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Recently, Katsevich proved a filtered backprojection formula for exact image reconstruction from
cone-beam data along a helical scanning locus, which is an important breakthrough since 1991
when the spiral cone-beam scanning mode was proposed. In this paper, we prove a generalized
Katsevich’s formula for exact image reconstruction from cone-beam data collected along a rather
flexible curve. We will also give a general condition on filtering directions. Based on this condition,
we suggest a natural choice of filtering directions, which is more convenient than Katsevich’s
choice and can be applied to general scanning curves. In the derivation, we use analytical tech-
niques instead of geometric arguments. As a result, we do not need the uniqueness of the PI lines.
In fact, our formula can be used to reconstruct images on any chord as long as a scanning curve
runs from one endpoint of the chord to the other endpoint. This can be considered as a generali-
zation of Orlov’s classical theorem. Specifically, our formula can be applied to(i) nonstandard
spirals of variable radii and pitches(with PI- or n-PI-windows), and(ii ) saddlelike curves. ©2005
American Association of Physicists in Medicine. [DOI: 10.1118/1.1828673]
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I. INTRODUCTION

The recent development of medical computed tomogr
(CT) techniques, such as bolus-chasing angiography1 and
electron-beam micro-CT(EBMCT),2 requires more flexibl
scanning curves for cone-beam CT. In 1991, Wanget al.3,4

proposed a spiral cone-beam algorithm to solve the long
ject problem in the case of standard and nonstandard
cone-beam scans. However, their algorithms are of
Feldkamp-type and only produce approximate results. S
then, much progress has been made in the area of
cone-beam CT. During the past two years, Katsevich d
oped an exact filtered backprojection formula for stan
helical cone-beam scans,5–7 which is a quantum leap relati
to the earlier algorithms.8–10 Recently, Zou and Pan11,12

proved an exact backprojected filtration formula as a c
terpart of the Katsevich formula. Then, Katsevichet al.13 as
well as Zou, Pan, Xia, and Wang14 extended these formul
to spirals with variable pitches.

A generalization of Zou and Pan’s exact reconstruc
formula to a smooth scanning curve was proved by
et al.15 This generalized formula is still in the backprojec
filtration format, and can be applied to nonstandard sp
saddle-like curves,n-PI-window scans, and other cases.
such, it can be regarded as a generalization of the O
theorem16 to the cone-beam scanning geometry. Ano
proof of our generalized formula was also given by Zhaet
al.,17 which is in the Tuy framework.

The main purpose of this paper is to provide a proof of
Katsevich formula for a general cone-beam scanning g
etry, and to give explicitly a filtering direction applicable

arbitrary scanning curves, together with a condition for ad-
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missible filtering directions. In the next section, we introd
necessary notations. In the third section, we prove a g
alized Katsevich formula, avoiding the use of complica
geometric arguments Katsevich,5–7 and Zou and Pan11,12 ex-
tensively used. By doing so, we obtain a filtered backpro
tion formula for exact image reconstruction from cone-b
data along a general scanning curve. Our formula can al
applied to nonstandard spirals(with PI- or n-PI-windows),
saddlelike curves, and so on, and may be considered a
other generalization of the Orlov theorem.16 In the last sec
tion, we discuss relevant issues and conclude the pape

II. NOTATIONS AND THE MAIN THEOREM

The main setting for our formula is a general smo
curveyssd for sbøsøst, and a chord, connecting the end
pointsyssbd andysstd of the curve. Letx be an interior poin
on ,. Clearly, this setting covers standard or nonstan
spirals with PI- orn-PI lines, standard or nonstandard sad
curves, and many other cases.

Following Katsevich’s convention,7 denote by IPIsxd
=fsb,stg the parametric interval, and by

Dfsy,Qd =E
0

`

fsy + tQddt, Q P S2, s2.1d

the cone-beam data, whereS2 is the unit sphere. Let

bss,xd =
x − yssd
ux − yssdu

, sP IPIsxd, s2.2d

be the unit vector pointing towardx from yssd, andess,xd a

unit vector perpendicular tobss,xd. In the work by

42(1)/42/7/$22.50 © 2005 Am. Assoc. Phys. Med.
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Katsevich5–7 ess,xd is selected in an explicit way. Howev
in the following we first request thatess,xd be any unit vec
tor perpendicular tobss,xd. Then, we give an admissib
condition foress,xd and make a natural choice ofess,xd. It
will become clear later on that Katsevich’sess,xd in the stan
dard helical scanning case is a different choice but it ind
satisfies our admissible condition. Hence, a filtering direc
can be expressed by

Qss,x,gd = cosgbss,xd + sing ess,xd. s2.3d

Theorem 2.1.Let fsxd be a function of compact suppo
whose fifth partial derivatives are absolutely integrable
R3. Let ess,xd be a unit vector satisfying condition(3.25) for
any sP ssb,std andxPR3, or simply setess,xd to be a uni
vector in the plane determined by, and x−yssd with
ess,xd ·fysstd−yssbdg.0. Then

fsxd = −
1

2p2E
IPIsxd

ds

ux − yssdu
PVE

0

2p ]

]q

3Dfufysqd,Qss,x,gdguq=s
dg

sing
. s2.4d

See Sec. IV for a detailed explanation of condition(3.25).
The choice ofess,xd in Theorem 2.1 means that the filteri
plane as defined by Eq.(2.3) contains both, andx−yssd for
any source pointyssd.

The assumption of integrable fifth partial derivatives
much weaker than the usual condition requestingfsxd being
smooth, and yet strong enough for the convergence of
grals and interchange of integration orders in our proof
low. As a result, we can avoid using distribution in our pro
Note that in most medical and industrial applications, an
ject function fsxd is usually not continuous, which is a ma
reason for artifacts in CT images. Our ultimate goal is
develop an exact reconstruction formula for discontinu
object functions. Our assumption onfsxd in Theorem 2.1 wil
become instrumental in our subsequent pursuit towards
goal.

Equation(2.4) was proved by Katsevich5–7 in the standar
helical scanning case with his choice of the filtering direc
Qss,x ,gd. Our Theorem 2.1 is valid for a much more g
eral class of scanning loci and filtering directions or pla

III. ANALYTICAL PROOF

Denote the right side of Eq.(2.4) by the right-hand sid
(RHS). We want to show that it equalsfsxd. As in Yeet al.,15

let Fsnd be the Fourier transform offsxd

Fsnd =E
R3

fsxde−2pin·xdx. s3.1d
Then,
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S ]

]q
Dffysqd,Qss,x,gdgDU

q=s

=E
0

` U ]

]q
f fysqd + tQss,x,gdgU

q=s
dt

=E
0

` U ]

]q
E

R3
Fsnde2pin·fysqd+tQss,x,gdgdnU

q=s

dt s3.2d

by Fourier’s inversion formula. We take the derivative un
the inner integral to obtain

S ]

]q
Dffysqd,Qss,x,gdgDU

q=s

= 2piE
0

`

dtE
R3
Sn ·

dyssd
ds

DFsnde2pin·fyssd+tQss,x,gdgdn.

s3.3d

Therefore,

RHS =
1

pi
E

IPIsxd

ds

ux − yssduSPVE
0

2p D dg

sing
E

0

`

dt

3 E
R3
Sn ·

dyssd
ds

DFsnde2pin·yssd

3e2pin·ft cosg Qss,x,gd+t sin g ess,xdgdn.

If we write

SPVE
0

2p D dg

sing
E

0

`

dt =E
0

`

tdtSPVE
0

2p D dg

t sing
,

we can use Cartesian coordinates to obtain

RHS =
1

pi
E

IPIsxd

ds

ux − yssduER
duSPVE

R
Ddw

w

3 E
R3
Sn ·

dyssd
ds

DFsnde2pin·yssde2pin·fubss,xd+wess,xdgdn

=
1

pi
E

IPIsxd
dsE

R
duSPVE

R
Ddw

w

3 E
R3
Sn ·

dyssd
ds

DFsnde2pin·yssd

3e2pin·hufx−yssdg+wux−yssduess,xdjdn. s3.4d

Here we have changed variables fromu, w to uux−yssdu and
wux−yssdu and used the fact thatbss,xd=fx−yssdg / ux
−yssdu.

Recall thatfsxd is a function of compact support who
fifth partial derivatives are integrable. Hence, we can a
integration by parts five times to Eq.(3.1) by integrating th
exponential function and differentiatingfsxd. This shows tha
the absolute value ofFsnd is bounded bycunu−5 for a positive

−5
constantc. In other words,uFsndu=Osunu d when unu is suf-
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ficiently large. Consequently,fn ·dyssd /dsgFsnd=Osunu−4d,
and the innermost integral on the right side of Eq.(3.4) is
absolutely integrable.

Sincefsxd is of compact support, we can differentiate
(3.1) under the integral sign. This shows thatFsnd is a
smooth function. By the Fourier inversion formula

fsxd =E
R3

Fsnde2pin·xdn,

we have

Sc1
]

]x1
+ c2

]

]x2
+ c3

]

]x3
D fsxd

= 2piE
R3

sc1n1 + c2n2 + c3n3dFsnde2pin·xdn, s3.5d

wherec1, c2, c3 are constants, andn=sn1,n2,n3d. Here the
differentiation under integral sign is legitimate beca
usc1n1+c2n2+c3n3dFsndu=Osunu−4d and the integral on th
right side of Eq.(3.5) is absolutely integrable. Consequen

E
R3
Sn ·

dyssd
ds

DFsnde2pin·zdn =
1

2pi
Sdyssd

ds
·

]

]z
D fszd

is a function of compact support, and the innermost inte
on the right side of Eq.(3.4) as a function ofu andw is of
compact support. Note here that because of our settingx is
not on yssd, and c4, ux−yssdu,c5 for some positive con
stantsc4 andc5.

This proves the convergence of integrals with respectu
and w on the right side of Eq.(3.4). We cannot, howeve
interchange the order of these integrals with that ofn di-
rectly. Hence, we use a convergence factor method a
lows. Let gstd=e−t2/2 and «.0. Then, the three inner int
grals on the right side of Eq.(3.4) equals

lim
«→0+

E
R

gs«udduSPVE
R
Dgs«wd

dw

w

3 E
R3
Sn ·

dyssd
ds

DFsnde2pin·yssd

3e2pin·hufx−yssdg+wux−yssduess,xdjdn,

because the innermost integral as a function ofu andw is of
essentially compact support. Now, we can interchange
order of the integrals to transform the right side of Eq.(3.4)
into that

RHS =
1

pi
lim

«→0+
E

IPIsxd
dsE

R3
Sn ·

dyssd
ds

DFsnde2pin·yssddn

3 E
R

gs«ude2pin·fx−yssdguduSPVE
R
D

3gs«wde2pi ux−yssdufn·ess,xdgwdw

w
. s3.6d

This interchange of integration order is legitimate beca

the integrals are dominated byufn ·dyssd /dsgFsndu, gs«ud and
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gs«wd, respectively, after rewriting the PV integral as an
dinary integral(see Eq.(3.8) below).

The integral with respect tou in Eq. (3.6) equals

1

«
E

R
gsude2pin·fx−yssdgu/«du=

Î2p

«
e−2p2hn · fx − yssdgj2/«2

,

s3.7d

by a Fourier transform formula[Bateman,18 p. 15,(11)]. The
integral with respect tow becomes

PVE
R

gswde2pi ux−yssdufn·ess,xdgw/«dw

w

= iE
R

e−w2/2

w
sinh2pux − yssdufn ·ess,xdgw/«jdw

= 2i sgnfn ·ess,xdgE
0

` e−w2/2

w
sinf2pux − yssdu

3un ·ess,xduw/«gdw. s3.8d

Using a formula in Gradshtein and Ryzhik19 (p. 497,
3.952.7), we can compute the last integral in Eq.(3.8) as
follows:

PVE
R

gswde2pi ux−yssdufn·ess,xdgw/«dw

w

= 2Îpi sgnfn ·ess,xdgErffÎ2pux − yssduun ·ess,xdu/«g,

s3.9d

where Erf is the error function

Erfsxd = xe−x2

1F1s1,3/2;x2d

=E
0

x

e−t2dt

=E
0

`

e−t2dt −E
x

`

e−t2dt

=
Îp

2
−E

x

`

e−t2dt,

and

E
x

`

e−t2dt¬ Erfcsxd = OS1

x
e−x2D

for largex.0. Consequently, for largex.0 we have

Erfsxd =
Îp

2
+ OS1

x
e−x2D . s3.10d

Recall c4, ux−yssdu,c5. Therefore, we may apply E
(3.10) to Eq. (3.9) if un ·ess,xdu /« is large. For a fixedd
P s0,1/2d, we will thus consider two cases:(i) un ·ess,xdu
ù«1−d and (ii ) un ·ess,xdu,«1−d. Because in case(i)

−d +
un ·ess,xdu /«ù« →` as«→0 ,
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ErfsÎ2pux − yssduun ·ess,xdu/«d =
Îp

2
+ Os«de−c«−2d

d

s3.11d

for somec.0. Back to Eq.(3.6) using Eqs.(3.7), (3.9), and
(3.11), we have

RHS = 2Î2 lim
«→0+

1

«
E

IPIsxd
dsE R3

un·ess,xdu,«1−d

Sn ·
dyssd

ds
D

3Fsnde2pin·yssd

3 sgnfn ·ess,xdge−2p2hn · fx − yssdgj2/«2
ErffÎ2pux − yssdu

3un ·ess,xdu/«gdn s3.12d

+ Î2p lim
«→0+

1

«
E

IPIsxd
dsE

R3
Sn ·

dyssd
ds

DFsnde2pin·yssd

3sgnfn ·ess,xdge−2p2hn · fx − yssdgj2/«2
dn s3.13d

− Î2p lim
«→0+

1

«
E

IPIsxd
ds

3 E R3

un·ess,xdu,«1−d

Sn ·
dyssd

ds
DFsnde2pin·yssd

3sgnfn ·ess,xdge−2p2hn · fx − yssdgj2/«2
dn s3.14d

+ lim
«→0+

OH«d−1e−«−2dE
IPIsxd

ds

3E R3

un·ess,xduù«1−d

Un ·
dyssd

ds
U

3uFsndue−2p2hn · fx − yssdgj2/«2
dnJ . s3.15d

Actually, Eq.(3.13) is the only significant term. As far a
the other terms are concerned, we have

E
IPIsxd

dsE R3

un·ess,xduù«1−d

s. . .ddn = OFE
R3

unuuFsndudnG = Os1d.

Therefore, Eq.(3.15) →0 as«→0+. Then, both the expre
sions (3.12) and (3.14) before taking the limit are bound
by

1

«
E

IPIsxd
dsE R3

un·ess,xdu,«1−d

unuuFsndue−2p2hn · fx − yssdgj2/«2
dn.

s3.16d

If un ·fx−yssdguù«1−d, then hn ·fx−yssdgj2/«2ù«−2d→ +`,

and hence
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«
E

IPIsxd
dsE R3

un·ess,xdu,«1−d

un·fx−yssdguù«1−d

unuuFsndue−2p2hn · fx − yssdgj2/«2
dn

= OS1

«
e−2p2«−2dE

IPIsxd
dsE

R3
unuuFsndudnD → 0.

The remaining part of Eq.(3.16) is bounded by

O11

«
E

IPIsxd
dsE R3

un·ess,xdu,«1−d

un·sx−yssddu,«1−d

unuuFsndudn2 . s3.17d

SinceunuuFsndu is decreasing by the order ofunu−4, it localizes
the integral with respect ton mainly to a bounded region
R3. Becauseess,xd andbss,xd are not in the same directio
Eq. (3.17) is bounded by

OS1

«
E

IPIsxd
dss«1−dd2D = Os«1−2dd → 0,

as«→0+. This is equivalent to say that

RHS =Î2p lim
«→0+

1

«
E

IPIsxd
dsE

R3
Sn ·

dyssd
ds

DFsnd

3e2pin·yssd sgnfn ·ess,xdge−2p2hn · fx − yssdgj2/«2
dn.

s3.18d

Now we compute Eq.(3.18). Interchanging the orders
integration, we have

RHS =Î2p lim
«→0+

1

«
E

R3
Fsnddn

3 E
IPIsxd

Sn ·
dyssd

ds
De2pin·yssd sgnfn ·ess,xdg

3e−2p2hn · fx − yssdgj2/«2
ds. s3.19d

This interchange of integration order is legitimate bec
the integral with respect ton is dominated by the integral
fn ·dyssd /dsgFsnd=Osunu−4d, while the integral with respe
to s is taken over a finite interval with a bounded integra

As before, for a fixedn, if un ·sx−yssdduù«1−d for s in
a subinterval of IPIsxd, then for such s we have
e−2p2hn ·fx−yssdgj2/«2

,e−2p2/«2d
. Since lim«→0+ e−2p2/«2d

/«=0,
the portion of the inner integral in Eq.(3.19) taken over suc
a subinterval will contribute nothing as«→0+. Therefore
the inner integral in Eq.(3.19) can be evaluated over tho
sP IPIsxd satisfyingun ·fx−yssdgu,«1−d:

RHS =Î2p lim
«→0+

1

«
E

R3
Fsnddn

3 E IPIsxd

un·fx−yssdgu,«1−d

Sn ·
dyssd

ds
D

3e2pin·yssd sgnfn ·ess,xdge−2p2hn · fx − yssdgj2/«2
ds.
s3.20d
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Recall IPIsxd=fsb,stg. Without loss of generality, let u
assume thatn ·fx−yssdg=0 at s=s0, . . . ,sr with sb,s0, . . .
,sr ,st. Note thats0, . . . ,sr depend onn. We will only con-
sider thosenPR3 such thatn ·fysstd−yssbdgÞ0, since the
set of n with n ·fysstd−yssbdg=0 only has a zero measu
and can be ignored in the outer integral in Eq.(3.20). By the
same reason, we can ignore thosen which are parallel t
y8ssd3y9ssd for some sP fsb,stg, if we assume thaty8ssd
3y9ssd never vanishes. We observe thatn ·fx−yssbdg and
n ·fx−ysstdg are of opposite signs, becausex is on the PI line
, from yssbd to ysstd. Thus, there is at least one suchsj. There
are four possible cases ofn ·fx−yssdg nearsj, 0ø j ø r:

(i) n ·y8ssjd,0: n ·fyssd−xg decreases nearsj;
(ii ) n ·y8ssjd.0: n ·fyssd−xg increases nearsj;
(iii ) n ·y8ssjd=0 andn ·y9ssjd,0: n ·syssd−xd has a lo

cal maximum atsj;
(iv) n ·y8ssjd=0 andn ·y9ssjd.0: n ·syssd−xd has a lo

cal minimum atsj.

For « sufficiently small, let us denote byfsj −s j ,sj +t jg the
neighborhood ofsj satisfyingun ·fyssd−xguø«1−d. More spe
cifically, in each case we set

(i) n ·fyssj −s jd−xg=«1−d, n ·fyssj +t jd−xg=−«1−d;
(ii ) n ·fyssj −s jd−xg=−«1−d, n ·fyssj +t jd−xg=«1−d;
(iii ) n ·fyssj −s jd−xg=n ·fyssj +t jd−xg=−«1−d;
(iv) n ·fyssj −s jd−xg=n ·fyssj +t jd−xg=«1−d.

According to Eq.(3.8), the case ofn ·essj ,xd=0 makes no
contribution to RHS. Hence, we only analyze the cas
n ·essj ,xdÞ0. Then, for« sufficiently small we can alway
assume thatn ·ess,xd has the same sign onfsj −s j ,sj +t jg.
Thus,

1

«
E

sj−s j

sj+t j Sn ·
dyssd

ds
De2pin·yssd sgnfn ·ess,xdg

3e−2p2hn · fx − yssdgj2/«2
ds

= sgnfn ·essj,xdg
1

«
E

sj−s j

sj+t j Sn ·
dyssd

ds
De2pin·yssd

3e−2p2hn · fx − yssdgj2/«2
ds. s3.21d

Changing variables froms to t=n ·yssd, we have

sgnfn ·essj,xdgE
n·yssj−s jd

n·yssj+t jd

e2pite−2p2sn · x − td2/«2
dt

using dt=fn ·dyssd /dsgds. Changing variables again fromt
to u=st−n ·xd /«, we havet=n ·x+«u anddt=«du, and Eq
(3.21) becomes

sgnfn ·essj,xdgE
n·fyssj−s jd−xg/«

n·fyssj+t jd−xg/«

e2pin·xe2pi«ue−2p2u2
du.

s3.22d

We observe that the lower and upper limits of the integr
Eq. (3.22) are the same in cases(iii ) and(iv), and the integra

`
vanishes. In case(ii ), the integral becomese−` when «
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→0+, while in case(i) it tends toe`
−`=−e−`

` . Consequently
the integral in Eq.(3.22) has the limit

e2pin·x sgnfn ·y8ssjdgE
−`

`

e−2p2u2
du,

as«→0+. In fact, in case(ii ) we can write the integral in E
(3.22) as

E
n·fyssj−s jd−xg/«

−«−1/2

+E
−«−1/2

«−1/2

+E
«−1/2

n·fyssj+t jd−xg/«

.

The first and last integrals here tend to 0 as«→0+, becaus

E
«−1/2

n·fyssj+t jd−xg/«

e−2p2u2
duø E

«−1/2

`

e−2p2u2
du= OsÎ«e−2p2/«d.

Inside the intervalf−«−1/2,«−1/2g, «u is bounded by ±Î«, and
hencee2pi«u→1 as«→0+. This shows that

E
−«−1/2

«−1/2

e2pi«ue−2p2u2
du→ E

−`

`

e−2p2u2
du.

Case(i) can be computed likewise.
Therefore, we have

RHS =Î2pE
R3

Fsnde2pin·xdno
j=0

r

sgnfn ·y8ssjdg

3sgnfn ·essj,xdgE
−`

`

e−2p2u2
du. s3.23d

By a classical result

E
−`

`

e−2p2t2dt =
1

Î2p
,

we get

RHS =E
R3

Fsnde2pin·xHo
j=0

r

sgnfn ·y8ssjdg

3sgnfn ·essj,xdgJdn. s3.24d

To prove that RHS=fsxd, we should selectessj ,xd so that the
following condition is satisfied:

o
j=0

r

sgnfn ·y8ssjdgsgnfn ·essj,xdg = 1 s3.25d

for any nPR3, wheresj depends onn as described above
Equation (3.25) is the general admissible condition

selection of filtering directions. Recall thatsj are solutions o
n ·fx−yssdg=0 for a givennPR3. Thus,x and yssjd, 0ø j
ø r, are on a plane perpendicular ton.

One natural choice ofess,xd satisfying Eq.(3.25) is as
follows. Takeess,xd in the direction of the projection of th
vectorysstd−yssbd on the planeP perpendicular tox−yssd.

With this choice ofess,xd, we have
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sgnfn ·essj,xdg = sgnhn · fysstd − yssbdgj

for all nPP, i.e., for all nPR3 with n ·fx−yssjdg=0. Thus

o
j=0

r

sgnfn ·y8ssjdgsgnfn ·essj,xdg

= sgnhn · fysstd − yssbdgjo
j=0

r

sgnfn ·y8ssjdg.

Recall that n ·fysstd−xg and n ·fyssbd−xg are of opposit
signs, and hence

o
j=0

r

sgnfn ·y8ssjdg = sgnhn · fysstd − yssbdgj.

Under this choice ofess,xd we do have Eq.(3.25) and finally

RHS =E
R3

Fsnde2pin·xdn = fsxd. s3.26d

This selection ofess,xd can be expressed more explici
Note thatess,xd is in the direction of the projection of th
vectorysstd−yssbd on the planeP perpendicular tox−yssd.
Therefore,ess,xd is in the plane determined by the line, and
the vectorbss,xd=fx−yssdg / ux−yssdu. Our choice of filter
ing planes, as given by Eq.(2.3), is therefore always th
planes set by, andx−yssd.

IV. DISCUSSIONS AND CONCLUSION

Our choice of the filtering direction in the general sc
ning case is consistent with that of Zou and Pan20 for stan-
dard helical scanning. It has been just proved that filte
modified data along the chord projection onto the dete
plane is indeed a way to perform exact cone-beam re
struction, not only along helical loci but also along ot
curves, as long as they satisfy certain weak condition
described above. We emphasize that there are other ch
of filtering directionsess,xd. Let us take a standard helic
scanning locus as an example. For a givenx ands0P IPIsxd,
there is a unique plane passing throughx, yss0d, yss2d, and
yfss0+s2d /2g for somes2 with s0−2p,s2,s0+2p, accord-
ing to Katsevich.5–7 In this case, the filtering direction
defined by the intersection of this plane and the dete
plane. Clearly, our choice of filtering directions is differ
from Katsevich’s, and is applicable to general scan
curves. However, we acknowledge that our choice of
filtering direction is not the most efficient, at least in
helical scanning case, because the filtering step is not
invariant. Finding better filtering directions for vario
classes of scanning curves is an important topic for fu
work. Note that our general formula is also applicable to
case where several chords pass through a given point
reconstructed, and to the case of multiple filtering direct
that are not necessarily associated with chords all the
Clearly, exact reconstruction based on multiple familie
filtering directions can be advantageous in terms of im

contrast resolution.
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As far as numerical verification is concerned, exce
computer-simulation results have been obtained in our
ratory using our generalized filtered backprojection(FBP)
formula in the cases of nonstandard spirals and nonsta
saddle curves. These experimental results and compa
analysis will be reported in a subsequent article. Fur
more, we note that Zou and Pan20 already reported excelle
simulation results using their FBP formula in the hel
scanning case, which is a special case of the genera
formula. This may be considered as independent evid
supporting our formulation.

In the helical cone-beam formulas by Katsevich5–7 and
Katsevich et al.,13 as well as Zou and Pan11,12 and Zou
et al.,14 the uniqueness of PI lines is explicitly or implici
assumed. Our exact reconstruction for cone-beam sca
along a general curve is performed inside the regio
chords, not necessarily inside the region of unique PI l
as reported by Yeet al.15 Therefore, our formula can b
applied to nonstandard spirals of variable radii and pitc
and saddle-like curves. Moreover, letx be a point on a chor
connecting two pointsyssbd andysstd on a nonstandard spir
yssd with st−sb.2p. Since the two endpoints are separa
by more than one scanning turn, the chord is a generaliz
line. Nevertheless, our generalized FBP formula can be
plied to reconstruct anyx on this chord exactly. This is in
deed the case of the so-calledn-PI-window problem studie
by Proksaet al.,21 Bontuset al.,22 and Katsevich.23 In other
words, what we have proved is an exact reconstruction
mula for cone-beam n-PI-window scanning along a stan
or nonstandard spiral. On the other hand, for cardiac ima
Packet al.24 studied cone-beam reconstruction along sa
curves under Tuy’s condition.25 In this situation, the gene
alized formula can be used for exact image reconstructio
the so-calledt lines.

Our work is closely related to Katsevich’s6 genera
scheme for exact cone-beam reconstruction. Currently,
are two approaches to deriving FBP-type inversion a
rithms for general trajectories. One is based on the idea
piece-wise constant normalized weight. This is the appr
in Katsevich.6 With the simplest choice of a weight functi
sn0=1d a convolution-based FBP algorithm was obtained
a general complete trajectory(by Katsevich6 and by Chen26

with a proposed regularization scheme to handle singula).
The other approach is based on specifying the filtering d
tion(s) via ess,xd, such as the one used by the Phi
group.22 They actually used not one family of filteri
planes, but several families in the helical scanning case
approach is also based on specifying the filtering direc
but has the advantage of being rigorously justified in
general scanning case. Of course, because all the exa
construction formulas must be equivalent we can estab
relationship between this general FBP formula and
sevich’s general scheme for exact cone-beam reconstru
If we denote

nssj,x,nd = sgnfn ·y8ssjdgsgnfn ·essj,xdg,

our condition (3.25) is the normalization condition on t
6
second line of Eq.(2.4) in Katsevich. Moreover, our recon-
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struction formula (2.4) follows immediately from Eqs
(2.27)–(2.29) in Katsevich6 upon substitution of that partic
lar nssj ,x ,nd. In view of the work by Katsevich6 and Tuy,25

our main contributions include(1) a proof of the solution t
the exact cone-beam reconstruction in the general case
(2) a specification of filtering directions used in the gen
solution.

After the acceptance of this paper, we noticed a rec
published note by Zou and Pan,27 in which a revised proof o
the backprojection-filtration(BPF) and FBP reconstructio
formulas was given in the setting of a standard helical c
beam scanning. As they pointed out,27 “the results can als
be extended to general, smooth trajectories.”

In conclusion, we have presented a general FBP for
of Katsevich-type, and provided an algorithm for exact
age reconstruction from cone-beam data along a rather
ible scanning curve. In the derivation, we have used ana
techniques instead of geometric arguments. As a resul
formula can be used to reconstruct images on any cho
long as a scanning curve runs from one endpoint of the
ment to the other endpoint. This can be considered as a
eralization of Orlov’s16 classical theorem from the parall
beam case to the cone-beam case. Further research effo
being devoted to optimization of filtering directions a
comparison between filtered backprojection and b
projected filtration methods.
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