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Recently, Katsevich proved a filtered backprojection formula for exact image reconstruction from
cone-beam data along a helical scanning locus, which is an important breakthrough since 1991
when the spiral cone-beam scanning mode was proposed. In this paper, we prove a generalized
Katsevich’s formula for exact image reconstruction from cone-beam data collected along a rather
flexible curve. We will also give a general condition on filtering directions. Based on this condition,
we suggest a natural choice of filtering directions, which is more convenient than Katsevich’s
choice and can be applied to general scanning curves. In the derivation, we use analytical tech-
nigues instead of geometric arguments. As a result, we do not need the uniqueness of the PI lines.
In fact, our formula can be used to reconstruct images on any chord as long as a scanning curve
runs from one endpoint of the chord to the other endpoint. This can be considered as a generali-
zation of Orlov’s classical theorem. Specifically, our formula can be applied) toonstandard

spirals of variable radii and pitchéwith PI- or n-Pl-windows, and(ii) saddlelike curves. €005
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I. INTRODUCTION missible filtering directions. In the next section, we introduce
ecessary notations. In the third section, we prove a gener-
lized Katsevich formula, avoiding the use of complicated

geometric arguments KatsevicH,and Zou and Pah? ex-

tensively used. By doing so, we obtain a filtered backprojec-
gion formula for exact image reconstruction from cone-beam

ject problem in the case of standard and nonstandard spirgfita_ along a general scanning curve. Our formul_a can also be
cone-beam scans. However, their algorithms are of th@Pplied to nonstandard spira@ith PI- or n-Pl-windows,
Feldkamp-type and only produce approximate results. Sinc@‘fﬂddle“ke curves, and so on, and may be considered as an-
then, much progress has been made in the area of spir }her gengrallzatlon of thg Orlov theoréfnin the last sec-
cone-beam CT. During the past two years, Katsevich devellOn: we discuss relevant issues and conclude the paper.
oped an exact filtered backprojection formula for standard

helical cone-beam scafs, which is a guantum leap relative 1. NOTATIONS AND THE MAIN THEOREM

: : —10 12
to the earlier a'9°“thm§_- Recently, Zou and P& The main setting for our formula is a general smooth
proved an exact backprojected filtration formula as a COUNgyrvey(s) for s,<s<s, and a chord connecting the end-

terpart of the Katse\{lch formul?]. Then, Katsevigthal.™ as pointsy(s,) andy(s) of the curve. Lei be an interior point
well as Zou, Pan, Xia, and Wahlextended these formulas ¢, ¢ Clearly, this setting covers standard or nonstandard

to spirals with variable pitches. _ spirals with PI- om-PI lines, standard or nonstandard saddle
A generalization of Zou and Pan’s exact reconstruction.ryes. and many other cases.

formtljéa to a smooth scanning curve was proved by Ye pqjowing Katsevich’s conventioh, denote by Ip(x)

et al._ This generalized formula is still in the backprOJec_ted =[s,,5] the parametric interval, and by

filtration format, and can be applied to nonstandard spirals, .

saddle-like curvesn-Pl-window scans, and other cases. As _ 2

such, it can be regarded as a generalization of the Orlov Df(y’®)_f0 fly+t@)d, O €S,

theorent® to the cone-beam scanning geometry. Another

proof of our generalized formula was also given by Zleao the cone-beam data, wheg s the unit sphere. Let

al.,'” which is in the Tuy framework. X - y(9)
The main purpose of this paper is to provide a proof of the  B(s,X) = m

Katsevich formula for a general cone-beam scanning geom- y

etry, and to give explicitly a filtering direction applicable to be the unit vector pointing towand from y(s), ande(s,x) a

arbitrary scanning curves, together with a condition for ad-unit vector perpendicular toB(s,x). In the work by

The recent development of medical computed tomograph
(CT) techniques, such as bolus-chasing angiogrjapmd
electron-beam micro-C'('EBMC'I'),2 requires more flexible
scanning curves for cone-beam CT. In 1991, Webal>*
proposed a spiral cone-beam algorithm to solve the long o

(2.2)

Se |p|(X), (22)
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Katsevich~’ e(s, x) is selected in an explicit way. However, [ g
in the following we first request tha(s,x) be any unit vec- %Df[Y(Q),@)(S,X,y)]
tor perpendicular tg8(s,x). Then, we give an admissible

g=s

condition fore(s,x) and make a natural choice efs,x). It _ Jm d
. . i = —f +
will become clear later on that Katseviclegs, X) in the stan- o d V(@ +10(sx,7)] q:sdt
dard helical scanning case is a different choice but it indeed .
satisfies our admissible condition. Hence, a filtering direction  _ ﬁf F(p)@@mrY@+0sxlgy | gt (3.2)
can be expressed by 0 _
g=s
O(s,X, ) = cosyB(s,X) + siny &(s,X). (2.3 by Fourier’s inversion formula. We take the derivative under

the inner integral to obtain
Theorem 2.1.Let f(x) be a function of compact support

whose fifth partial derivatives are absolutely integrable in

R3. Lete(s,x) be a unit vector satisfying conditiai3.25) for (Iqu[y(q),(E)(s,x,y)])
anyse (s,,8) andx € R3, or simply sete(s,x) to be a unit .

vector in the plane determined bg and x-y(s) with - 27riJ dtf (V _ w>F(V)ezwiv-[y(s)+t®(s,x,y)]dv_
e(s,x) - [y(s)-y(s,)]>0. Then R ds

g=s

2@ (33)
f —
)= f oo XY y(s)| f . Therefore,
d 1 ds T\ dy (”
XDy [y(0).©(8,X, ) qms = (2.9) RHS :—f —(ij >_ Y J dt

sinvy l Ipi(X) |X - Y(3)| 0 SinyJo
See Sec. IV for a detailed explanation of conditi8r25). dy(s) ©
The choice of(s,x) in Theorem 2.1 means that the filtering X f ds F(p)e?m vy

R

plane as defined by E¢2.3) contains boti andx-y(s) for
any source poiny(s). Xezwiv-[t cosy O(sx,y)+t sin 76(S’X)]dv.

The assumption of integrable fifth partial derivatives is .
much weaker than the usual condition requesfiag being  If we write
smooth, and yet strong enough for the convergence of inte- 5

. . . . T d oo o 2 d

grals and interchange of integration orders in our proof be- Pvf _Vj dt:f tdt pvf Y
low. As a result, we can avoid using distribution in our proof. o /SinylJy o /tsiny
Note that in most medical and industrial applications, an ob-
ject functionf(x) is usually not continuous, which is a main we can use Cartesian coordinates to obtain
reason for artifacts in CT images. Our ultimate goal is to

develop an exact reconstruction formula for dlscontmuou%{ if f du(PVf )dW
o0 X = y(S)I R

object functions. Our assumption &x) in Theorem 2.1 will w
become instrumental in our subsequent pursuit towards that

goal. X J (V . dy_(s)) F(V)eZariv-y(s)eZTriv-[uﬂ(s,x)+we(s,x)]dv
R3

Equation(2.4) was proved by Katsevich' in the standard ds
helical scanning case with his choice of the filtering direction q
O(s,X,y). Our Theorem 2.1 is valid for a much more gen- == dsf du(PVJ )_W
eral class of scanning loci and filtering directions or planes. l R
XJ ( dy(S)>F( )e2m,,y(s)
R3 d
x @2mv{ulx-y(9 Fwix-y(s)le(sX)}qy, (3.4)

I1l. ANALYTICAL PROOF

Denote the right side of Eq2.4) by the right-hand side Here we have changed variables fromw to ulx-y(s)| and
(RHS). We want to show that it equaféx). As in Yeet al,*®  WIX-¥(s)| and used the fact thai(s,x)=[x-y(s)]/|x

let F(v) be the Fourier transform df(x) -y(9)l. ' _
Recall thatf(x) is a function of compact support whose

fifth partial derivatives are integrable. Hence, we can apply
F(v) = f f(x)e2m*dx. (3.1 integration by parts five times to E(B.1) by integrating the
R3 exponential function and differentiatirf@x). This shows that
the absolute value d(v) is bounded byc|v|™ for a positive
Then, constantc. In other words|F(»)|=0(|v|™%) when|v| is suf-
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ficiently large. Consequentlyj»-dy(s)/ds]F(v)=0(|v|™), g(ew), respectively, after rewriting the PV integral as an or-
and the innermost integral on the right side of E84) is  dinary integral(see Eq(3.8) below).

absolutely integrable. The integral with respect ta in Eq. (3.6) equals
Sincef(x) is of compact support, we can differentiate Eq.
(3.1) under the integral sign. This shows thatv) is a 1 f g(u)ezwiy-[x—y(s)]u/sdu_ﬁ —2m4v - [x - y(s)]}zls
smooth function. By the Fourier inversion formula eJgr €
_ 3.
f(x) :f F(v)e?™"*dp, S
R® by a Fourier transform formulpBatemart® p. 15,(11)]. The
we have integral with respect tav becomes
(Cli + Czi +Cy— )f(X) Pvf (W)e&ﬂlx—y(s)\[v e(s,x)wlie 2% dw
0Xq Xy R w
: TVX e—W2/2
=2mi . (Cyvq + Cyvy + Cavg) F(w) 2™ *dy, (3.5 - ij - sin{27x - y(s)|[¥ - &(s,x) /e }dw
R
wherec;, ¢,, c; are constants, and=(vq,v,,v;). Here the = W12
differentiation under integral sign is legitimate because =2isgriv-e(s, x)]f sin2m|x = y(s)|
|(Cyv1+Cor+Carg)F(w)|=O(J¥[™) and the integral on the
right side of Eq(3.5) is absolutely integrable. Consequently, x| - e(s,x)[W/e]dw. (3.9
f ( dy(S)>F( )& iy = .<dy(s) J )f( ) Using a formula in Gradshtein and Ryzhik(p. 497,
R® d 2mi\ ds oz 3.952.7, we can compute the last integral in E&.8) as
is a function of compact support, and the innermost integra‘ouows:

on the right side of Eq(3.4) as a function ofu andw is of
compact support. Note here that because of our setting, PV f (w)e?mySllv-esiwe —=
not ony(s), and c,<|x-y(s)|<cs for some positive con- R

stantsc, andcs. . _ = 2\mi sgriw - e(s,x) |Er[\27x - y(9)||v - e(s,x)|/e],
This proves the convergence of integrals with respeat to

dw
w

andw on the right side of Eq(3.4). We cannot, however, (3.9
interchange the order of these integrals with thatvofli-  \yhere Erf is the error function
rectly. Hence, we use a convergence factor method as fol- ,
lows. Letg(t)=et"2 and e>0. Then, the three inner inte-  Erf(x) = xe ™ ;F,(1,3/2%%)
grals on the right side of Eq3.4) equals X
— _tzdt
. dw B f €
lim | g(eu)du| PV glew)— 0
€—>0+ R R W o 2]
- -t 2
d = j e dt— f et dt
XJ ( y(S)>F( )eZm,,y 0 X
R3 d — %
. _\mw 2
Xe2my.{u[x—y(s)]+w\x—y(s)|e(s,x)}dv’ = 7 - et dt,
X
because the innermost integral as a function ahdw is of
essentially compact support. Now, we can interchange th@nd
order of the integrals to transform the right side of E2j4) S 1
into that f e Ydt =: Erfc(x) = O(;e‘X )
X
S== i y(s) 2y
RHS = '”; " ) R3 F(v) v for largex>0. Consequently, for large>0 we have
e— X
\"7: 1 _»
X f g(su)e%‘”'[x—y(S)]“du(Pv f ) Erf(X)=7+O ;ex : (3.10
R R
I e(sx)]wdw Recall c4<|x—y(s)|.< Cs. Therefor.e, we may apply Eq.
X g(sw)e? (3.6 (3.10 to Eq. (3.9 if |v-e(s,x)|/¢ is large. For a fixeds

w €(0,1/2, we will thus consider two casesi) |v-e(s,x)|

This interchange of integration order is legitimate because=e'™ and (i) |v-e(s,x)|<e'™. Because in casdi)
the integrals are dominated Hy -dy(s)/ds|]F(v)|, g(su) and  |v-e(s,x)|/e=e %— x> ase — 0,
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—
5.

Erf(\2m(x - y(9)||w - e(s,X)|/e) = % +0(s%e )

(3.11

for somec> 0. Back to Eq(3.6) using Eqs(3.7), (3.9), and
(3.11), we have

d
RHS =22 lim = f dsf ( y(s))
P ds
[ve( SX)\<£
XF(p) ey
X sgrw - e(s,x)]e 271 - YOWICE] 2 ]x — y(s)|

X|v - e(s,x)|/e]dv

s—0" Sf

(3.12

f (,, . M) F(V)eZmV-y(S)
R3 ds

2r{y - [x -y Is°y,

+ 27 lim

xXsgnv-e(s,x)]e” (3.13

— .1
-\2mlim — ds
8~>O+8 |p|(X)

Xf . ( d)é(S)>F( )ezqﬂ,,y(s

|v-e(s,x)|<el™d

xsgiv - e(s,x)]e 2™ X -y, (3.14

. _.—2
+ lim 0! %1

4
e—0

Xf R3

|ve(sx)|=e

1-6

X |F(p)|e 27 D=yl ey, (3.15

Actually, Eq.(3.13 is the only significant term. As far as
the other terms are concerned, we have

Jl

|- sx)\>s

( L)dv= Olj |v||F(v)|dv] =0(1).
R3

Therefore, Eq(3.15 —0 ase—0*. Then, both the expres-
sions(S 12 and(3.14) before taking the limit are bounded

el =

[v- e(sx)\<g

V| | I:(V)Ie‘ZWZ{V X = YDy,

(3.1

If |v-[x-y(9)]|=e? then{w-[x-y(5)]}?/e?=e"2°— +c,
and hence

Medical Physics, Vol. 32, No. 1, January 2005
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f dsf ,,| | F(v) |e—2772{,, Ix - y(s)]}z/szdv
[v-e(s, X)‘<sl 3

v [x-y(s)]|=1"

1 _
= O(—e‘z”z*’ ”f dsf |v||F(v)|dv) ~0.
€ Ip((X) R3

The remaining part of Eq.3.16) is bounded by

J dsf V||F(V)|d1/ .
lp-e(s,x)|<el™

v (x=y(9)|<et™?

(3.17)

Since|v||F(»)| is decreasing by the order pf|™4, it localizes
the integral with respect to mainly to a bounded region in
R3. Because(s,x) and8(s,x) are not in the same direction,
Eq. (3.17) is bounded by

O(}f di81_5)2> - 0(81—2é> -0,
€J1p0)

ase—0". This is equivalent to say that

ool ol e
s-0"€ Ip(X) R3

RHS =27 lim

X e27-riv-y(s) sgr{v . e(s’x)]e—sz{v [x=y(s) }zlszdv.
(3.18

Now we compute Eq(3.18. Interchanging the orders of
integration, we have

lf F(v)dv
+& JR3
dy(s)

“f
Ipi(X) ds

% e—271'2{v Ix - y(s)]}Z/szdS_

RHS =27 lim

e—0

)ez’”” YO sgriw - e(s,x)]

(3.19

This interchange of integration order is legitimate because

the integral with respect to is dominated by the integral of

[v-dy(s)/ds]F(»)=0(|v|™#), while the integral with respect

to s is taken over a finite interval with a bounded integrand.
As before, for a fixedw, if |v-(x—y(s))|=&'™ for s in

a subinterval of Ip(x), then for such s we have

g2 r x-yO e’ < gr2nls®  gince lim,_o+ e 271?52,

the portion of the inner integral in E¢B.19 taken over such

a subinterval will contribute nothing as— 0*. Therefore,

the inner integral in Eq(3.19 can be evaluated over those

se lp(x) satisfying|v-[x-y(s)]| <&l
1
RHS:\/ZTIim —f F(v)dv
s-0"€JR3

X f Ipi(X) ( v

[v{x-y(s)]| <&t

XY g - efs, X)]e—zﬂz{v [x -y e?yg,
(3.20

dy_<s>>
ds
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Recall Ip(x)=[s,,5]. Without loss of generality, let us — 0%, while in case(i) it tends tof."=

assume that-[x-y(s)]=0 ats=s, ...,s with s;<5<...
<s <s. Note thatsy, ... ,s depend orw. We will only con-
sider thosev € R® such thatr-[y(s)-y(s,)]#0, since the

set of » with v-[y(s)-y(s,)]=0 only has a zero measure,

and can be ignored in the outer integral in E220. By the
same reason, we can ignore thasavhich are parallel to
y'(s) Xy"(s) for somese(s,,s], if we assume thay’(s)
Xy"(s) never vanishes. We observe thatf{x-y(s,)] and
v-[x-Yy(s)] are of opposite signs, becausé on the Pl line
¢ fromy(s,) toy(s). Thus, there is at least one sughThere
are four possible cases of[x-y(s)] nears;, 0<j=<r:

Q) v-y'(s) <0: »-[y(s)-x] decreases neay;
(i)  w-y'(s)>0: »-[y(s)—x] increases nezs;;

(i) w-y'(s)=0andv-y"(s) <0: »-(y(s)—x) has a lo-
cal maximum as;;

(iv) »-y'(s)=0andv-y'(s)>0: »-(y(s)—-x) has a lo-
cal minimum ats;.

For & sufficiently small, let us denote ;- g ,Sj+ 7] the

neighborhood of; satisfying|»-[y(s) - x]|<s More spe-

cifically, in each case we set

(i) vly(s—o)-x]=e' v-[y(s+7)-x]=-&'"7

iy wly(g-o)-x]==e" v-[y(s+7)-x]=""
(i)  vly(s-o)-x]=v-[y(s+7)- x]=-&';
(iv) v [y(s-o)-x]=v-[y(s+m)-x]=e'".

According to Eq(3.8), the case of’-&(s;,x) =0 makes no

contribution to RHS. Hence, we only analyze the case of
v-€(s;,X) #0. Then, fore sufficiently small we can always

assume thaw-e(s,x) has the same sign ds;—oj,s;+7].
Thus,

L
€50
w g 2 - [x -y e’y g

7 _dY_(S)) vy
(V ds ey

Sj—(Tj

™Y sgriw - e(s,X)]

Sj+

:sgr{v-e(sj,x)]g

W@ 2m - x-yON e gg. (3.2

Changing variables from to t=»-y(s), we have

S +T)
e277ite—2772(v X - t)zlszdt

sgriv - e(s;,x)] f
using dt:[v-dy(s)/ds]ds Changing variables again from
to u=(t-»-x)/e, we havet=w-x+eu anddt=edu, and Eq.
(3.21) becomes
vly(s+7)-xlle
Sgr[v i e(S]-,X)] eZﬂ'IVXeZﬂ'Isu

v-[y(sj—aj)—x]/s

Zwudu

(3.22

—JZ.. Consequently,
the integral in Eq(3.22 has the limit

e27riu-x ng{V . y,(sj)]f e—2ﬂ'2U2du,

ase—0". In fact, in casdii) we can write the integral in Eq.

(3.22 as
J -1/2 ju[y(s i+7j)~X]/e
]) X)le _ -1/2

f_8—1/2
v{y(s;
The first and last integrals here tend to Osas 0*, because

v[y(s +7j)= X]le - 3
f e—27r u du< f
8—1/2 -1/2

&

522 52
e 2™ du=0(\ee 2™ 7).

Inside the interval-s~%/2,67%/2], zu is bounded by e, and
hencee?™sU— 1 ase — 0*. This shows that

-1/2 0
fs e2wisue—2ﬂ2u2du_>f e—2ﬂ2u2du_

_gl2

Case(i) can be computed likewise.
Therefore, we have

F(V)eZ”"’XdVE sgiv-y
j=0

RHS =127 J "(s))]
R

xsgw - e(s,,x)]f e 27y, (3.23

By a classical result

Jw _27T2t2dt_ 1
— \'Z'n'

we get

j=0

RHS:f F(v)ezm'x{E sgifv-y'(s)]
R3

xXsgriv-e(s;,x)] (dv. (3.29

To prove that RHS#(x), we should seled(s;,x) so that the
following condition is satisfied:

r

> sgriv-

j=0

y'(s)]sgriv - e(s;,x)] =1 (3.29

for any v e R®, wheres; depends onv as described above.
Equation (3.25 is the general admissible condition for
selection of filtering directions. Recall thgtare solutions of
v-[x-y(s)]=0 for a givenr e R3. Thus,x andy(s), 0<]
<r, are on a plane perpendicular o
One natural choice oé(s,x) satisfying Eq.(3.25 is as

We observe that the lower and upper limits of the integral infollows. Takee(s, x) in the direction of the projection of the

Eq.(3.22 are the same in casés ) and(iv), and the integral
vanishes. In casgii), the integral becomeg”, when ¢

Medical Physics, Vol. 32, No. 1, January 2005
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sgrv - e(s;,x)] = sgr{v - [y(s) - y(sp) T} As far as numerical verification is conce'rned', excellent
computer-simulation results have been obtained in our labo-
ratory using our generalized filtered backprojecti¢tBP)

r formula in the cases of nonstandard spirals and nonstandard

for all ve1l, i.e., for all v e R® with v:[x-y(s)]=0. Thus,

> sgriv-y'(s)Isgrv - (s, x)] saddle curves. These experimental results and comparative
=0 analysis will be reported in a subsequent article. Further-
r more, we note that Zou and Plrlready reported excellent
=sgr{r-[y(s) - y(s,) 1> sgriv-y'(s)]. simulation results using their FBP formula in the helical
j=0

scanning case, which is a special case of the general FBP
formula. This may be considered as independent evidence
supporting our formulation.
In the helical cone-beam formulas by Katsevichand
, Katsevichet al,®* as well as Zou and P&h? and Zou
; sgriv-y'(s)]=sgriv-[y(s) ~y(s)]}- et al,’ the uniqueness of PI lines is explicitly or implicitly
)70 assumed. Our exact reconstruction for cone-beam scanning
Under this choice oé(s,x) we do have Eq3.25 and finally  along a general curve is performed inside the region of
chords, not necessarily inside the region of unique PI lines,
RHS :f F(»)@™*dp = (x). (3.26  as reported by Yeet al’® Therefore, our formula can be
R3 applied to nonstandard spirals of variable radii and pitches,
and saddle-like curves. Moreover, lebe a point on a chord
connecting two pointg(s,) andy(s; on a nonstandard spiral
y(s) with s;—s,> 2. Since the two endpoints are separated
by more than one scanning turn, the chord is a generalized PI
line. Nevertheless, our generalized FBP formula can be ap-
plied to reconstruct any on this chord exactly. This is in-
deed the case of the so-calleedPl-window problem studied
by Proksaet al,?! Bontuset al,?* and Katsevicl¥® In other
words, what we have proved is an exact reconstruction for-
mula for cone-beam n-Pl-window scanning along a standard
IV. DISCUSSIONS AND CONCLUSION or nonstandard spiral. On the other hand, for cardiac imaging
Our choice of the filtering direction in the general scan-Packet al?* studied cone-beam reconstruction along saddle
ning case is consistent with that of Zou and Pdor stan-  curves under Tuy's conditiof?. In this situation, the gener-
dard helical scanning. It has been just proved that filteringalized formula can be used for exact image reconstruction on
modified data along the chord projection onto the detectothe so-called lines.
plane is indeed a way to perform exact cone-beam recon- Our work is closely related to Katsevicﬁ’sgeneral
struction, not only along helical loci but also along otherscheme for exact cone-beam reconstruction. Currently, there
curves, as long as they satisfy certain weak conditions asre two approaches to deriving FBP-type inversion algo-
described above. We emphasize that there are other choicgthms for general trajectories. One is based on the idea of a
of filtering directionse(s,x). Let us take a standard helical piece-wise constant normalized weight. This is the approach
scanning locus as an example. For a gixeands; € | p(X), in Katsevich® With the simplest choice of a weight function
there is a unique plane passing throughy(sy), y(s,), and  (ny=1) a convolution-based FBP algorithm was obtained for
yl(so+5,)/2] for somes, with s,—27r<s,<sy+277, accord-  a general complete trajectofpy Katsevich and by Cheff
ing to Katsevicl’’ In this case, the filtering direction is with a proposed regularization scheme to handle singujarity
defined by the intersection of this plane and the detectoThe other approach is based on specifying the filtering direc-
plane. Clearly, our choice of filtering directions is different tion(s) via e(s,x), such as the one used by the Philips
from Katsevich's, and is applicable to general scanninggroup? They actually used not one family of filtering
curves. However, we acknowledge that our choice of theplanes, but several families in the helical scanning case. Our
filtering direction is not the most efficient, at least in the approach is also based on specifying the filtering direction,
helical scanning case, because the filtering step is not shifbut has the advantage of being rigorously justified in the
invariant. Finding better filtering directions for various general scanning case. Of course, because all the exact re-
classes of scanning curves is an important topic for futureonstruction formulas must be equivalent we can establish a
work. Note that our general formula is also applicable to therelationship between this general FBP formula and Kat-
case where several chords pass through a given point to evich’s general scheme for exact cone-beam reconstruction.
reconstructed, and to the case of multiple filtering directiondf we denote
that are not necessarily associated with chords all the time. _ ,
Clearly, exact reconstruction based on multiple families of n(s;.x,») = sgriv-y'(s)Isgriv - &(s;, )],
filtering directions can be advantageous in terms of imag®ur condition(3.25 is the normalization condition on the
contrast resolution. second line of Eq(2.4) in Katsevich® Moreover, our recon-

Recall thatw-[y(s)—x] and »-[y(s,)—x] are of opposite
signs, and hence

r

This selection of(s, x) can be expressed more explicitly.
Note thate(s,x) is in the direction of the projection of the
vectory(s,) —y(sy,) on the plandl perpendicular tox—y(s).
Thereforeg(s,x) is in the plane determined by the liieand
the vectorB(s,x)=[x-y(s)]/[x-y(s)|. Our choice of filter-
ing planes, as given by Eq2.3), is therefore always the
planes set by andx-y(s).
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