points.

Although parallel rebinning has been known for long and suggested for use
in helical cone-beam scanning by other authors, nowhere is this technique more
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valuable than when applied to PI-detector data as done in the PI methods. We
presented and evaluated several alternative implementations of the backprojec-
tion. We also gave a new proof of the fact that the Tam window ensures that the
local Fourier domains of all object points are fully measured.

The original PI method performs well for moderate cone-angles, but starts to
produce artifacts as the cone-angle increases. The predecessor of this thesis, the
licentiate thesis of Turbell (1999), ended with the statement “It is quite likely that
a deeper theoretical understanding of the approximations involved may result in
a more exact algorithm and become an important part of future work on helical
cone-beam reconstruction.” We are pleased to see that this statement has turned
out to be true. Evidence of this fact are the three new PI methods: PI-SLANT,
PI-2D, and PI-FAST, together with the n-PI methods of Proksa et al. (2000).

We have investigated the noise homogeneity of the PI methods. Despite the
uneven exposure time for different voxels, the noise in the reconstructed images
was shown to be rotationally symmetric.

In addition to presenting new algorithms, large parts of the thesis have re-
viewed existing algorithms of other authors. Some of the new contributions of
these review sections are:

• the novel categorisation of approximate cone-beam algorithms in Table 1.2.

• the investigation on which properties hold for the different variations on
FDK reconstruction in Section 3.2.3.

• the discussion on the limitations of texture mapping hardware for the accel-
eration of three-dimensional backprojection in Section 3.2.1.

• the categorisation of exact helical cone-beam algorithms in Table 4.1.

• the discussion on the similarities and limitations of the nutating slice meth-
ods in Section 4.2.2.

• the proposal of further optimisation of the nutating slice algorithms in Sec-
tion 4.2.2 by using polynomial surfaces and gradient descent minimisation.

• the suggestions on improvement of the gridding step of the MFR method in
Section 4.2.4.

• the suggestions on extensions of the n-PI methods in Section 4.3.5.

• the use of a sheared tri-linear kernel in the comparison between the forward
projection methods of Joseph and Köhler in Section 5.3.

It is not unlikely that some of the newer algorithms reviewed or presented in the
thesis will be used in future CT systems. The final choices made by the manufac-
turers depend on a multitude of factors beyond the scope of this thesis.



A

Preservation of Line Integrals

In Section 3.3 we mentioned that the FDK-property of preserved line integrals
in the z-direction is not valid when the filtering is performed along non-parallel
lines. In this appendix we have a more formal look at the problem and the remedy.

A.1 Projection of a Point

For the discussions in the following sections we need to derive the analytic ex-
pression of the projection of a point in a cone-beam system. We start with the
two-dimensional fan-beam case.

Consider a two-dimensional point density at x0 = (x0, y0)T . See Figure A.1.
Using the dirac delta function we write the the point density as 2δ(x−x0). We will
compute its fan-beam projection in the projection direction β = (cos β, sin β)T . A
virtual linear detector detects rays intersecting the detector at aβ⊥ where β⊥ =
(− sin β, cosβ)T is orthogonal to β. An arbitrary ray starts at −Rβ and continues
in the direction (aβ⊥ − (−R)β). The projection of the point density 2δ(x − x0)
becomes a scaled dirac pulse on the detector.

pF (β, a) =
√

R2 + a2

R + x0 · β δ(a − R
x0 · β⊥

R + x0 · β
) (A.1)

To get a better intuitive understanding of the scaling factor we may factorise it as
√

R2 + a2

R + x0 · β =
R

R + x0 · β ·
√

R2 + a2

R
=

R

R + x0 · β
· 1
cos γ

(A.2)
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x0
β

β⊥

β
a

x

y

R

Figure A.1 Fan-beam projection of a point.

where the first factor can be interpreted as the geometrical magnification due to
the beam divergence. The second factor has the same geometrical explanation as
the fact that the sun casts longer shadows when it moves from its zenith.

We now consider the three-dimensional cone-beam case. We are interested in
the projection pF (β, a, b) of the point density at x0 = (x0, y0, z0)T in the projection
direction β = (cos β, sin β, 0)T . Similar to the fan-beam case, the scaling of the
dirac pulse in the z-direction consists of a magnification and a cos-factor, written
as

dz

db
· 1
cosκ

=
√

R2 + a2√
a2 + (R + x0 · β)2

·
√

R2 + a2 + b2
√

R2 + a2
=

√
R2 + a2 + b2√

a2 + (R + x0 · β)2
(A.3)

which multiplied with the fan-beam scaling gives us the total cone-beam scaling

√
R2 + a2

R + x0 · β ·
√

R2 + a2 + b2√
a2 + (R + x0 · β)2

=
R

√
R2 + a2 + b2

(R + x0 · β)2
(A.4)

The point density 3δ(x − x0) is thus projected as

pF (β, a, b) =
R

√
R2 + a2 + b2

(R + x0 · β)2
δ(a − R

x0 · β⊥

R + x0 · β )δ(b − z0R

R + x0 · β ) (A.5)

The projection of a complete object f(x) may be written as the superposition of all
point densities

pF (β, a, b) =
∫∫∫

f(x0)
R

√
R2 + a2 + b2

(R + x0 · β)2
δ(a − R

x0 · β⊥

R + x0 · β )δ(b − z0R

R + x0 · β ) dx0dy0dz0

(A.6)



A.2 FDK Reconstruction 153

A.2 FDK Reconstruction

The FDK-method reconstructs the image value fFDK(x) from the two-dimensional
projections pF (β, a, b) as

fFDK(x) =
∫ 2π

0

R2

(R + x · β)2︸ ︷︷ ︸
U−2-factor

∫
gP (a − a′)︸ ︷︷ ︸

Ramp-filter

pF (β, a′, b)
R√

R2 + a′2 + b2︸ ︷︷ ︸
Pre-weighting

da′dβ

(A.7)

where

a = R
x · β⊥

R + x · β (A.8)

and

b = z
R

R + x · β
(A.9)

The result fFDK(x) is only approximate and differs from the true f(x). We will
now show that line integrals in the z-direction are reconstructed exactly, so that∫

fFDK(x, y, z) dz =
∫

f(x, y, z) dz (A.10)

We follow the proof in the appendix of the original article of Feldkamp, Davis,
and Kress (1984).

If we insert the projections of f(x) as written in (A.6) into (A.7) and take an
integral over z, we find that

∫
fFDK(x) dz =

∫ ∫ 2π

0

R2

(R + x · β)2

∫
gP (a − a′)

×
∫∫∫

f(x0)
R
√

R2 + a′2 + b2

(R + x0 · β)2
δ(a′ − R

x0 · β⊥

R + x0 · β )δ(b − z0R

R + x0 · β ) dx0dy0dz0

× R√
R2 + a′2 + b2

da′dβdz (A.11)

The dirac pulse fixates the integration over a′ which together with further simpli-
fication yields

∫
fFDK(x) dz =

∫ 2π

0

R2

(R + x · β)2

∫∫∫
gF (a − R

x0 · β⊥

R + x0 · β
)

× f(x0)
R2

(R + x0 · β)2

∫
δ(b − z0R

R + x0 · β
) dzdx0dy0dz0dβ (A.12)
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The final integral over z can be evaluated by inserting (A.9) as∫
δ(b − z0R

R + x0 · β ) dz =
∫

δ(z
R

R + x · β − z0R

R + x0 · β
) dz =

R + x · β
R

(A.13)

Equation (A.12) then simplifies to

∫
fFDK(x) dz =

∫∫∫
f(x0)

∫ 2π

0

R

(R + x · β)
gP (a − R

x0 · β⊥

R + x0 · β
)

× R2

(R + x0 · β)2
dβdx0dy0dz0 (A.14)

The integral over β describes the two-dimensional fan-beam filtered backprojec-
tion reconstruction of the point density 2δ(x − x0). For sufficient detector and
angular resolution, this reconstruction is exact. Equation A.14 thus reduces to∫

fFDK(x) dz =
∫∫∫

f(x0)δ(x − x0)δ(y − y0) dx0dy0dz0 =
∫

f(x) dz (A.15)

which completes the proof.

A.3 Slanted Filtering

Now assume that the filtering is performed along curves b = h(a, l). We then
parametrise our projection data over the curves, yielding

ph(β, a, l) = pF (β, a, b) b = h(a, l) l = h−1(a, b) (A.16)

The function h−1(a, b) is defined such that h(a, h−1(a, b)) = b and h−1(a, h(a, l)) =
l. The projection of the point density 3δ(x − x0) can then written as

ph(β, a, l) = pF (β, a, h(a, l))

=
R
√

R2 + a2 + h(a, l)2

(R + x0 · β)2
δ(a − R

x0 · β⊥

R + x0 · β )δ(h(a, l) − z0R

R + x0 · β )

=
1∣∣∂h

∂l (a, l)
∣∣ R
√

R2 + a2 + h(a, l)2

(R + x0 · β)2
δ(a − R

x0 · β⊥

R + x0 · β )δ(l − h−1(a,
z0R

R + x0 · β ))

(A.17)

The modified FDK algorithm performing ramp-filtering along the curves described
by h(a, l) is written as

fFDK-h(x) =
∫ 2π

0

R2

(R + x · β)2
×∫

gP (a − a′)ph(β, a′, l)
R√

R2 + a′2 + h(a, l)2
da′dβ (A.18)
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where

l = h−1(a′, b) = h−1(a′, z
R

R + x · β ) (A.19)

By inserting the projections (A.17) into (A.18) and simplifying as in (A.14) while
noting that ∫

δ(l − . . . ) dz =
1∣∣ ∂l
∂z

∣∣ =
1∣∣ ∂l

∂b
∂b
∂z

∣∣ =
∣∣∣∣∂h

∂l

∣∣∣∣ R + x · β
R

(A.20)

we obtain∫
fFDK-h(x) dz =

∫∫∫
1∣∣∣∂h

∂l (R
x0·β⊥

R+x0·β , z0R
R+x0·β )

∣∣∣f(x0)

×
∫ 2π

0

∣∣∣∣∣∂h

∂l
(R

x · β⊥

R + x · β
,

zR

R + x · β
)

∣∣∣∣∣ R

(R + x · β)
gP (a − R

x0 · β⊥

R + x0 · β
)

× R2

(R + x0 · β)2
dβdx0dy0dz0 (A.21)

The factors making (A.21) different from (A.14) will disappear if each projection
value is multiplied with ∂h

∂l (a, l) before ramp-filtering and divided with ∂h
∂l (a, l)

after ramp-filtering. The reconstruction will then preserve the line integrals in the
z-direction. The partial derivative ∂h

∂l (a, l) can be seen as the inverse density of the
filtering curves at detector position (a, l).





B

Phantom Definitions

B.1 The Sphere Clock Phantom

The sphere clock phantom is shown in Figure B.1. It consists of 12 spheres placed
on a helix of radius 0.8 and pitch 0.12 together with 12 smaller spheres placed on
a helix in the opposite direction of radius 0.5 and pitch 0.12. All spheres are of
density 1.0. The phantom parameters are given in Table B.1.

Figure B.1 The sphere clock phantom.
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cx cy cz r ρ

0.00 0.80 0.00 0.10 1.0
0.40 0.69 0.01 0.10 1.0
0.69 0.40 0.02 0.10 1.0
0.80 0.00 0.03 0.10 1.0
0.69 −0.40 0.04 0.10 1.0
0.40 −0.69 0.05 0.10 1.0
0.00 −0.80 0.06 0.10 1.0

−0.40 −0.69 0.07 0.10 1.0
−0.69 −0.40 0.08 0.10 1.0
−0.80 0.00 0.09 0.10 1.0
−0.69 0.40 0.10 0.10 1.0
−0.40 0.69 0.11 0.10 1.0

0.00 0.50 0.00 0.05 1.0
0.25 0.43 −0.01 0.05 1.0
0.43 0.25 −0.02 0.05 1.0
0.50 0.00 −0.03 0.05 1.0
0.43 −0.25 −0.04 0.05 1.0
0.25 −0.43 −0.05 0.05 1.0
0.00 −0.50 −0.06 0.05 1.0

−0.25 −0.43 −0.07 0.05 1.0
−0.43 −0.25 −0.08 0.05 1.0
−0.50 0.00 −0.09 0.05 1.0
−0.43 0.25 −0.10 0.05 1.0
−0.25 0.43 −0.11 0.05 1.0

Table B.1 The centres (cx, cy, cz), radii r, and densities ρ of the spheres of the
sphere clock phantom.
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Figure B.2 The three-dimensional Shepp-Logan phantom. The plane y = −0.25
is also drawn.

B.2 The Three-Dimensional Shepp-Logan Phantom

The three-dimensional Shepp-Logan phantom is defined by twelve of solid ellip-
soids shown in Figure B.2. The ellipsoids are constructed by transforming the
points within the unit sphere {(x, y, z)T |x2 + y2 + z2 ≤ 1} by scaling, rotation
around the y-axis, and translation as:

x′

y′

z′


 =


cosα 0 − sinα

0 1 0
sin α 0 cosα




rx 0 0

0 ry 0
0 0 rz




x

y

z


+


cx

cy

cz


 (B.1)

Table B.2 contains the parameter values. The densities ρ are additive.

B.3 The Voxelised Head Phantom

The voxelised head phantom is defined using a medical head data set of a sev-
erley deformed human child. The data set has been made available by Philips
Research Laboratory, Hamburg. It consists of 320 × 320 × 230 voxels of size
∆x = ∆y = 221

320 mm, and ∆z = 1.0 mm. In order to work with isotropic data,
we have squeezed the phantom in the z-direction in the experiments of this thesis
so that ∆x = ∆y = ∆z = 221

320 mm.
The voxel values are given in offset Hounsfield units such that air has the value

0 and water has the value 1000. We always place the greyscale window at the soft
tissue interval [980, 1080].
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rx ry rz cx cy cz α ρ

0.69 0.9 0.92 0.0 0.0 0.0 0.0◦ 2.0
0.6624 0.88 0.874 0.0 0.0 −0.0184 0.0◦ −0.98
0.41 0.21 0.16 −0.22 −0.25 0.0 72.0◦ −0.02
0.31 0.22 0.11 0.22 −0.25 0.0 −72.0◦ −0.02
0.21 0.35 0.25 0.0 −0.25 0.35 0.0◦ 0.01
0.046 0.046 0.046 0.0 −0.25 0.1 0.0◦ 0.01
0.046 0.02 0.023 −0.08 −0.25 −0.605 0.0◦ 0.01
0.046 0.02 0.023 0.06 −0.25 −0.605 90.0◦ 0.01
0.056 0.1 0.04 0.06 0.625 −0.105 90.0◦ 0.02
0.056 0.1 0.056 0.0 0.625 0.1 0.0◦ −0.02
0.046 0.046 0.046 0.0 −0.25 −0.1 0.0◦ 0.01
0.023 0.023 0.023 0.0 −0.25 −0.605 0.0◦ 0.01

Table B.2 The centres (cx, cy, cz), radii (rx, ry, rz), rotations α, and densities ρ

of the ellipsoids of the three-dimensional Shepp-Logan phantom.
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Notation

Symbols

Continuous Discrete Definition
Fan-beam projection angle β j p. 17

Fan-angle γ o p. 17

Parallel beam projection angle θ n p. 12

Parallel beam detector position t k p. 12

Position along a parallel ray v p. 16

Cone-angle κ p. 33

Vertical cylindrical detector position q m p. 33

Vertical PI-detector position s c p. 45

Slanted filtering lines l p. 49

Horizontal planar detector position a p. 32

Vertical planar detector position b p. 32

Source-pixel distance L p. 18

Projected source-pixel distance U p. 19

Radius of source trajectory R p. 17

Radius of reconstructable region RFOV p. 15
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Helical pitch P p. 78

Helical turn index λ p. 78

PI-detector extension n p. 121

Image space coordinates x, y, z i1, i2, i3 p. 15

Nutating plane tilt angle α p. 90

Projection direction vector φ p. 104

Functions

Equiangular fan-beam projection values p(β, γ) p. 17

Equidistant fan-beam projection values pF (β, a) p. 19

Parallel beam projection values pP (θ, t) p. 12

Projection values for the slice z = zimg pzimg(β, γ) p. 84

Cone-beam projection on cylindrical detector p(β, γ, q) p. 32

Cone-beam projection on planar detector pF (β, a, b) p. 32

Oblique parallel beam from planar detector pCP (θ, t, q) p. 43

Oblique parallel beam from cylindrical detector pFP (θ, t, b) p. 41

Oblique parallel beam projection values pP (θ, t, s) p. 102

Complementary projection values pC(β, γ, q) p. 88

Generalized projection data for the slice z = zimg pG
zimg

(θ, t, v) p. 97

Fan-beam ramp-filter g(γ) p. 18

Parallel beam ramp-filter gP (t) p. 15

Link values from unfiltered data I [n1, k1; n2, k2] p. 115

Link values from ramp-filtered data Ĩ [n1, k1; n2, k2] p. 25

z-position of source zS(β) p. 78

The base 2 logarithm lg n = 2log n

Dirac’s delta function δ(·)
Dirac’s two-dimensional delta function 2δ(·)
Dirac’s three-dimensional delta function 3δ(·)

Special notation

˜ The tilde indicates pre-weighted and filtered
projection data.

e.g. p̃(β, γ) p. 15

[ ] The brackets indicate a sampled signal. e.g. p[j, l] p. 14
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Acronyms

Advanced single-slice rebinning ASSR p. 92

FDK reconstruction from data within B B-FDK p. 82

Backprojection BP p. 13

Cone-beam short-scan rebinning CB-SSRB p. 88

Complementary filtered backprojection CFBP p. 94

FDK reconstruction on cylindical detector C-FDK p. 37

Computed tomography CT p. 1

Filtered backprojection FBP p. 13

Feldkamp, David and Kress reconstruction FDK p. 35

Field of view FOV p. 15

Hybrid tent FDK reconstruction HT-FDK p. 46

Incinsitent helical cone-beam algorithm IHCB p. 94

Multi-row Fourier reconstruction MFR p. 95

Multi-slice cone-beam filtered backprojection MS-CB-FBP p. 81

Modulation transfer function MTF p. 72

Pelles ingeneous method PI method p. 99

Region of interest ROI p. 81

Sequential FDK reconstruction S-FDK p. 46

Single-slice cone-beam filtered backprojection SS-CB-FBP p. 82

Short-scan FDK reconstruction SS-FDK p. 95

Tent FDK reconstruction T-FDK p. 45
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