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1 Introduction

Nondestructive analysis and visualization of three-dimensional microstructures of opaque specimens are
important in biomedical and material sciences and engineering. Due to its penetration ability and contrast
mechanism, X-ray microtomography is a powerful tool in this type of applications [Johnson et al., 1986,
Russ, 1988, Kinney et al., 1989, Cheng et al., 1991, Wang et al., 1991c, Kinney et al., 1990]. An X-ray
shadow projection microscope with a microtomography capability is being developed at the State Univer-
sity of New York at Buffalo (SUNY/Buffalo) [Cheng et al., 1991, Wang et al., 1994a]. As illustrated in
Figure 1-1, the X-ray microtomographic system at SUNY /Buffalo uses an X-ray point source generated by
a microfocused e-beam. This point source can be electro-magnetically steered across the target window in
a precisely controllable fashion. A specimen is mounted on a mechanical stage, which can be translated
and/or rotated under a programmable control unit. Projection data can be recorded on a cooled CCD
camera, transferred into a high-performance computing unit and reconstructed for cross-sectional or volu-
metric images as well as stereo-image pairs. As X-rays from a point source and through a spheric specimen
form a cone, this approach is commonly called cone-beam tomography.

Both transmission and emission tomography problems involve cone-beam geometry. The primary ad-
vantages for use of divergent cone-beams include reduced data acquisition time, improved image resolution,
and optimized photon utilization. Examples in X-ray medical imaging are the Dynamic Spatial Reconstruc-
tor developed at the Mayo Clinic to investigate the heart and lungs [Robb, 1985], the TRIDIMOS project
to measure the bone mineral content of lumbar vertebrae [Grangeat, 1989], the MORPHOMETRE project
to image vessel trees and bone structures [Saint-Felix et al., 1990], a microtomographic imaging system to
study small objects like biopsies [Morton et al., 1990], and a cone-beam imaging system for angiography
[Saint-Félix et al., 1994]. Examples in nuclear medical imaging include development of cone-beam collima-
tors used with large gamma cameras to image a small region of interest like the brain [Jaszczak et al., 1988]
and the heart [Gullberg et al., 1991]. In industrial imaging, cone-beam scanners are used for nondestructive
evaluation of metal parts and ceramic materials [Feldkamp et al., 1984, Vickers et al., 1989].

There are unique challenges that must be met in cone-beam X-ray microtomography. First, the con-
ventional assumption of the spheric reconstruction region may not be true, because spheric, rod-shaped
and planar specimens are all typical in reality. Second, specimen free rotation and projection complete
detection may not be always physically implementable due to the hardware limitations. Third, the me-
chanical errors in the specimen rotation is substantial compared to the image resolution in the order of
1 micron. The accurate measurement and calibration of the rotation axis position is complicated and
time-consuming.

Due to the three-dimensional divergency, reconstruction with cone-beam data is much more intricate
than in parallel-beam or fan-beam geometry. Having been studied for many years, it is still a major
topic in computed tomography (CT). As far as the general principles of CT is concerned, an excellent
description can be found in [Russ, 1995], practical algorithms with detailed derivations in [Herman, 1980,
Kak and Slaney, 1987], and a rigorous mathematical treatment in [Natterer, 1986]. Cone-beam reconstruc-
tion algorithms may be classified from various viewpoints, such as exactness, efliciency, scanning pattern,
reconstruction region, and so on. Cone-beam tomography was reviewed by Grangeat [Grangeat, 1990],
Smith [Smith, 1990] and Gullberg, et al. [Gullberg et al., 1992], respectively. In this text, we classify ex-
isting cone-beam algorithms in two categories: exact and approximate. With an emphasis on cone-beam
X-ray microtomography, the current state of development in exact and approximate cone-beam algorithms
is reviewed, and connections between exact and approximate reconstruction discussed.



2 Exact Reconstruction

Kirillov developed a formula for reconstruction of a complex valued n-dimensional function from complex
valued cone-beam projection data [Kirillov, 1961]. It was shown that a sufficient condition for reconstruc-
tion in the Schwarts space is that an unbounded source point locus intersects almost every hyperplane. The
complex valued cone-beam formulation cannot be directly used in reality. Consequently, the real valued
cone-beam tomography theory was developed based on Kirillov’s original work.

2.1 Sufficient Condition

It seems that Smith first realized the practical importance of Kirillov’s work. He rewrote Kirillov’s work
for one-dimensional line integrals in the n-dimensional real space and developed an inversion formula for
an infinitely long source point scanning line [Smith, 1983]. Tuy [Tuy, 1983] derived a formula for recon-
struction of a real function with a compact support under the condition that almost every hyperplane
through the function support meets a source locus transversely. Tuy established a cone-beam reconstruc-
tion formula for two intersecting source circles. His formula requires a gradient be computed at each
vertex. Thorough theoretical analyses on cone-beam reconstruction were done by Smith and Grangeat
[Smith, 1987, Smith, 1985b, Grangeat, 1987, Grangeat, 1990]. Due to their foundmental work, we have
the following sufficient condition for exact cone-beam reconstruction: “if on every plane that intersects the
object there exists at least one cone-beam source point, then one can reconstruct the object” [Smith, 1985b]
(Figure 1-2). It is interesting to recall that if on every straight line that intersects the object there exists
at least one fan-beam source point, then one can reconstruct the object.

Grangeat’s derivation of the above sufficient condition gave a clearer geometrical picture. His work was
reformulated by Danielsson and Axelsson [Danielsson, 1992, Axelsson, 1994]. The key idea for obtaining
the sufficient condition may be simply explained with help of Figure 1-3. In Figure 1-3, a Radon shell is
defined with SO as the diameter, where S and O denote a source position and the reconstruction system
origin, respectively. Consider a point pii on the Radon shell, Radon and X-ray transforms of the plane
perpendicular to the shown great circle and through the point pi@ can be expressed as follows:

Rty = [ [ £, v, pyrdrds, (1)
and
X(pit,) = [ Fpir, 3)ir (2)

If R(p7, 3) is known everywhere, a Radon inversion can be done. However, it is X (pf, 3) that is directly
measurable. The essential difference between R(p7) and X (pf, §) is the multiplicative factor r in R(pf).
If the undesired r is somehow removed, X (pi, 5) will be linked to R(pii). Fortunately, this can be achieved
as follows:

d d
TR = /] T, Byrdrds
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cos 3
d [ X(pfi, §)
da / cos f3 @ (3)

Note that the differential relationship dp = rcos da plays a critical role in relating R(p@) to X (p#, ).
Therefore, there must be at least one source position on the plane through pii to compute the radial



derivative of R(pf) in the above manner. This immediately leads to the sufficient condition for exact
cone-beam reconstruction.

Chen proposed a theoretical framework for regional cone-beam reconstruction by extending Smith’s
work [Chen, 1992]. He defined the concept of the planar region of an object as intersection of a set of
planes and the object support, proved that if a source curve is connected and compact, and if its convex
hull contains a planar region, then the cone-beam data from the source curve is complete with respect to
the planar region, and established an estimation formula for regional reconstruction and a convergence
condition for the formula. However, his formula requires “full angle cone-beam” data, instead of truncated
cone-beam data.

2.2 Exact Algorithms

Various exact cone-beam reconstruction algorithms have been implemented according to Grangeat’s frame-
work [Grangeat, 1987, Grangeat, 1990, Sire et al., 1990, Defrise and Clack, 1994, Kudo and Saito, 1994,
Clack et al., 1991, Danielsson, 1992, Axelsson, 1994, Axelsson and Danielsson, 1994, Hu, 1995], Smith’s
theory [Smith and Chen, 1992, Weng et al., 1993, Zheng and Gullberg, 1992] and Tuy’s method

[Zeng et al., 1994], respectively. Among these implementations, Axelsson and Danielsson’s direct Fourier
transform method is computationally the most efficient for a sufficiently large amount of data. The Axels-
son and Danielsson method may be regarded as a major refinement of the Grangeat method.

The Grangeat method consists of two parts, which are illustrated in Figure 1-4. In the first part, the
radial derivative of planar integrals are computed, according to the relationship between the radial deriva-
tive of Radon data and the line integral of cone-beam data. The results are distributed on “Radon shells”
determined by a scanning locus. If the scanning locus is complete, the Radon space can be completely
filled. In the second part, these Radon data are inverted. Although the direct filtered backprojection
formula may be applied with the three-dimensional Radon data, the computational complexity is O(N?).
With the Marr method [Marr et al., 1981], the three-dimensional Radon inversion is decomposed into two
steps. First, three-dimensional Radon data are interpolated to vertical planes, and two-dimensional re-
construction is done for each vertical plane. As a result, three-dimensional Radon data are transformed
into two-dimensional Radon data associated with the vertical planes. Data in the vertical planes are then
grouped into data in horizontal planes, and two-dimensional reconstruction is performed for each of the
horizontal planes for volumetric image reconstruction. Line integral and backprojection in the Grangeat
method are most time-consuming. The computational complexity of the Grangeat method is O(N*?).

The Axelsson and Danielsson method reduces the complexity of the Grangeat method to O(N?log V).
The reduction was made through adapting the linogram method [Edholm and Herman, 1987].

The idea of the linogram method and its inverse version can be explained as follows. The motiva-
tion was to apply the Fourier transform with one-dimensional projection profiles to produce equidistant
samples along concentric squares in the two-dimensional Fourier domain so that these samples can be
one-dimensionally interpolated into samples on a squared grid. Fourier spectrum on the regular grid can
be directly inverted to recover the image. The desired linogram sampling pattern in the Fourier domain
requires that the projection profile sampling step and the projection angular increment vary appropriately.
In the direct application, linogram sampled projection data are the input, and an image reconstructed
on a square grid is the output. On the other hand, the linogram method can be employed in reverse to
input an image discretized on a square grid, and output linogram-sampled projection data. Actually, the
one-dimensional interpolation can be eliminated by using the chirp z-transform.



Axelsson and Danielsson modified the conventional linogram method and applied it in the Grangeat
method, as illustrated in Figure 1-5. To obtain linogram-sampled two-dimensional Radon data in the hor-
izontal planes, the reconstructed two-dimensional Radon data in the vertical planes should be distributed
on appropriate rectangular grids, and the angular increment between adjacent vertical planes properly
varied. The desired Radon data on the rectangular grids can be produced from the correspondingly
linogram-sampled Fourier spectrum of three-dimensional Radon data in the same vertical planes. The
linogram-sampled Fourier spectrum should be radially computed. These requirements determine sampling
patterns in the three-dimensional Radon space. Alternatively, instead of the reconstruction of horizontal
and vertical planes, a direct 3D linogram method can be used to produce the same image quality at less
computational time.

Exact cone-beam reconstruction with spheric scanning is also interesting. The traditional convolution-
backprojection approach was employed for direct reconstruction in the 47 geometry [Nalcioglu and Cho, 1978,
Denton et al., 1979, Smith et al., 1980, Smith, 1982, Imiya and Ogawa, 1984, Peyrin, 1985]. Recently, Cho
et al. proposed a weighted backprojection algorithm for truncated spherical source coverage [Cho et al., 1994].
The key issue is how to weight cone-beam data appropriately so that three-dimensional backprojection of
them produces a blurred image that can be modeled as a convolution of the ideal image and a kernel.
The blurred image is then filtered to recover the truth. The surface scanning mode may be also useful in
cone-beam microtomography.

3 Approximate Reconstruction

Feldkamp et al. [Feldkamp et al., 1984] adapted the conventional equispatial fan-beam algorithm for cone-
beam reconstruction with a circular scanning locus. In the Feldkamp algorithm, cone-beam projection
data from different angles are filtered and back-projected along X-rays after voxel-to-source distance and
angular differential are properly modified. The value of a voxel is the sum of contributions from all hor-
izontally tilted fan-beams passing through the voxel. Since its publication, the Feldkamp algorithm has
been extended in various ways for approximate reconstruction [Gullberg et al., 1991, Wang et al., 1991c,
Kudo and Saito, 1991, Gullberg and Zeng, 1992, Smith, 1990, Wang et al., 1993b, Yan and Leahy, 1992].
Because our generalized Feldkamp algorithm [Wang et al., 1991c, Wang et al., 1993b] was specifically de-
signed for cone-beam X-ray microtomography, it is focused on in this chapter.

3.1 Why Approximate Reconstruction

Despite elegant results in exact cone-beam reconstruction, approximate cone-beam formulas remain prac-
tically important in cone-beam X-ray microtomography. The advantages of approximate cone-beam re-
construction are as follows. First, incomplete scanning loci are allowed. The sufficient condition for exact
reconstruction requires that there exist at least a source position on any plane intersecting an object.
This condition cannot be satisfied in cone-beam X-ray microtomography when polygonal or dashed-line
helical scanning loci are used [Wang et al., 1993b]. Second, partial detection coverage does not cause a
problem. In cone-beam reconstruction discussed in the preceding section, the cone-beam was assumed to
cover the entire object from any source position. Unlike emission tomography, complete detection coverage
is impossible in cone-beam X-ray microtomography, since specimens are often either rod-shaped or planar
instead of spheric. Third, computational efficiency is high. Because of the second advantage, approximate
reconstruction involves much less raw data, especially in reconstruction of rod-shaped and planar speci-
mens. The computational structure of Feldkamp-type reconstruction is straightforward, highly parallel,
and hardware supported. Feldkamp-type formulas are particularly fast in reconstructing a limited number



of slices or small regions of interest. The linogram idea used in exact Fourier cone-beam reconstruction
might also be adapted to Feldkamp-type reconstruction. Fourth, image noise and ringing artifacts are less.
It was found that exact cone-beam reconstruction with the direct Fourier method produces more ringing
as compared to the Feldkamp method [Axelsson and Danielsson, 1994]. We hypothesize that this might
be inherent to all exact cone-beam reconstruction formulas that filter data two-dimensionally. Further
evaluation and comparison would be valuable.

3.2 Derivative-Free Non-Circular Fan-Beam Algorithm

The circular equispatial fan-beam reconstruction formula is well known [Kak and Slaney, 1987]:

g, y) = %/0% ﬁ/_o:o)((@p)r (pp_ts —p) ﬁdpd@ (4)

where p is a constant source-to-origin distance, X (3, p) represents equispatial fan-beam projection data,

t = xcosf+ ysinf,
s = —xsinf+ ycospg,

(5)
where 3 is the rotation angle, and

r(p) = /:: | w | 2P . (6)

In a non-circular scanning case, the source-to-origin distance is a function of the rotation angle, denoted
as p(f3), 3 € [0,27). Summing up differential contributions from each source position based on the circular
equispatial fan-beam reconstruction formula, we intuitively obtain a non-circular fan-beam reconstruction
formula as follows:

o= [ [ 3 () A

The difference between our non—cu’cular fan-beam formula and the circular one lies in the definition of p.
p is a constant in the former and a function in the latter.

Under the following regular conditions that

L p(8) = pl(B+7);

2. p'(P) exists almost everywhere;

3. p%(B) > p'(B)pm, where p,, is the minimum value such that X (3,p) =0, if | p |> pu.

we proved this non-circular fan-beam reconstruction formula [Wang et al., 1993a]. Actually, it is not
difficult to satisfy the third condition in practice, because in general p(f3) is greater than p,, and p'(3) is
not very large.

Compared to other non-circular formulae [Weinstein, 1980, Smith, 1985a, Gullberg and Zeng, 1992],
the above fan-beam formula requires no derivative of a scanning locus with respect to the rotation angle.
In X-ray microtomography, a scanning locus contains substantial random interferences introduced by the
mechanical motion of the specimen stage [Wang et al., 1993b, Wang et al., 1992¢, Lin et al., 1992]. As
a result, a precise estimation of the derivative of the scanning locus is difficult. On the other hand,
the scanning locus in cone-beam X-ray microtomography can be made to meet our three conditions
[Wang et al., 1993b, Wang et al., 1992¢, Lin et al., 1992]. With our derivative-free non-circular fan-beam
formula, reconstruction will not be affected by the error in estimating the derivative.



3.3 Generalized Feldkamp Algorithm

For cone-beam X-ray microtomography, the Feldkamp algorithm is limited by circular scanning, spherical
specimen reconstruction and longitudinal image blurring. As part of the development of a cone-beam
X-ray microtomographic system at SUNY/Buffalo, the Feldkamp cone-beam algorithm was extended to
allow flexible scanning loci, reconstruct spheric, rod-shaped and planar specimens, and facilitate near
real-time implementation [Wang et al., 1991c, Wang et al., 1991b, Wang et al., 1994a, Wang et al., 1993b,
Wang et al., 1993a, Wang et al., 1992b, Wang et al., 1992a]. In this subsection, the generalized Feldkamp
algorithm will be derived via appropriately correcting projection data of a point object.

Systems and variables are illustrated In Figure 1-6. A specimen s(Z) is supported in the cylindrical
region 22 + %2 < 1. A scanning locus is described as qg(ﬁ) = (p(B) cos B, p(B) sin 3, 2(3))", p(B) > 1,
[ is the X-ray source rotation angle around the z axis counterclockwise. Cone-beam projection data
X(p,¢,B),or X(d&,f3), are recorded on an imaginary detector plane passing through the z axis and facing
the X-ray source, where p and ( are horizontal and longitudinal coordinates of the detector plane, and
a = (g, oy, )" specifies the direction of an X-ray. Evidently,

X(@0)= [ S0+ i )
For convenience, define .
X(@.0) = X (@0 = [ (60 + (9)

Let §(Z — &) model a three-dimensional point object located at Zp, we have
K@) = [ 88 +1a - o)
— / 5(td — do)dt, (10)

— 00

where dg = &y — qg(ﬁ) Using the matrix M that makes a rotation around the z axis such that the X-ray
source position is longitudinally projected on the rotated y axis,

)N(g(o_é,ﬂ):/ S(M (18 — o)), (11)

where @ and @, are in rotated coordinates. Since M is unitary and &y, # 0 (the source is outside the

reconstruction region),

Xs(@. ) = /OO 5(t6 — do)dt
_ /OO 5 (b — Gou) (16, — doy)8(tas — do.)di
. d | N de ~ ~ dOz ~
— dg/y Sy — B0y Gy )8 (6, — doyay). (12)
Therefore,
X5 (0,6 08) = @1 Xs(&,8) la,mpymp(p)omc
| Pranzczz [ AR
= [@gy ] [ 5 (p Aoyp(ﬁ)) (¢ doyp(ﬁ)) : (13)



Geometrically, the first factor magnifies the point object, the second factor is due to the angle between
the X-ray ray passing through &y and the normal of the p-¢ plane, and offsets in § functions describe the
projected point object position in the detector plane.

Longitudinally projecting a scanning locus turn qg(ﬁ), 8 e [ 27 + ¢) where ¢ is a constant, onto the
z = zg plane, we have a scanning locus in the z = z; plane: ¢*( ) = (p(B) cos 3, p(3) sin B, 29)". Clearly,
fan-beam data of the § function in the z = zy plane are:

Xi(p.0.9) = [”Q@H ”iﬁfﬂ))ﬂ?] [&p—%p(ﬂ))é(m . (1)

Comparing Equations (13) with (14), we observe that exact fan-beam data X*(p,0, 3) can be obtained by
multiplying the horizontal profile of cone-beam projection X (p, (, 3), where ( is the longitudinal coordinate
P2 (B)+p?

P2 (B)+p2+¢2

of the projected §(Z — Zp) in the detector plane, with the cosine of the X-ray tilting angle,

For either a point object or an arbitrary specimen, applying the derivative-free non-circular fan-beam
reconstruction formula with X*(p, 0, 5) will produce exact reconstruction on the z = zy plane. However,
X*(p,0,3) cannot be directly measured in general. Alternatively, we can use the same fan-beam formula
with approximate in-plane projection data for approximate reconstruction. Approximating the in-plane
fan-beam data using the above cosine correction scheme, we obtain our generalized Feldkamp formula:

g(z,y,2) = 2/27r /OO (p(pﬁ(;)%—p)

p(B)
VP2(B) + p? + 2 7, 15)

where ( = 7’)(535;)_59)).

Clearly, the essential step in our generalized Feldkamp cone-beam reconstruction is to correct cone-
beam projection data so as to achieve exact transaxial reconstruction for any ¢ function. Correction is done
by multiplying cone-beam data with the cosine of the X-ray tilting angle (Figure 1-7). Consequently, this
generalized Feldkamp reconstruction is formulated in two steps: (1) cone-beam to fan-beam data conversion
and (2) fan-beam reconstruction. It might appear that p’(3) and h’(3) should have been included in the
generalized Feldkamp algorithm, similar to what was done by Gullberg et al. [Gullberg et al., 1991], Yan
and Leahy [Yan and Leahy, 1992]. However, it is not necessarily so. Actually, certain corrective action
has been taken by incorporating functions p(5) and h(3) into the generalized Feldkamp algorithm. These
two functions of the rotation angle 3 completely describe the source motion. Absence of the derivative
of a scanning locus in the generalized Feldkamp algorithm is advantageous in terms of sensitivity to noise

[Wang et al., 1995].

Our derivative-free non-circular fan-beam formula utilizes full-scan data, which consist of two complete
projection data sets. Actually, fan-beam reconstruction can also be performed with either half-scan or
double full-scan projection data. Accordingly, half-scan and double-helix-scan cone-beam algorithms were
formulated [Wang et al., 1994b]. The above discussion with one scanning turn can be extended to half-
and double-helix-scan cases, respectively. In the half-scan case, the angular range involved in a transaxial
slice reconstruction is substantially reduced. As a result, half-scan cone-beam reconstruction may improve
longitudinal /temporal resolution. In the double-helix-scan case, a transaxial slice is reconstructed with
cosine-corrected and linearly combined projection data from twins of scanning turns. The double-helix-
scan cone-beam reconstruction is exact for a specimen with linear longitudinal variation.



In practice, many specimens are rather plate-shaped, such as typical thick film sections. Tomographic
reconstruction of a plate-like specimen is an incomplete data problem. Interestingly, the generalized Feld-
kamp algorithm can be applied to reconstruct plate-like specimens, as illustrated in Figure 1-8. A circular
scanning locus of the X-ray source is made by steering the e-beam on the target window. A plate-like
specimen or thick film is placed parallel to the scanning plane. The relative position of the window and
the specimen is so arranged that the normal at the center of the scanning circle intersects the center of an
area of interest of the specimen. This normal is labeled the principal axis. The locus should be made sub-
stantially larger than the area. The detector plane is in parallel behind the specimen, and two-dimensional
projection data are recorded for each source position. After each frame of the projection data is mapped
onto the imaginary detector plane that faces the X-ray source and contains the principal axis, generalized
Feldkamp reconstruction can be done [Wang et al.; 1991a, Wang et al., 1992a].

4 Between Exact and Approximate Reconstruction

In this section, relationship between exact and approximate cone-beam reconstruction algorithms will be
studied. We will not only review the aspects that exact methods can be used for approximate reconstruc-
tion, but also describe our results that the generalized Feldkamp algorithm can be extended for exact
stereo-imaging and exact image reconstruction.

4.1 Exact Reconstruction to Approximate Reconstruction

Clearly, both the Smith algorithm and the Grangeat algorithm can be used for approximate reconstruction
if missing data in the Radon space are filled via interpolation and extrapolation. The optimal computational
strategy remains an important open question. Smith demonstrated the equivalence between the Feldkamp
algorithm and the one he suggested [Smith, 1985b]. Applying the Grangeat method, cone-beam data
from a circular orbit for which the Feldkamp algorithm was designed can be converted into data in a
torus shaped region in the 3D Radon space. It was established that the exact algorithms are equivalent
to the Feldkamp algorithm if the redundancy function is set to 2 over the torus region and 0 outside
[Grangeat, 1991, Defrise and Clack, 1994, Kudo and Saito, 1994].

Hu reformulated the Grangeat algorithm for circular scanning [Hu, 1994a]. He showed that an actual
image f(Z) can be decomposed into three terms:

f(@) = o (2) + fan, (7) + S (T), (16)

where far, (&) corresponds to the Feldkamp reconstruction, fas, (£) represents the information derivable
from the circular scan but not utilized in the Feldkamp algorithm, and fn (%) is due to the incompleteness
of the circular geometry.

The additional term fas, (%) appears to contradict the conventional wisdom. An explanation was
provided as follows [Hu, 1994b]: “For the circular orbit, the assumption that the redundancy function equals
2 is correct only for the points inside the torus region. It is incorrect for those points on the boundary of
the torus region where the redundancy function equals 1. Consequently, Feldkamp’s algorithm correctly
represents the contribution of the points inside the torus region, but incorrectly represents the contribution
from the points on the boundary of the torus region.”



4.2 Approximate Reconstruction to Exact Reconstruction

In practice, a whole reconstructed volumetric image may not be directly useful, several stereo image pairs
are often sufficient for extraction of structural information. Usually, orthogonal projections are preferred
for stereo observation. Stereo-imaging may be directly achieved via synthesis of stereograms from cone-
beam data. Our studies on cone-beam stereo-imaging led to the rediscovery of the sufficient condition for
exact reconstruction.

4.2.1 Stereo-Imaging

Stereograms can be approximately computed directly from cone-beam projections based on our generalized
Feldkamp algorithm. A formula for approximate stereogram synthesis was derived [Lin et al., 1993]. For
brevity, the approximate formula will not be given here. Instead, a geometrical explanation about its
computational structure is offered as follows. First, every two-dimensional frame of cone-beam data are
independently filtered as required by the generalized Feldkamp algorithm. Then, the filtered data are
integrated with a weighting kernel along a straight line in the detector plane for each source position. The
straight line is obtained by projecting a parallel-beam ray of interest onto the corresponding detector plane.
Finally, all the integral values are summed up to obtain the two-dimensional parallel-beam projection value
along the ray of interest. In the following, we will explain exact stereo-imaging from cone-beam data.

Based on the heuristic derivation of the generalized Feldkamp algorithm given in the preceding section,
it can be visualized that the longitudinal integral of the spatially variant point spread function (PSF) of the
generalized Feldkamp reconstruction is a spatially invariant & function. This can be appreciated as follows.
First, the cosine correction produces exact fan-beam projection data in any transaxial plane where a point
object is located. With the cosine-corrected projection data and appropriate fan-beam reconstruction, the
exact in-plane reconstruction can be achieved. Second, reconstruction errors occur out of the plane, where
contributions from individual projection profiles cannot be cancelled out due to mis-alignment of the tilted
fan-beams. Third, cancellation of “off-focus” errors can be implemented through a longitudinal integral.

Although the generalized Feldkamp algorithm is approximate, using the exactness property of the
longitudinal integral of the PSF it can be proven that the longitudinal integral of a reconstructed volumetric
image is equal to that of the actual image, assuming spheric specimen support and complete detection
coverage. Mathematically, a reconstructed image ¢(z,y,z) can be expressed in terms of the spatially
varying PSF h(z,y, z):

g(z,y, 2) / / / (u, v, w)h(z,y, z;u, v,w)dudvdw

where f(xz,y, z) represents the actual image. Therefore,

/_O:Og(w,%z)dz = / / / (u,v,w [/_O:o h(z,y, z;u, v, w)dz| dudvdw
= / / / (u, v, w)d(x — u)d(y — v)dudvdw

= /Oo flz,y,w)dw

— 00



(18)

The same fact was previously established via lengthy derivation [Feldkamp et al., 1984, Wang et al., 1992b].
Note that the longitudinal integral is the two-dimensional parallel-beam projection along the longitudinal
axis.

With arguments similar to those used in derivation of the generalized Feldkamp algorithm in the re-
construction system z-y-z, cone-beam reconstruction can also be achieved via correcting cone-beam data
to fan-beam data of a transaxial plane in a rotated reconstruction system z’-y’-z’ under the condition
that part of the projected scanning locus allows exact fan-beam reconstruction of the projected specimen
support, the projection direction being defined by the normal of the 2z’ axis (Figure 1-9). In this setting,
it can be proven in the same way that the integral of the generalized Feldkamp reconstruction along the 2’
axis is exact. That is, an exact two-dimensional parallel projection can be synthesized along the tilted lon-
gitudinal axis [Wang and Cheng, 1995a, Wang and Cheng, 1995b]. This finding updated our approximate
stereo-imaging formula [Lin et al., 1993].

Elliptical or polygonal scanning turns, which are typical in our applications, essentially remain the
shape after projection. In other words, scanning turns of both types will still satisfy the regular conditions
in the rotated reconstruction system when projected onto the 2’-y’ plane. Hence, the generalized Feldkamp
algorithm can be applied to reconstruct an image in the system z’-y’-z’ if cone-beam data are corrected onto
the new imaginary detector plane passing through the 2z’ axis. If a projected scanning locus does not satisfy
the regular conditions, Feldkamp-type reconstruction can still be performed using an appropriate fan-beam
reconstruction formula as long as the projected scanning locus meets the condition for exact fan-beam
reconstruction. Note that exact two-dimensional parallel-beam projections may be directly reconstructed
from longitudinally integrated cosine-corrected cone-beam data.

4.2.2 Sufficient Condition: Revisited

If a sufficient amount of exact two-dimensional parallel projection data is available, exact three-dimensional
image reconstruction can be performed. Therefore, a new sufficient condition for exact cone-beam re-
construction [Wang and Cheng, 1995b] can be stated as: If for every projection direction, the projected
scanning locus is complete for exact reconstruction on the projected object support. Our sufficient condition
is equivalent to the conventional sufficient condition. If our sufficient condition is satisfied, then for any
projection direction the projected scanning locus is complete, and there exists the family of all the planes
parallel to the projection direction and containing at least one source position. That is, the traditional
sufficient condition is also satisfied. If our sufficient condition is not satisfied, there is a projection direction
along which the projected scanning locus is incomplete, and there is at least one plane that contains no
source points. This plane corresponds to a line that intersects the projected specimen support but meets no
projected source points. That is, the traditional sufficient condition is violated. Actually, the requirement
of “every projection direction” in our sufficient condition may be relaxed to a set of directional vectors
spanning a semi-circle.

Our finding is a bridge from approximate to exact cone-beam reconstruction. In other words, with an
incomplete scanning locus, only part of exact two-dimensional parallel-beam projections can be synthesized;
with a complete scanning locus, all of exact two-dimensional parallel-beam projections can be computed,
hence exact three-dimensional reconstruction can be done.
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5 Discussion and Conclusion

In our applications, both exact and approximate algorithms are useful. Although exact reconstruction is
ideal, approximation cannot be avoided given the hardware limitations. Even if both exact and approximate
reconstruction algorithms are applicable, a choice among them can only be made case by case. Detailed
comparison is beyond the scope of this text. As an example, Figure 1-10 gives typical slices of the three-
dimensional Shepp and Logan phantom, corresponding slices reconstructed using the Feldkamp algorithm
with two parallel scanning circles, the generalized Feldkamp algorithm with two helical scanning turns,
and the direct three-dimensional Fourier algorithm with two orthogonal scanning circles, respectively. As
illustrated in Figure 1-10, compared to exact reconstruction, approximate reconstruction may produce
better image sharpness but at the same time may suffer from less image uniformity.

Cone-beam X-ray microtomography is still an active area. Promising directions include refinement of
exact and approximate algorithms, extension of cone-beam theory and techniques to address incomplete
detection coverage.

In the context of cone-beam X-ray microtomography, we have discussed exact and approximate cone-
beam reconstruction as well as their relationships. Especially, we have described approximate and exact
methods for orthogonal stereo-imaging from cone-beam data, and identified a link from approximate recon-
struction to exact reconstruction, which led to rediscovery of the sufficient condition for exact cone-beam
reconstruction.
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