
Appendix:
Useful Mathematical Techniques

This appendix contains concise reviews of various mathematical techniques
used in this book. We start with formulae useful for solving triangles, both
planar and spherical. Next, some aspects of the manipulation of vectors
are summarized. These include solution methods for vector equations and
conventions for differentiation with respect to a vector and a matrix. Least-
squares methods for linear systems come next. These are followed by a
review of optimization methods, both unconstrained and constrained. The
appendix ends with a look at the calculus of variations.

A.1 Solving Triangles

Suppose a planar triangle has sides a, b, and c with opposite angles A, B,
and C (figure A-1a). The diameter of the circumscribed circle equals the
length of one side divided by the sine of the opposite angle. Since this is
true for all three choices of sides, we have

a

sin A
=

b

sin B
=

c

sin C
.

This is the well-known law of sines. The law of cosines is given by

a2 = b2 + c2 − 2bc cos A.
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Two similar formulae can be obtained by simultaneous cyclical permutation
of a, b, c and A, B, C. The projection theorem states that

c = a cos B + b cos A.

(There are many other useful relationships, but we can usually manage
with just these three; others can be derived from them if necessary.) The
area of the triangle can be written

S =
1
2
ab sin C.

A spherical triangle is a figure on the sphere whose three sides are seg-
ments of great circles (figure A-1b). Suppose that the angles of intersection
at the three corners are A, B, and C. On the unit sphere, the length of a
side is equal to the angle it subtends at the center of the sphere. Let the
lengths of the three sides be a, b, and c. In the case of a spherical triangle,
the law of sines is

sin a

sin A
=

sin b

sin B
=

sin c

sin C
.

The law of cosines for the sides is

cos a = cos b cos c + sin b sin c cos A,

while the law of cosines for the angles is

cos A = − cos B cos C + sin B sin C cos a.

There are two more formulae in each case obtained by simultaneous cyclical
permutation of a, b, c and A, B, C. (Other relations can be derived from
these if necessary.)

Sometimes it is difficult to determine which quadrant an angle lies in.
In this case, the rule of quadrants comes to the rescue: 1

2 (A + B) is in the
same quadrant as 1

2 (a + b). Finally, we note that the area of a spherical
triangle is

SR = R2ε.

Here R is the radius of the sphere, while ε = A + B + C − π is called the
spherical excess (measured in radians).
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A.2 Manipulation of Vectors

We shall assume that the reader is familiar with the properties of vector
addition, scalar multiplication, and dot- and cross-products. Vectors will
be denoted by boldface letters. We commonly deal with column vectors
and therefore have to take the transpose, indicated by the superscript T ,
when we want to write them in terms of the equivalent row vectors.

A.2.1 More Complex Products of Vectors

The vector triple product is defined as follows:

[ab c] = a · (b × c) = (a × b) · c.

The magnitude of the result is independent of the order of the vectors, since
it is the volume of the parallelepiped defined by the three vectors. The sign
of the result is the same for all triple products with the same cyclical order.
If the three vectors lie in a plane, they are linearly dependent, and in this
case the triple product is zero.

The following identities apply to other complicated products of vectors:

a × (b × c) = (c · a)b − (a · b)c,

(a × b) × c = (c · a)b − (b · c)a.

Thus we have

(
(a × b) × c

) · d +
(
(b × c) × a

) · d +
(
(c × a) × b

) · d = 0,

a × (
b × (c × d)

)
= (b · d)(c × a) − (b · c)(d × a),

(a × b) · (c × d) = (c · a)(b · d) − (d · a)(b · c),
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and from these we can derive

(a × b) · (c × d) + (b × c) · (a × d) + (c × a) · (b × d) = 0,

|a × b|2 = |a|2 |b|2 − (a · b)2.

Note that this last quantity cannot be negative. Also,

(a × b) × (c × d) = [dab]c − [ab c]d,

(a × b) × (c × d) = [cda]b − [bcd]a.

From this it follows that
[
(a × b) (c × d) (e × f)

]
= [dab] [c e f ] − [ab c] [de f ],

and so [
(a × b) (b × c) (c × a)

]
= [ab c]2.

We can express any given vector d in terms of any three independent
vectors a, b, and c:

[ab c]d = [bcd]a + [dca]b + [dab]c.

This identity can be used to solve linear vector equations.

A.2.2 Solving Vector Equations

Suppose we are to find a vector x given its dot-products with three known
linearly independent vectors, a, b, and c. We have

x · a = α, x · b = β, and x · c = γ.

The unknown x can be expressed in terms of any three independent vectors.
Rather than use a, b, and c for this purpose, consider a linear combination
of their pairwise cross-products:

x = u(b × c) + v(c × a) + w(a × b).

It remains for us to determine the three scalars u, v, and w. Taking the
dot-product of the above expression with the three vectors a, b, and c, we
obtain

u[ab c] = α, v[ab c] = β, and w[ab c] = γ.

Thus we have

x =
1

[ab c]
(
α(b × c) + β(c × a) + γ(a × b)

)
.
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The same result could have been obtained by noting that

[ab c]x = (b × c)(a · x) + (c × a)(b · x) + (a × b)(c · x).

The above method amounts to solving three equations in three un-
knowns. The result can therefore be used in inverting a 3 × 3 matrix M
that has the vectors aT , bT , and cT as rows:

M =


 aT

bT

cT


 .

The determinant of this matrix is just [ab c]. According to the previous
result, the inverse of this matrix is just the matrix of column vectors ob-
tained by taking the pairwise cross-products, divided by the value of the
determinant:

M−1 =
1

[ab c]
(
(b × c) (c × a) (a × b)

)
.

The result is easily checked by matrix multiplication. There is a symmetric
form of this result in which the columns rather than the rows of the original
matrix are considered as vectors.

We turn now to other vector equations. Given an equation

λx + x × a = b,

we want to find the unknown x. It can be shown that

λ(b − λx) + λ−1(b · a)a − a2x = b × a,

so that

x =
λb + λ−1(b · a)a − b × a

λ2 + a2 ,

provided λ �= 0.
Given another vector equation,

λx + (x · b)a = c,

we again want to find x. Taking the dot-product with b, we get

(x · b)
(
λ + a · b)

= b · c,
so that

x =
1
λ

(
c − a

b · c
λ + a · b

)
,
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provided λ + a · b �= 0.
Next, consider finding a vector x, given its size and its dot-products

with two test vectors a and b. Thus

a · x = α, b · x = β, and x · x = γ.

Unless a and b are parallel, we know that a, b, and a × b are linearly
independent. Thus the unknown vector can be expressed as

x = ua + vb + w(a × b).

We can find u and v from

|a × b|2 u = +α(b · b) − β(a · b),

|a × b|2 v = −α(a · b) + β(a · a).

Moreover,

|a × b|2 (ua + vb) =
[
(b · b)a − (a · b)b

]
α − [

(a · b)a − (a · a)b
]
β,

and so

|a × b|2 |ua + vb|2 = |a × b|2 (ua + vb) · c = |βa − αb|2 .

Now
x · x = |ua + vb|2 + w2 |a × b|2 ,

or
|a × b|4 w2 = |a × b|2 γ − |βa − αb|2 .

We thus obtain the two solutions

w = ±
√

|a × b|2 γ − |βa − αb|2

|a × b|2 .

A.3 Vector and Matrix Differentiation

Often a set of equations can be written more compactly in vector notation.
The advantage of this may evaporate when it becomes necessary to look
at the derivatives of a scalar or vector with respect to the components of
a vector. It is, however, possible to use a consistent, compact notation in
this case also.
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A.3.1 Differentiation of a Scalar with Respect to a Vector

The derivative of a scalar with respect to a vector is the vector whose
components are the derivatives of the scalar with respect to each of the
components of the vector. If r = (x, y, z)T , then

df

dr
= (fx, fy, fz)

T
.

Consequently,
d

da
(a · b) = b and

d

db
(a · b) = a.

The length of a vector is the square root of the sum of the squares of its
elements,

|a| =
√

a · a.

We see that
d

da
|a|2 = 2a,

so that
d

da
|a| = â,

where â = a/ |a|; also,
d

da
[ab c] = b × c,

where [ab c] = a · (b × c) as before. Furthermore,

d

da
aT Mb = Mb and

d

db
aT Mb = MT a.

In particular,
d

dx
xT Mx = (M + MT )x.

The derivative of a scalar with respect to a matrix is the matrix whose
components are the derivatives of the scalar with respect to the elements
of the matrix. Thus if

M =
(

a b

c d

)
,

then
df

dM
=

( df
da

df
db

df
dc

df
dd

)
.
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Consequently,
d

dM
Trace(M) = I,

where the trace of a matrix is the sum of its diagonal elements and I is the
identity matrix. Also,

d

dM
aT Mb = abT .

In particular,
d

dM
xT Mx = xxT .

Note that abT is not the scalar a · b. The latter equals aT b. If
a = (ax, ay, az)

T and b = (bx, by, bz)
T , the dyadic product is

abT =


 axbx axby axbz

aybx ayby aybz

azbx azby azbz


 .

Another interesting matrix derivative is

d

dM
Det(M) = Det(M) (M−1)T .

That this is the matrix of cofactors can be shown as follows. Consider a
particular element mij of the matrix M. We can express the determinant
as the sum

Det(M) =
n∑

k=1

mikcik

by expanding along the row containing this element, where cij is the cofac-
tor of mij . Thus the derivative of the determinant with respect to mij is
just cij . (The cofactor cij is (−1)i+j times the determinant of the matrix
obtained by deleting the ith row and the jth column.) The result follows
from the fact that the inverse of a matrix equals the transpose of the matrix
of cofactors divided by the value of the determinant.

Next, if A and B are compatible matrices (that is, if A has as many
columns as B has rows), then

d

dA
Trace(AB) = BT and

d

dB
Trace(AB) = AT .

Also, in general,
d

dM
Trace(AMB) = AT BT .
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One norm of a matrix is the square root of the sum of squares of its
elements:

‖M‖2 = Trace(MT M).

We see that
d

dM
‖M‖2 = 2M,

and it follows from

‖A − B‖2 = Trace(AT A − BT A − AT B + BT B)

or
‖A − B‖2 = ‖A‖2 − 2 Trace(AT B) + ‖B‖2

that

d

dA
‖A − B‖2 = 2(A − B) and

d

dB
‖A − B‖2 = 2(B − A).

A.3.2 Differentiation of a Vector with Respect to a Vector

Occasionally it is also useful to define a matrix that contains as elements the
derivatives of the components of one vector with respect to the components
of another:

db
da

=




dbx

dax

dbx

day

dbx

daz

dby

dax

dby

day

dby

daz

dbz

dax

dbz

day

dbz

daz


 .

This matrix is just the Jacobian J of the coordinate transformation from
a to b. Clearly,

d

da
Ma = M

for any matrix M. We also see that

d

db
(a × b) =


 0 −az +ay

+az 0 −ax

−ay +ax 0


 ,

and so conclude that

a × b =


 0 −az +ay

+az 0 −ax

−ay +ax 0


b.
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This defines an isomorphism between vectors and antisymmetric matrices
that can be useful when we are dealing with cross-products.

A.4 Least-Squares Solutions of Linear Equations

Let a = Mb, where M is an m × n matrix, a is a vector with m com-
ponents, and b is a vector with n components. Suppose that we have n

measurements {ai} and {bi} and wish to calculate the matrix M. We
can form the matrices A and B by adjoining the vectors {ai} and {bi},
respectively. (That is, the ith column of the matrix A is ai.) Then

A = MB.

Now B is a square matrix. If it has an inverse, then

M = AB−1.

Suppose that we have more measurements. The problem is then overdeter-
mined, with more equations than unknowns. We can define an error vector
e with m components

ei = ai − Mbi.

Adjoining these k vectors, we obtain

E = A − MB.

The sum of the squares of the errors is∑
|ei|2 =

∑
ei · ei =

∑
eT

i ei,

or
Trace(ET E) = Trace

(
(A − MB)T (A − MB)

)
,

or

Trace(ET E) = Trace(AT A − BT MT A − AT MB + BT MT MB).

Thus

d

dM
Trace(ET E) = −ABT − ABT + (BT MT )T BT + (BT MT )T BT .

If this is to equal zero, then ABT = MBBT , that is,

M = ABT (BBT )−1.

The term BT (BBT )−1 is called the pseudoinverse of the nonsquare matrix
B.
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The problem is underdetermined, on the other hand, if there are fewer
equations than unknowns. There are then infinitely many solutions. In
this case the pseudoinverse provides the solution with least norm, but it
has to be computed differently. The pseudoinverse of a matrix B can be
defined as the limit

B+ = lim
δ→0

(
BT B + δ2I

)−1
BT .

Alternatively, it can be defined using the conditions of Penrose (see Albert
[1982]), which state that the matrix B+ is the pseudoinverse of the matrix
B if and only if

• BB+ and B+B are symmetric,

• B+BB+ = B,

• BB+B = B+.

The pseudoinverse can also be found using spectral decomposition. The
eigenvectors of the pseudoinverse are the same as those of the original
matrix, while the corresponding nonzero eigenvalues are the inverses of the
nonzero eigenvalues of the original matrix.

A.5 Lagrange Multipliers

The method of Lagrange multipliers provides powerful techniques for solv-
ing extremal problems with constraints. We first consider the case of a
single constraint equation, then generalize to several constraints.

A.5.1 One Constraint

Suppose we want to find an extremum of a function f(x, y) subject to the
constraint g(x, y) = 0. If we can solve the latter equation for y,

y = φ(x),

we can eliminate y by substitution and find the extrema of

f
(
x, φ(x)

)

by differentiating with respect to x. Using the chain rule for differentiation,
we obtain

∂f

∂x
+

∂f

∂y

dφ

dx
= 0.
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Often, however, it is impossible or impractical to find a closed-form solution
for y in terms of x. In this situation we use the method of Lagrange mul-
tipliers. We shall not prove that the method provides necessary conditions
for extrema, just indicate why it works.

Consider the curve defined by g(x, y) = 0. Let s be a parameter that
varies as we move along the curve. Then

∂g

∂x

dx

ds
+

∂g

∂y

dy

ds
= 0,

and the slope of this curve is

dy

dx
= −∂g

∂x

/
∂g

∂y
.

Substituting this for dφ/dx in the equation for the extrema derived earlier,
we obtain

∂f

∂x

∂g

∂y
=

∂f

∂y

∂g

∂x
.

This equation applies even when the constraint equation g(x, y) = 0 cannot
be solved explicitly for y.

Now consider instead the extrema of the function

F (x, y, λ) ≡ f(x, y) + λg(x, y).

Differentiating with respect to x, y, and λ, we have

∂f

∂x
+ λ

∂g

∂x
= 0 and

∂f

∂y
+ λ

∂g

∂y
= 0.

If we eliminate λ, we obtain again

∂f

∂x

∂g

∂y
=

∂f

∂y

∂g

∂x
.

Thus the extrema of f(x, y) subject to the constraint g(x, y) = 0 can be
found by finding the extrema of F (x, y, λ).

To make this seem plausible, consider moving along the curve defined
by g(x, y) = 0, searching for an extremum of f(x, y). There can be no
extremum where the contours of constant f(x, y) cross the curve we are
following, since we can move a small distance along the curve and find a
slightly larger or slightly smaller value of f(x, y), as needed. The extrema
are where the contours of constant f(x, y) are parallel to the constraint
curve. Note also that the constraint curve in turn is a curve of constant
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g(x, y). Contours of constant f(x, y) are perpendicular to the gradient of
f(x, y),

∇f =
(

∂f

∂x
,
∂f

∂y

)T

,

while contours of constant g(x, y) are perpendicular to the gradient of
g(x, y),

∇g =
(

∂g

∂x
,
∂g

∂y

)T

.

These two gradients must be parallel.
Consider now finding an extremum of F (x, y, λ). Differentiation gives

us
∂f

∂x
+ λ

∂g

∂x
= 0 and

∂f

∂y
+ λ

∂g

∂y
= 0,

or (
∂f

∂x
,
∂f

∂y

)T

= −λ

(
∂g

∂x
,
∂g

∂y

)T

,

which is a statement of the condition that the two gradients must be par-
allel. The factor −λ is simply the ratio of the magnitudes of the two
gradients.

As an example, let us find the point on the line

x sin θ − y cos θ + ρ = 0

that is closest to the origin. Here we have to minimize x2 + y2 subject to
the given constraint. Conversely, we can minimize

(x2 + y2) + λ(x sin θ − y cos θ + ρ).

Differentiating with respect to x and y, we find

2x + λ sin θ = 0 and 2y − λ cos θ = 0.

Thus x cos θ + y sin θ = 0. Substituting in the constraint equation, we
obtain

x sin θ + x cos2 θ/ sin θ + ρ = 0, or x = −ρ sin θ,

and
−y sin2 θ/ cos θ − y cos θ + ρ = 0, or y = +ρ cos θ.

The same method applies if we have more than three independent
variables. To find an extremum of f(x, y, z) subject to the constraint
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g(x, y, z) = 0, we look for places where the surfaces of constant f(x, y, z)
are tangent to the surfaces of constant g(x, y, z). Because the gradient is
perpendicular to the tangent plane, we can also look for places where the
gradient of f(x, y, z) is parallel to the gradient of g(x, y, z). We thus look
for extrema of

f(x, y, z) + λg(x, y, z),

since this leads to the equations

∂f

∂x
+ λ

∂g

∂x
= 0,

∂f

∂y
+ λ

∂g

∂y
= 0,

∂f

∂z
+ λ

∂g

∂z
= 0,

or (
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)T

= −λ

(
∂g

∂x
,
∂g

∂y
,
∂g

∂z

)T

.

A.5.2 More than One Constraint

With three independent variables, we can add a second constraint. The
extrema of f(x, y, z) = 0 subject to the constraints g(x, y, z) = 0 and
h(x, y, z) = 0 are the same as the extrema of

f(x, y, z) + λg(x, y, z) + µh(x, y, z)

subject to those constraints. Differentiating with respect to x, y, and z

yields
∂f

∂x
+ λ

∂g

∂x
+ µ

∂h

∂x
= 0,

∂f

∂y
+ λ

∂g

∂y
+ µ

∂h

∂y
= 0,

∂f

∂z
+ λ

∂g

∂z
+ µ

∂h

∂z
= 0.

These equations state that the gradient of f must be a linear combination
of the gradients of g and h:

∇f = −λ∇g − µ∇h.
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The constraints g(x, y, z) = 0 and h(x, y, z) = 0 each define a surface. Their
intersection is the curve along which we search for extrema. The gradient
of a surface is perpendicular to the tangent plane. Thus curves on a surface
are perpendicular to the gradient. In particular, the intersection of the two
surfaces is perpendicular to both gradients. The curve of intersection is
thus parallel to the cross-product of the two gradients. At an extremum,
the gradient of f(x, y, z) should not have any component in this direction—
otherwise we can increase or decrease the value of f(x, y, z) by moving a
little along the curve. The gradient of f(x, y, z) will satisfy this condition
if and only if it can be expressed as a linear combination of the gradients
of g(x, y, z) and h(x, y, z).

As an example, let us find the box with largest volume subject to the
constraints that one face of the box has unit area and that the sum of the
width, height, and depth of the box is four. Let the dimensions of the box
be a, b, and c. We minimize

abc + λ(ab − 1) + µ(a + b + c − 4).

Differentiating with respect to a, b, and c yields

bc + λb + µ = 0,

ac + λa + µ = 0,

ab + µ = 0.

Eliminating λ and µ from these equations, we obtain a = b. From the first
constraint it follows that a = b = 1. The second constraint gives c = 2.

A.5.3 The General Case

Let x = (x1, x2, . . . , xn)T be a vector in an n-dimensional space. The set
of values x that satisfy the constraint g(x) = 0 form a subspace. Consider
some curve lying entirely in this subspace. Let s be a parameter that varies
as we move along this curve. The direction of the curve at a point is defined
by the tangent at that point,

dx
ds

=
(

dx1

ds
,
dx2

ds
, . . . ,

dxn

ds

)T

.

The rate of change of g(x) with s is given by

dg

ds
=

∂g

∂x1

dx1

ds
+

∂g

∂x2

dx2

ds
+ · · · +

∂g

∂xn

dxn

ds
= ∇g · dx

ds
,
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where ∇g is the gradient of g,

∇g =
(

∂g

∂x1
,

∂g

∂x2
, . . . ,

∂g

∂xn

)T

.

Because the curve remains in the subspace where g(x) = 0, we have

∇g · dx
ds

= 0.

That is, the curve must at each point be perpendicular to the gradient of
g(x). The allowed tangent directions at a particular point form an (n− 1)-
dimensional subspace as long as the gradient is nonzero. We can see this by
noting that only n − 1 components of the tangent vector are independent,
the remaining component being constrained by the last equation.

Now suppose that there are m constraints gi(x) = 0 for i = 1, 2, . . . ,
m. The intersection of the subspaces defined by each of the constraints
individually is also a subspace. A curve lying in this common subspace
must be perpendicular to all of the gradients of the gi; thus

∇gi · dx
ds

= 0 for i = 1, 2, . . . , m.

If the m gradients are linearly independent, the common subspace has
dimension n − m, since only n − m components of the tangent vector can
be freely chosen, the rest being constrained by the m equations above.

If f(x) is to have an extremum at a point in the subspace defined by
the constraints, then the first derivative of f along any curve lying in the
subspace must be zero. Now

df

ds
= ∇f · dx

ds
,

so that we want

∇f · dx
ds

= 0

for any tangent direction that satisfies

∇gi · dx
ds

= 0 for i = 1, 2, . . . , m.

That is, at the extremum, the tangent must be perpendicular to the gra-
dient of f as well. This certainly is the case if the gradient of f happens
to be a linear combination of the gradients of the gi at the point. What
we want to show is that ∇f must be a linear combination of the ∇gi at an
extremum.
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It is easy to show that the constraints

∇gi · dx
ds

= 0

define a vector space. Any vector can be uniquely decomposed into a
component that lies in this subspace and one that is orthogonal to it.

The vector ∇f can be decomposed into a component g that is a linear
combination of the ∇gi and a component c that is orthogonal to each of
the ∇gi. Suppose that c is nonzero. Then

∇f · dx
ds

= g · dx
ds

+ c · dx
ds

= c · dx
ds

,

since g is a linear combination of the ∇gi. We can choose a curve for which

dx
ds

= c,

since ∇gi · c = 0 for i = 1, 2, . . . , m. In this case

∇f · dx
ds

= c · c �= 0.

This contradicts the condition for an extremum, and c must therefore be
zero after all. That is, ∇f must be a linear combination of the gradients
∇gi. We can write this condition as

∇f = −
m∑

i=1

λi∇gi

for some set of coefficients λi.
Consider now the function

f(x) +
m∑

i=1

λigi(x).

If we try to find an extremum by differentiating with respect to x, we obtain

∇f +
m∑

i=1

λi∇gi = 0,

which is just the equation shown to be satisfied at an extremum of f .
To summarize, then, the extrema of f(x), subject to the m constraints

gi(x) = 0, can be found by locating the extrema of

f(x) +
m∑

i=1

λigi(x)
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subject to the same constraints. Here x is a vector with n components and
n > m.

A.6 The Calculus of Variations

Calculus teaches us how to find extrema of functions. We are allowed to
vary one or more parameters of some function. A solution is a set of param-
eters that corresponds to an extremum of the function. Differentiation of
the function leads to a set of (algebraic) equations that represent necessary
conditions for an extremum.

In the calculus of variations we look for extrema of expressions that
depend on functions rather than parameters. Such expressions are called
functionals. Now we obtain differential equations rather than ordinary
equations to represent the necessary conditions for an extremum.

A.6.1 Problems without Constraints

As an example, consider the simple integral

I =
∫ x2

x1

F (x, f, f ′) dx.

Here F depends on the unknown function f and its derivative f ′. Let us
assume that the curve to be found must pass through the points f(x1) =
f1 and f(x2) = f2. Suppose that the function f(x) is a solution of the
extremum problem. Then we expect that small variations in f(x) should
not change the integral significantly.

Let η(x) be a test function. If we add ε η(x) to f(x), we expect that
the integral will change by an amount proportional to ε2 for small values
of ε. If, instead, it varied linearly with ε, we could increase or decrease
the integral as desired and would therefore not be at an extremum. To be
precise, we want

dI

dε

∣∣∣∣
ε=0

= 0.

This must be true for all test functions η(x).
In our specific problem, we must have η(x1) = 0 and η(x2) = 0 to

satisfy the boundary conditions. Also, if f(x) is replaced by f(x) + ε η(x),
then f ′(x) is replaced by f ′(x) + ε η′(x). The integral then becomes

I =
∫ x2

x1

F (x, f + εη, f ′ + εη′) dx.
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If F is suitably differentiable, we can expand the integrand in a Taylor
series,

F (x, f + εη, f ′ + εη′)

= F (x, f, f ′) + ε
∂

∂f
F (x, f, f ′)η(x) + ε

∂

∂f ′ F (x, f, f ′)η′(x) + e,

where e consists of terms in higher powers of ε. Thus

I =
∫ x2

x1

(
F + εη(x)Ff + εη′Ff ′ + e

)
dx,

and differentiating with respect to ε and setting ε equal to zero yields

0 =
∫ x2

x1

(
η(x)Ff + η′(x)Ff ′

)
dx.

Using integration by parts, we see that
∫ x2

x1

η′(x)Ff ′ dx = [η(x)Ff ′ ]x2
x1

−
∫ x2

x1

η(x)
d

dx
Ff ′ dx,

where the first term is zero because of the boundary conditions. We must
therefore have

0 =
∫ x2

x1

η(x)
(

Ff − d

dx
Ff ′

)
dx.

If this is to be true for all test functions η(x), then

Ff − d

dx
Ff ′ = 0.

This is called the Euler equation for this problem.
The method can be generalized in a number of ways. First, suppose

that the boundary conditions f(x1) = f1 and f(x2) = f2 are not given.
Then in order for the term

[η(x)Ff ′ ]x2
x1

to be zero for all possible test functions η(x), we must introduce the natural
boundary conditions

Ff ′ = 0 at x = x1 and x = x2.

Next, the integrand might contain higher derivatives,

I =
∫ x2

x1

F (x, f, f ′, f ′′, . . . ) dx.
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The Euler equation in this case becomes

Ff − d

dx
Ff ′ +

d2

dx2 Ff ′′ − · · · = 0.

In this case we must specify the boundary values of all but the highest
derivatives in order to pose the problem properly.

We can also treat the case in which the integrand depends on several
functions f1(x), f2(x), . . . instead of just one. That is,

I =
∫ x2

x1

F (x, f1, f2, . . . , f
′
1, f

′
2, . . . ) dx.

In this case there are as many Euler equations as there are unknown func-
tions:

Ffi
− d

dx
Ff ′

i
= 0.

Consider next a case in which there are two independent variables x

and y and we are to find a function f(x, y) that yields an extremum of the
integral

I =
∫∫

D

F (x, y, f, fx, fy) dx dy.

Here fx and fy are the partial derivatives of f with respect to x and y,
respectively, and the integral is over some simply-connected closed region
D. We introduce a test function η(x, y) and add ε η(x, y) to f(x, y). We
are given the values of f(x, y) on the boundary ∂D of the region, so the
test function must be zero on the boundary. Taylor series expansion yields

F (x, y, f + εη, fx + εηx, fy + εηy)

= F (x, y, f, fx, fy) + ε
∂

∂f
F (x, y, f, fx, fy)η(x, y)

+ ε
∂

∂fx
F (x, y, f, fx, fy)ηx(x, y) + ε

∂

∂fy
F (x, y, f, fx, fy)ηy(x, y) + e,

where e consists of terms in higher powers of ε. Thus

I =
∫∫

D

(
F + εηFf + εηxFfx + εηyFfy

)
dx dy,

and differentiating with respect to ε and setting ε equal to zero yields

0 =
∫∫

D

(
ηFf + ηxFfx

+ ηyFfy

)
dx dy.
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Now by Gauss’s integral theorem,
∫∫

D

(
∂Q

∂x
+

∂P

∂y

)
dx dy =

∫
∂D

(
Q dy − P dx

)
,

so that∫∫
D

(
∂

∂x
(ηFfx) +

∂

∂y
(ηFfy )

)
dx dy =

∫
∂D

(
ηFfx dy − ηFfy dx

)
.

Given the boundary conditions, the term on the right must be zero, so that
∫∫

D

(
ηxFfx + ηyFfy

)
dx dy = −

∫∫
D

(
η

∂

∂x
Ffx + η

∂

∂y
Ffy

)
dx dy.

Consequently,

0 =
∫∫

D

η

(
Ff − ∂

∂x
Ffx

− ∂

∂y
Ffy

)
dx dy

for all test functions η. We must have, then, that

Ff − ∂

∂x
Ffx − ∂

∂y
Ffy = 0.

Here the Euler equation is a partial differential equation. An immediate
extension is to the case in which the value of f on the boundary ∂D is not
specified. For the integral

∫
∂D

η
(
Ffx

dy − Ffy
dx

)

to be zero for all test functions η, we must have

Ffx

dy

ds
= Ffy

dx

ds
,

where s is a parameter that varies along the boundary.
The extension to more than two independent variables is also immedi-

ate.

A.6.2 Variational Problems with Constraints

A problem in the calculus of variations can also have constraints. Suppose,
for example, that we want to find an extremum of

I =
∫ x2

x1

F (x, f1, f2, . . . , fn, f ′
1, f

′
2, . . . , f

′
n) dx
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subject to the constraints gi(x, f1, f2, . . . , fn) = 0 for i = 1, 2, . . . , m, with
m < n. We can solve the modified Euler equations

∂Φ
∂fi

− d

dx

∂Φ
∂f ′

i

= 0 for i = 1, 2, . . . , n

subject to the constraints. Here

Φ ≡ F +
m∑

i=1

λi(x)gi(x, f1, f2, . . . , fn).

The unknown functions λi(x) are again called Lagrange multipliers.
Constraints in the form of integrals are treated similarly. Suppose we

want to find an extremum of the integral

I =
∫ x2

x1

F (x, f1, f2, . . . , fn, f ′
1, f

′
2, . . . , f

′
n) dx

subject to the constraints
∫ x2

x1

gi(x, f, f1, f2, . . . , fn, f ′
1, f

′
2, . . . , f

′
n) dx = ci for i = 1, 2, . . . , m,

where the ci are given constants. We now solve the modified Euler equa-
tions

∂Ψ
∂fi

− d

dx

∂Ψ
∂f ′

i

= 0 for i = 1, 2, . . . , m

subject to the constraints. Here

Ψ ≡ F +
m∑

i=1

λigi(x, f1, f2, . . . , fn).

The unknown constants λi are still called Lagrange multipliers.
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Hamming’s Numerical Methods for Scientists and Engineers [1962].


