
2

Image Formation & Image Sensing

In this chapter we explore how images are formed and how they are sensed
by a computer. Understanding image formation is a prerequisite for full
understanding of the methods for recovering information from images. In
analyzing the process by which a three-dimensional world is projected onto
a two-dimensional image plane, we uncover the two key questions of image
formation:

• What determines where the image of some point will appear?

• What determines how bright the image of some surface will be?

The answers to these two questions require knowledge of image projection
and image radiometry, topics that will be discussed in the context of simple
lens systems.

A crucial notion in the study of image formation is that we live in a
very special visual world. It has particular features that make it possi-
ble to recover information about the three-dimensional world from one or
more two-dimensional images. We discuss this issue and point out imag-
ing situations where these special constraint do not apply, and where it is
consequently much harder to extract information from images.

We also study the basic mechanism of typical image sensors, and how
information in different spectral bands may be obtained and processed.
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Following a brief discussion of color, the chapter closes with a discussion of
noise and reviews some concepts from the fields of probability and statis-
tics. This is a convenient point to introduce convolution in one dimension,
an idea that will be exploited later in its two-dimensional generalization.
Readers familiar with these concepts may omit these sections without loss
of continuity. The chapter concludes with a discussion of the need for
quantization of brightness measurements and for tessellations of the image
plane.

2.1 Two Aspects of Image Formation

Before we can analyze an image, we must know how it is formed. An image
is a two-dimensional pattern of brightness. How this pattern is produced
in an optical image-forming system is best studied in two parts: first, we
need to find the geometric correspondence between points in the scene and
points in the image; then we must figure out what determines the brightness
at a particular point in the image.

2.1.1 Perspective Projection

Consider an ideal pinhole at a fixed distance in front of an image plane
(figure 2-1). Assume that an enclosure is provided so that only light coming
through the pinhole can reach the image plane. Since light travels along
straight lines, each point in the image corresponds to a particular direction
defined by a ray from that point through the pinhole. Thus we have the
familiar perspective projection.

We define the optical axis, in this simple case, to be the perpendic-
ular from the pinhole to the image plane. Now we can introduce a con-
venient Cartesian coordinate system with the origin at the pinhole and
z-axis aligned with the optical axis and pointing toward the image. With
this choice of orientation, the z components of the coordinates of points
in front of the camera are negative. We use this convention, despite the
drawback, because it gives us a convenient right-hand coordinate system
(with the x-axis to the right and the y-axis upward).

We would like to compute where the image P ′ of the point P on some
object in front of the camera will appear (figure 2-1). We assume that no
other object lies on the ray from P to the pinhole O. Let r = (x, y, z)T be
the vector connecting O to P , and r′ = (x′, y′, f ′)T be the vector connecting
O to P ′. (As explained in the appendix, vectors will be denoted by boldface
letters. We commonly deal with column vectors, and so must take the
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transpose, indicated by the superscript T , when we want to write them in
terms of the equivalent row vectors.)

Here f ′ is the distance of the image plane from the pinhole, while x′

and y′ are the coordinates of the point P ′ in the image plane. The two
vectors r and r′ are collinear and differ only by a (negative) scale factor.
If the ray connecting P to P ′ makes an angle α with the optical axis, then
the length of r is just

r = −z sec α = −(r · ẑ) sec α,

where ẑ is the unit vector along the optical axis. (Remember that z is
negative for a point in front of the camera.)

The length of r′ is

r′ = f ′ sec α,

and so

1
f ′ r

′ =
1

r · ẑ r.
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In component form this can be written as

x′

f ′ =
x

z
and

y′

f ′ =
y

z
.

Sometimes image coordinates are normalized by dividing x′ and y′ by f ′

in order to simplify the projection equations.

2.1.2 Orthographic Projection

Suppose we form the image of a plane that lies parallel to the image at
z = z0. Then we can define m, the (lateral) magnification, as the ratio
of the distance between two points measured in the image to the distance
between the corresponding points on the plane. Consider a small interval
(δx, δy, 0)T on the plane and the corresponding small interval (δx′, δy′, 0)T

in the image. Then

m =

√
(δx′)2 + (δy′)2√
(δx)2 + (δy)2

=
f ′

−z0
,

where −z0 is the distance of the plane from the pinhole. The magnification
is the same for all points in the plane. (Note that m < 1, except in the
case of microscopic imaging.)

A small object at an average distance −z0 will give rise to an image that
is magnified by m, provided that the variation in z over its visible surface
is not significant compared to −z0. The area occupied by the image of
an object is proportional to m2. Objects at different distances from the
imaging system will, of course, be imaged with different magnifications.
Let the depth range of a scene be the range of distances of surfaces from
the camera. The magnification is approximately constant when the depth
range of the scene being imaged is small relative to the average distance of
the surfaces from the camera. In this case we can simplify the projection
equations to read

x′ = −mx and y′ = −my,

where m = f ′/(−z0) and −z0 is the average value of −z. Often the scaling
factor m is set to 1 or −1 for convenience. Then we can further simplify
the equations to become

x′ = x and y′ = y.

This orthographic projection (figure 2-2), can be modeled by rays parallel
to the optical axis (rather than ones passing through the origin). The
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difference between perspective and orthographic projection is small when
the distance to the scene is much larger than the variation in distance
among objects in the scene.

The field of view of an imaging system is the angle of the cone of
directions encompassed by the scene that is being imaged. This cone of
directions clearly has the same shape and size as the cone obtained by
connecting the edge of the image plane to the center of projection. A
“normal” lens has a field of view of perhaps 25◦ by 40◦. A telephoto lens
is one that has a long focal length relative to the image size and thus a
narrow field of view. Conversely, a wide-angle lens has a short focal length
relative to the image size and thus a wide field of view. A rough rule of
thumb is that perspective effects are significant when a wide-angle lens is
used, while images obtained using a telephoto lenses tend to approximate
orthographic projection. We shall show in exercise 2-11 that this rule is
not exact.
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2.2 Brightness

The more difficult, and more interesting, question of image formation is
what determines the brightness at a particular point in the image. Bright-
ness is an informal term used to refer to at least two different concepts:
image brightness and scene brightness. In the image, brightness is related
to energy flux incident on the image plane and can be measured in a num-
ber of ways. Here we introduce the term irradiance to replace the informal
term image brightness. Irradiance is the power per unit area (W·m−2—
watts per square meter) of radiant energy falling on a surface (figure 2-3a).
In the figure, E denotes the irradiance, while δP is the power of the radiant
energy falling on the infinitesimal surface patch of area δA. The blackening
of a film in a camera, for example, is a function of the irradiance. (As we
shall discuss a little later, the measurement of brightness in the image also
depends on the spectral sensitivity of the sensor.) The irradiance at a par-
ticular point in the image will depend on how much light arrives from the
corresponding object point (the point found by following the ray from the
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image point through the pinhole until it meets the surface of an object).
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In the scene, brightness is related to the energy flux emitted from a
surface. Different points on the objects in front of the imaging system will
have different brightnesses, depending on how they are illuminated and
how they reflect light. We now introduce the term radiance to substitute
for the informal term scene brightness. Radiance is the power per unit
foreshortened area emitted into a unit solid angle (W·m−2·sr−1—watts per
square meter per steradian) by a surface (figure 2-3b). In the figure, L is the
radiance and δ2P is the power emitted by the infinitesimal surface patch
of area δA into an infinitesimal solid angle δω. The apparent complexity
of the definition of radiance stems from the fact that a surface emits light
into a hemisphere of possible directions, and we obtain a finite amount
only by considering a finite solid angle of these directions. In general the
radiance will vary with the direction from which the object is viewed. We
shall discuss radiometry in detail later, when we introduce the reflectance
map.

We are interested in the radiance of surface patches on objects because
what we measure, image irradiance, turns out to be proportional to scene
radiance, as we show later. The constant of proportionality depends on the
optical system. To gather a finite amount of light in the image plane we
must have an aperture of finite size. The pinhole, introduced in the last
section, must have a nonzero diameter. Our simple analysis of projection
no longer applies, though, since a point in the environment is now imaged
as a small circle. This can be seen by considering the cone of rays passing
through the circular pinhole with its apex at the object point.

We cannot make the pinhole very small for another reason. Because
of the wave nature of light, diffraction occurs at the edge of the pinhole
and the light is spread over the image. As the pinhole is made smaller and
smaller, a larger and larger fraction of the incoming light is deflected far
from the direction of the incoming ray.

2.3 Lenses

In order to avoid the problems associated with pinhole cameras, we now
consider the use of a lens in an image-forming system. An ideal lens pro-
duces the same projection as the pinhole, but also gathers a finite amount
of light (figure 2-4). The larger the lens, the larger the solid angle it sub-
tends when seen from the object. Correspondingly it intercepts more of
the light reflected from (or emitted by) the object. The ray through the
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center of the lens is undeflected. In a well-focused system the other rays
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are deflected to reach the same image point as the central ray.
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An ideal lens has the disadvantage that it only brings to focus light
from points at a distance −z given by the familiar lens equation

1
z′ +

1
−z

=
1
f

,

where z′ is the distance of the image plane from the lens and f is the focal
length (figure 2-4). Points at other distances are imaged as little circles.
This can be seen by considering the cone of light rays passing through the
lens with apex at the point where they are correctly focused. The size of
the blur circle can be determined as follows: A point at distance −z is
imaged at a point z′ from the lens, where

1
z′ +

1
−z

=
1
f

,

and so

(z′ − z′) =
f

(z + f)
f

(z + f)
(z − z).

If the image plane is situated to receive correctly focused images of objects
at distance −z, then points at distance −z will give rise to blur circles of
diameter

d

z′ |z′ − z′| ,

where d is the diameter of the lens. The depth of field is the range of
distances over which objects are focused “sufficiently well,” in the sense
that the diameter of the blur circle is less than the resolution of the imaging
device. The depth of field depends, of course, on what sensor is used, but
in any case it is clear that the larger the lens aperture, the less the depth
of field. Clearly also, errors in focusing become more serious when a large
aperture is employed.

Simple ray-tracing rules can help in understanding simple lens combi-
nations. As already mentioned, the ray through the center of the lens is
undeflected. Rays entering the lens parallel to the optical axis converge to
a point on the optical axis at a distance equal to the focal length. This fol-
lows from the definition of focal length as the distance from the lens where
the image of an object that is infinitely far away is focused. Conversely,
rays emitted from a point on the optical axis at a distance equal to the focal
length from the lens are deflected to emerge parallel to the optical axis on
the other side of the lens. This follows from the reversibility of rays. At an
interface between media of different refractive indices, the same reflection
and refraction angles apply to light rays traveling in opposite directions.
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A simple lens is made by grinding and polishing a glass blank so that
its two surfaces have shapes that are spherical. The optical axis is the line
through the centers of the two spheres. Any such simple lens will have
a number of defects or aberrations. For this reason one usually combines
several simple lenses, carefully lining up their individual optical axes, so as
to make a compound lens with better properties.

A useful model of such a system of lenses is the thick lens (figure 2-5).
One can define two principal planes perpendicular to the optical axis, and
two nodal points where these planes intersect the optical axis. A ray arriv-
ing at the front nodal point leaves the rear nodal point without changing
direction. This defines the projection performed by the lens. The distance
between the two nodal points is the thickness of the lens. A thin lens is
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one in which the two nodal points can be considered coincident.
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It is theoretically impossible to make a perfect lens. The projection
will never be exactly like that of an ideal pinhole. More important, exact
focusing of all rays cannot be achieved. A variety of aberrations occur. In
a well-designed lens these defects are kept to a minimum, but this becomes
more difficult as the aperture of the lens is increased. Thus there is a
trade-off between light-gathering power and image quality.

A defect of particular interest to us here is called vignetting. Imagine
several circular diaphragms of different diameter, stacked one behind the
other, with their centers on a common line (figure 2-6). When you look
along this common line, the smallest diaphragm will limit your view. As
you move away from the line, some of the other diaphragms will begin to
occlude more, until finally nothing can be seen. Similarly, in a simple lens,
all the rays that enter the front surface of the lens end up being focused
in the image. In a compound lens, some of the rays that pass through
the first lens may be occluded by portions of the second lens, and so on.
This will depend on the inclination of the entering ray with respect to the
optical axis and its distance from the front nodal point. Thus points in
the image away from the optical axis benefit less from the light-gathering
power of the lens than does the point on the optical axis. There is a falloff
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in sensitivity with distance from the center of the image.
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Another important consideration is that the aberrations of a lens in-
crease in magnitude as a power of the angle between the incident ray and
the optical axis. Aberrations are classified by their order, that is, the power
of the angle that occurs in this relationship. Points on the optical axis may
be quite well focused, while those in a corner of the image are smeared out.
For this reason, only a limited portion of the image plane is usable. The
magnitude of an aberration defect also increases as a power of the distance
from the optical axis at which a ray passes through the lens. Thus the
image quality can be improved by using only the central portion of a lens.

One reason for introducing diaphragms into a lens system is to im-
prove image quality in a situation where it is not necessary to utilize fully
the light-gathering power of the system. As already mentioned, fixed di-
aphragms ensure that rays entering at a large angle to the optical axis do
not pass through the outer regions of any of the lenses. This improves
image quality in the outer regions of the image, but at the same time
greatly increases vignetting. In most common uses of lenses this is not
an important matter, since people are astonishingly insensitive to smooth
spatial variations in image brightness. It does matter in machine vision,
however, since we use the measurements of image brightness (irradiance)
to determine the scene brightness (radiance).

2.4 Our Visual World

How can we hope to recover information about the three-dimensional world
using a mere two-dimensional image? It may seem that the available in-
formation is not adequate, even if we take several images. Yet biological
systems interact intelligently with the environment using visual informa-
tion. The puzzle is solved when we consider the special nature of our usual
visual world. We are immersed in a homogeneous transparent medium, and
the objects we look at are typically opaque. Light rays are not refracted
or absorbed in the environment, and we can follow a ray from an image
point through the lens until it reaches some surface. The brightness at
a point in the image depends only on the brightness of the corresponding
surface patch. Surfaces are two-dimensional manifolds, and their shape can
be represented by giving the distance z(x′, y′) to the surface as a function
of the image coordinates x′ and y′.

This is to be contrasted with a situation in which we are looking into
a volume occupied by a light-absorbing material of varying density. Here
we may specify the density ρ(x, y, z) of the material as a function of the
coordinates x, y, and z. One or more images provide enough constraint to
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recover information about a surface, but not about a volume. In theory,
an infinite number of images is needed to solve the problem of tomography,
that is, to determine the density of the absorbing material.

Conditions of homogeneity and transparency may not always hold ex-
actly. Distant mountains appear changed in color and contrast, while in
deserts we may see mirages. Image analysis based on the assumption that
conditions are as stated may go awry when the assumptions are violated,
and so we can expect that both biological and machine vision systems will
be misled in such situations. Indeed, some optical illusions can be ex-
plained in this way. This does not mean that we should abandon these
additional constraints, for without them the solution of the problem of re-
covering information about the three-dimensional world from images would
be ambiguous.

Our usual visual world is special indeed. Imagine being immersed
instead in a world with varying concentrations of pigments dispersed within
a gelatinous substance. It would not be possible to recover the distributions
of these absorbing substances in three dimensions from one view. There
just would not be enough information. Analogously, single X-ray images
are not useful unless there happens to be sharp contrast between different
materials, like bone and tissue. Otherwise a very large number of views
must be taken and a tomographic reconstruction attempted. It is perhaps
a good thing that we do not possess Superman’s X-ray vision capabilities!

By and large, we shall confine our attention to images formed by con-
ventional optical means. We shall avoid high-magnification microscopic
images, for instance, where many substances are effectively transparent,
or at least translucent. Similarly, images on a very large scale often show
the effects of absorption and refraction in the atmosphere. Interestingly,
other modalities do sometimes provide us with images much like the ones
we are used to. Examples include scanning electron microscopes (SEM)
and synthetic-aperture radar systems (SAR), both of which produce im-
ages that are easy to interpret. So there is some hope of analyzing them
using the methods discussed here.

In view of the importance of surfaces, we might hope that a machine
vision system could be designed to recover the shapes of surfaces given one
or more images. Indeed, there has been some success in this endeavor, as
we shall see in chapter 10, where we discuss the recovery of shape from
shading. Detailed understanding of the imaging process allows us to re-
cover quantitative information from images. The computed shape of a
surface may be used in recognition, inspection, or in planning the path of
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a mechanical manipulator.

2.5 Image Sensing

Almost all image sensors depend on the generation of electron–hole pairs
when photons strike a suitable material. This is the basic process in bi-
ological vision as well as photography. Image sensors differ in how they
measure the flux of charged particles. Some devices use an electric field
in a vacuum to separate the electrons from the surface where they are lib-
erated (figure 2-7a). In other devices the electrons are swept through a
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depleted zone in a semiconductor (figure 2-7b).
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Not all incident photons generate an electron–hole pair. Some pass
right through the sensing layer, some are reflected, and others lose energy
in different ways. Further, not all electrons find their way into the detect-
ing circuit. The ratio of the electron flux to the incident photon flux is
called the quantum efficiency, denoted q(λ). The quantum efficiency de-
pends on the energy of the incident photon and hence on its wavelength λ.
It also depends on the material and the method used to collect the liber-
ated electrons. Older vacuum devices tend to have coatings with relatively
low quantum efficiency, while solid-state devices are near ideal for some
wavelengths. Photographic film tends to have poor quantum efficiency.

2.5.1 Sensing Color

The sensitivity of a device varies with the wavelength of the incident light.
Photons with little energy tend to go right through the material, while
very energetic photons may be stopped before they reach the sensitive
layer. Each material has its characteristic variation of quantum efficiency
with wavelength.

For a small wavelength interval δλ, let the flux of photons with energy
equal to or greater than λ, but less than λ + δλ, be b(λ) δλ. Then the
number of electrons liberated is∫ ∞

−∞
b(λ)q(λ) dλ.

If we use sensors with different photosensitive materials, we obtain different
images because their spectral sensitivities are different. This can be helpful
in distinguishing surfaces that have similar gray-levels when imaged with
one sensor, yet give rise to different gray-levels when imaged with a differ-
ent sensor. Another way to achieve this effect is to use the same sensing
material but place filters in front of the camera that selectively absorb dif-
ferent parts of the spectrum. If the transmission of the ith filter is fi(λ),
the effective quantum efficiency of the combination of that filter and the
sensor is fi(λ)q(λ).

How many different filters should we use? The ability to distinguish
among materials grows as more images are taken through more filters.
The measurements are correlated, however, because most surfaces have a
smooth variation of reflectance with wavelength. Typically, little is gained
by using very many filters.

The human visual system uses three types of sensors, called cones, in
daylight conditions. Each of these cone types has a particular spectral
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sensitivity, one of them peaking in the long wavelength range, one in the
middle, and one in the short wavelength range of the visible spectrum,
which extends from about 400 nm to about 700 nm. There is considerable
overlap between the sensitivity curves. Machine vision systems often also
use three images obtained through red, green, and blue filters. It should
be pointed out, however, that the results have little to do with human
color sensations unless the spectral response curves happen to be linear
combinations of the human spectral response curves, as discussed below.

One property of a sensing system with a small number of sensor types
having different spectral sensitivities is that many different spectral distri-
butions will produce the same output. The reason is that we do not measure
the spectral distributions themselves, but integrals of their product with
the spectral sensitivity of particular sensor types. The same applies to bio-
logical systems, of course. Colors that appear indistinguishable to a human
observer are said to be metameric. Useful information about the spectral
sensitivities of the human visual system can be gained by systematically
exploring metamers. The results of a large number of color-matching ex-
periments performed by many observers have been averaged and used to
calculate the so-called tristimulus or standard observer curves. These have
been published by the Commission Internationale de l’Eclairage (CIE) and
are shown in figure 2-8. A given spectral distribution is evaluated as fol-
lows: The spectral distribution is multiplied in turn by each of the three
functions x(λ), y(λ), and z(λ). The products are integrated over the visible
wavelength range. The three results X, Y , and Z are called the tristimulus
values. Two spectral distributions that result in the same values for these
three quantities appear indistinguishable when placed side by side under
controlled conditions. (By the way, the spectral distributions used here are
expressed in terms of energy per unit wavelength interval, not photon flux.)

The actual spectral response curves of the three types of cones cannot
be determined in this way, however. There is some remaining ambiguity.
It is known that the tristimulus curves are fixed linear transforms of these
spectral response curves. The coefficients of the transformation are not
known accurately.

We show in exercise 2-14 that a machine vision system with the same
color-matching properties as the human color vision system must have sen-
sitivities that are linear transforms of the human cone response curves. This
in turn implies that the sensitivities must be linear transforms of the known
standard observer curves. Unfortunately, this rule has rarely been observed
when color-sensing systems were designed in the past. (Note that we are
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not addressing the problem of color sensations; we are only interested in
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having the machine confuse the same colors as the standard observer.)
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2.5.2 Randomness and Noise

It is difficult to make accurate measurements of image brightness. In this
section we discuss the corrupting influence of noise on image sensing. In
order to do this, we need to discuss random variables and the probability
density distribution. We shall also take the opportunity to introduce the
concept of convolution in the one-dimensional case. Later, we shall en-
counter convolution again, applied to two-dimensional images. The reader
familiar with these concepts may want to skip this section.

Measurements are affected by fluctuations in the signal being mea-
sured. If the measurement is repeated, somewhat differing results may be
obtained. Typically, measurements will cluster around the “correct” value.
We can talk of the probability that a measurement will fall within a certain
interval. Roughly speaking, this is the limit of the ratio of the number of
measurements that fall in that interval to the total number of trials, as the
total number of trials tends to infinity. (This definition is not quite ac-
curate, since any particular sequence of experiments may produce results
that do not tend to the expected limit. It is unlikely that they are far off,
however. Indeed, the probability of the limit tending to an answer that is
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not the desired one is zero.)
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Now we can define the probability density distribution, denoted p(x).
The probability that a random variable will be equal to or greater than
x, but less than x + δx, tends to p(x)δx as δx tends to zero. (There
is a subtle problem here, since for a given number of trials the number
falling in the interval will tend to zero as the size of the interval tends
to zero. This problem can be sidestepped by considering the cumulative
probability distribution, introduced below.) A probability distribution can
be estimated from a histogram obtained from a finite number of trials
(figure 2-9). From our definition follow two important properties of any
probability distribution p(x):

p(x) ≥ 0 for all x, and
∫ ∞

−∞
p(x) dx = 1.

Often the probability distribution has a strong peak near the “correct,” or
“expected,” value. We may define the mean accordingly as the center of
area, µ, of this peak, defined by the equation

µ

∫ ∞

−∞
p(x) dx =

∫ ∞

−∞
x p(x) dx.

Since the integral of p(x) from minus infinity to plus infinity is one,

µ =
∫ ∞

−∞
x p(x) dx.

The integral on the right is called the first moment of p(x).
Next, to estimate the spread of the peak of p(x), we can take the second

moment about the mean, called the variance:

σ2 =
∫ ∞

−∞
(x − µ)2 p(x) dx.

The square root of the variance, called the standard deviation, is a useful
measure of the width of the distribution.

Another useful concept is the cumulative probability distribution,

P (x) =
∫ x

−∞
p(t) dt,

which tells us the probability that the random variable will be less than
or equal to x. The probability density distribution is just the derivative of
the cumulative probability distribution. Note that

lim
x→∞ P (x) = 1.
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One way to improve accuracy is to average several measurements, assuming
that the “noise” in them will be independent and tend to cancel out. To
understand how this works, we need to be able to compute the probability
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distribution of a sum of several random variables.
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Suppose that x is a sum of two independent random variables x1 and
x2 and that p1(x1) and p2(x2) are their probability distributions. How do
we find p(x), the probability distribution of x = x1 + x2? Given x2, we
know that x1 must lie between x − x2 and x + δx − x2 in order for x to lie
between x and x + δx (figure 2-10). The probability that this will happen
is p1(x−x2) δx. Now x2 can take on a range of values, and the probability
that it lies in a particular interval x2 to x2 + δx2 is just p2(x2) δx2. To
find the probability that x lies between x and x+ δx we must integrate the
product over all x2. Thus

p(x) δx =
∫ ∞

−∞
p1(x − x2) δx p2(x2) dx2,

or

p(x) =
∫ ∞

−∞
p1(x − t) p2(t) dt.

By a similar argument one can show that

p(x) =
∫ ∞

−∞
p2(x − t) p1(t) dt,

in which the roles of x1 and x2 are reversed. These correspond to two ways
of integrating the product of the probabilities over the narrow diagonal strip
(figure 2-10). In either case, we talk of a convolution of the distributions
p1 and p2, written as

p = p1 ⊗ p2.

We have just shown that convolution is commutative.
We show in exercise 2-16 that the mean of the sum of several random

variables is equal to the sum of the means, and that the variance of the
sum equals the sum of the variances. Thus if we compute the average of
N independent measurements,

x =
1
N

N∑
i=1

xi,

each of which has mean µ and standard deviation σ, the mean of the result
is also µ, while the standard deviation is σ/

√
N since the variance of the

sum is Nσ2. Thus we obtain a more accurate result, that is, one less
affected by “noise.” The relative accuracy only improves with the square
root of the number of measurements, however.
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A probability distribution that is of great practical interest is the nor-
mal or Gaussian distribution

p(x) =
1√
2πσ

e− 1
2 ( x−µ

σ )2

with mean µ and standard deviation σ. The noise in many measurement
processes can be modeled well using this distribution.

So far we have been dealing with random variables that can take on
values in a continuous range. Analogous methods apply when the possible
values are in a discrete set. Consider the electrons liberated during a fixed
interval by photons falling on a suitable material. Each such event is inde-
pendent of the others. It can be shown that the probability that exactly n

are liberated in a time interval T is

Pn = e−m mn

n!

for some m. This is the Poisson distribution. We can calculate the average
number liberated in time T as follows:

∞∑
n=1

ne−m mn

n!
= me−m

∞∑
n=1

mn−1

(n − 1)!
.

But
∞∑

n=1

mn−1

(n − 1)!
=

∞∑
n=0

mn

n!
= em,

so the average is just m. We show in exercise 2-18 that the variance is also
m. The standard deviation is thus

√
m, so that the ratio of the standard

deviation to the mean is 1/
√

m. The measurement becomes more accurate
the longer we wait, since more electrons are gathered. Again, the ratio of
the “signal” to the “noise” only improves as the square root of the average
number of electrons collected, however.

To obtain reasonable results, many electrons must be measured. It can
be shown that a Poisson distribution with mean m is almost the same as
a Gaussian distribution with mean m and variance m, provided that m is
large. The Gaussian distribution is often easier to work with. In any case,
to obtain a standard deviation that is one-thousandth of the mean, one
must wait long enough to collect a million electrons. This is a small charge
still, since one electron carries only

e = 1.602192 . . . × 10−19 Coulomb.
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Even a million electrons have a charge of only about 160 fC (femto-
Coulomb). (The prefix femto- denotes a multiplier of 10−15.) It is not
easy to measure such a small charge, since noise is introduced in the mea-
surement process.

The number of electrons liberated from an area δA in time δt is

N = δA δt

∫ ∞

−∞
b(λ) q(λ) dλ,

where q(λ) is the quantum efficiency and b(λ) is the image irradiance in
photons per unit area. To obtain a usable result, then, electrons must be
collected from a finite image area over a finite amount of time. There is
thus a trade-off between (spatial and temporal) resolution and accuracy.

A measurement of the number of electrons liberated in a small area
during a fixed time interval produces a result that is proportional to the
irradiance (for fixed spectral distribution of incident photons). These mea-
surements are quantized in order to read them into a digital computer.
This is done by analog-to-digital (A/D) conversion. The result is called a
gray-level. Since it is difficult to measure irradiance with great accuracy,
it is reasonable to use a small set of numbers to represent the irradiance
levels. The range 0 to 255 is often employed—requiring just 8 bits per
gray-level.

2.5.3 Quantization of the Image

Because we can only transmit a finite number of measurements to a com-
puter, spatial quantization is also required. It is common to make mea-
surements at the nodes of a square raster or grid of points. The image is
then represented as a rectangular array of integers. To obtain a reason-
able amount of detail we need many measurements. Television frames, for
example, might be quantized into 450 lines of 560 picture cells, sometimes
referred to as pixels.

Each number represents the average irradiance over a small area. We
cannot obtain a measurement at a point, as discussed above, because the
flux of light is proportional to the sensing area. At first this might appear
as a shortcoming, but it turns out to be an advantage. The reason is that
we are trying to use a discrete set of numbers to represent a continuous
distribution of brightness, and the sampling theorem tells us that this can
be done successfully only if the continuous distribution is smooth, that
is, if it does not contain high-frequency components. One way to make a
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smooth distribution of brightness is to look at the image through a filter
that averages over small areas.

What is the optimal size of the sampling areas? It turns out that
reasonable results are obtained if the dimensions of the sampling areas are
approximately equal to their spacing. This is fortunate because it allows us
to pack the image plane efficiently with sensing elements. Thus no photons
need be wasted, nor must adjacent sampling areas overlap.

We have some latitude in dividing up the image plane into sensing
areas. So far we have been discussing square areas on a square grid. The
picture cells could equally well be rectangular, resulting in a different res-
olution in the horizontal and vertical directions. Other arrangements are
also possible. Suppose we want to tile the plane with regular polygons. The
tiles should not overlap, yet together they should cover the whole plane.
We shall show in exercise 2-21 that there are exactly three tessellations,
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based on triangles, squares, and hexagons (figure 2-11).
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It is easy to see how a square sampling pattern is obtained simply by
taking measurements at equal intervals along equally spaced lines in the
image. Hexagonal sampling is almost as easy, if odd-numbered lines are
offset by half a sampling interval from even-numbered lines. In television
scanning, the odd-numbered lines are read out after all the even-numbered
lines because of field interlace, and so this scheme is particularly easy to
implement. Hexagons on a triangular grid have certain advantages, which
we shall come to later.

2.6 References

There are many standard references on basic optics, including Principles of
Optics: Electromagnetic Theory of Propagation, Interference and Diffrac-
tion of Light by Born & Wolf [1975], Handbook of Optics, edited by Driscoll
& Vaughan [1978], Applied Optics: A Guide to Optical System Design by
Levi [volume 1, 1968; volume 2, 1980], and the classic Optics by Sears
[1949]. Lens design and aberrations are covered by Kingslake in Lens De-
sign Fundamentals [1978]. Norton discusses the basic workings of a large
variety of sensors in Sensor and Analyzer Handbook [1982]. Barbe edited
Charge-Coupled Devices [1980], a book that includes some information on
the use of CCDs in image sensors.

There is no shortage of books on probability and statistics. One such
is Drake’s Fundamentals of Applied Probability Theory [1967].

Color vision is not treated in detail here, but is mentioned again in
chapter 9 where we discuss the recovery of lightness. For a general discus-
sion of color matching and tristimulus values see the first few chapters of
Color in Business, Science, and Industry by Judd & Wyszeck [1975].

Some issues of color reproduction, including what constitutes an ap-
propriate sensor system, are discussed by Horn [1984a]. Further references
on color vision may be found at the end of chapter 9.

Straight lines in the three-dimensional world are projected as straight
lines into the two-dimensional image. The projections of parallel lines inter-
sect in a vanishing point. This is the point where a line parallel to the given
lines passing through the center of projection intersects the image plane.
In the case of rectangular objects, a great deal of information can be re-
covered from lines in the images and their intersections. See, for example,
Barnard [1983].

When the medium between us and the scene being imaged is not per-
fectly transparent, the interpretation of images becomes more complicated.
See, for example, Sjoberg & Horn [1983]. The reconstruction of absorbing
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density in a volume from measured ray attenuation is the subject of to-
mography; a book on this subject has been edited by Herman [1979].

2.7 Exercises

2-1 What is the shape of the image of a sphere? What is the shape of the
image of a circular disk? Assume perspective projection and allow the disk to lie
in a plane that can be tilted with respect to the image plane.

2-2 Show that the image of an ellipse in a plane, not necessarily one parallel to
the image plane, is also an ellipse. Show that the image of a line in space is a line
in the image. Assume perspective projection. Describe the brightness patterns
in the image of a polyhedral object with uniform surface properties.

2-3 Suppose that an image is created by a camera in a certain world. Now
imagine the same camera placed in a similar world in which everything is twice
as large and all distances between objects have also doubled. Compare the new
image with the one formed in the original world. Assume perspective projection.

2-4 Suppose that an image is created by a camera in a certain world. Now
imagine the same camera placed in a similar world in which everything has half
the reflectance and the incident light has been doubled. Compare the new image
with the one formed in the original world. Hint: Ignore interflections, that is,
illumination of one part of the scene by light reflected from another.

2-5 Show that in a properly focused imaging system the distance f ′ from the
lens to the image plane equals (1+m)f , where f is the focal length and m is the
magnification. This distance is called the effective focal length. Show that the
distance between the image plane and an object must be(

m + 2 +
1
m

)
f.

How far must the object be from the lens for unit magnification?

2-6 What is the focal length of a compound lens obtained by placing two thin
lenses of focal length f1 and f2 against one another? Hint: Explain why an object
at a distance f1 on one side of the compound lens will be focused at a distance
f2 on the other side.

2-7 The f-number of a lens is the ratio of the focal length to the diameter of
the lens. The f-number of a given lens (of fixed focal length) can be increased
by introducing an aperture that intercepts some of the light and thus in effect
reduces the diameter of the lens. Show that image brightness will be inversely
proportional to the square of the f-number. Hint: Consider how much light is
intercepted by the aperture.
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2-8 When a camera is used to obtain metric information about the world, it
is important to have accurate knowledge of the parameters of the lens, including
the focal length and the positions of the principal planes. Suppose that a pattern
in a plane at distance x on one side of the lens is found to be focused best on a
plane at a distance y on the other side of the lens (figure 2-12). The distances
x and y are measured from an arbitrary but fixed point in the lens. How many
paired measurements like this are required to determine the focal length and
the position of the two principal planes? (In practice, of course, more than
the minimum required number of measurements would be taken, and a least-
squares procedure would be adopted. Least-squares methods are discussed in the
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appendix.)
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Suppose that the arbitrary reference point happens to lie between the two
principal planes and that a and b are the distances of the principal planes from
the reference point (figure 2-12). Note that a + b is the thickness of the lens, as
defined earlier. Show that

(ab + bf + fa) −
(
xi(f + b) + yi(f + a)

)
+ xiyi = 0,

where xi and yi are the measurements obtained in the ith experiment. Suggest
a way to find the unknowns from a set of nonlinear equations like this. Can a
closed-form solution be obtained for f , a, b?

2-9 Here we explore a restricted case of the problem tackled in the previous
exercise. Describe a method for determining the focal length and positions of the
principal planes of a lens from the following three measurements: (a) the position
of a plane on which a scene at infinity on one side of the lens appears in sharp
focus; (b) the position of a plane on which a scene at infinity on the other side of
the lens appears in sharp focus; (c) the positions of two planes, one on each side
of the lens, such that one plane is imaged at unit magnification on the other.

2-10 Here we explore what happens when the image plane is tilted slightly.
Show that in a pinhole camera, tilting the image plane amounts to nothing
more than changing the place where the optical axis pierces the image plane
and changing the perpendicular distance of the projection center from the image
plane. What happens in a camera that uses a lens? Hint: Is a camera with an
(ideal) lens different from a camera with a pinhole as far as image projection is
concerned?

How would you determine experimentally where the optical axis pierces the
image plane? Hint: It is difficult to find this point accurately.

2-11 It has been stated that perspective effects are significant when a wide-
angle lens is used, while images obtained using a telephoto lenses tend to ap-
proximate orthographic projection. Explain why these are only rough rules of
thumb.

2-12 Straight lines in the three-dimensional world are projected as straight
lines into the two-dimensional image. The projections of parallel lines intersect
in a vanishing point. Where in the image will the vanishing point of a particular
family of parallel lines lie? When does the vanishing point of a family of parallel
lines lie at infinity?

In the case of a rectangular object, a great deal of information can be recov-
ered from lines in the images and their intersections. The edges of a rectangular
solid fall into three sets of parallel lines, and so give rise to three vanishing points.
In technical drawing one speaks of one-point, two-point, and three-point perspec-
tive. These terms apply to the cases in which two, one, or none of three vanishing
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points lie at infinity. What alignment between the edges of the rectangular object
and the image plane applies in each case?

2-13 Typically, imaging systems are almost exactly rotationally symmetric
about the optical axis. Thus distortions in the image plane are primarily ra-
dial. When very high precision is required, a lens can be calibrated to determine
its radial distortion. Commonly, a polynomial of the form

∆r′ = k1(r
′) + k3(r

′)3 + k5(r
′)5 + · · ·

is fitted to the experimental data. Here r′ =
√

x′2 + y′2 is the distance of a
point in the image from the place where the optical axis pierces the image plane.
Explain why no even powers of r′ appear in the polynomial.

2-14 Suppose that a color-sensing system has three types of sensors and that
the spectral sensitivity of each type is a sum of scaled versions of the human cone
sensitivities. Show that two metameric colors will produce identical signals in
the sensors.

Now show that a color-sensing system will have this property for all metamers
only if the spectral sensitivity of each of its three sensor types is a sum of scaled
versions of the human cone sensitivities. Warning: The second part of this prob-
lem is much harder than the first.

2-15 Show that the variance can be calculated as

σ2 =
∫ ∞

−∞
x2p(x) dx − µ2.

2-16 Here we consider the mean and standard deviation of the sum of two
random variables.

(a) Show that the mean of x = x1 + x2 is the sum µ1 + µ2 of the means of the
independent random variables x1 and x2.

(b) Show that the variance of x = x1 + x2 is the sum σ2
1 + σ2

2 of the variances
of the independent random variables x1 and x2.

2-17 Suppose that the probability distribution of a random variable is

p(x) =

{
(1/2w), if |x| ≤ w;
0, if |x| > w.

What is the probability distribution of the average of two independent values
from this distribution?

2-18 Here we consider some properties of the Gaussian and the Poisson distri-
butions.
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(a) Show that the mean and variance of the Gaussian distribution

p(x) =
1√
2πσ

e− 1
2 ( x−µ

σ )2

are µ and σ2 respectively.

(b) Show that the mean and the variance of the Poisson distribution

pn = e−m mn

n!

are both equal to m.

2-19 Consider the weighted sum of independent random variables

N∑
i=1

wixi,

where xi has mean m and standard deviation σ. Assume that the weights wi

add up to one. What are the mean and standard deviation of the weighted sum?
For fixed N , what choice of weights minimizes the variance?

2-20 A television frame is scanned in 1/30 second. All the even-numbered lines
in one field are followed by all the odd-numbered lines in the other field. Assume
that there are about 450 lines of interest, each to be divided into 560 picture cells.
At what rate must the conversion from analog to digital form occur? (Ignore time
intervals between lines and between successive frames.)

2-21 Show that there are only three regular polygons with which the plane can
be tiled, namely (a) the equilateral triangle, (b) the square, and (c) the hexagon.
(By tiling we mean covering without gaps or overlap.)


