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Image Processing:
Discrete Images

In the previous chapter we explored linear, shift-invariant systems in the
continuous two-dimensional domain. In practice, we deal with images that
are both limited in extent and sampled at discrete points. The results
developed so far have to be specialized, extended, and modified to be useful
in this domain. Also, a few new aspects appear that must be treated
carefully.

The sampling theorem tells us under what circumstances a discrete
set of samples can accurately represent a continuous image. We also learn
what happens when the conditions for the application of this result are not
met. This has significant implications for the design of imaging systems.

Methods requiring transformation to the frequency domain have be-
come popular, in part because of algorithms that permit the rapid compu-
tation of the discrete Fourier transform. Care has to be taken, however,
since these methods assume that the signal is periodic. We discuss how
this requirement can be met and what happens when the assumption does
not apply.

7.1 Finite Image Size

In practice, images are always of finite size. Consider a rectangular image
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of width W and height H. Then the integrals in the Fourier transform no
longer need to be taken to infinity:

F (u, v) =
∫ H/2

−H/2

∫ W/2

−W/2
f(x, y)e−i(ux+vy) dx dy.

Curiously, we do not need to know F (u, v) for all frequencies in order to
reconstruct f(x, y). Knowing that f(x, y) = 0 for |x| > W/2 and |y| > H/2
provides a strong constraint. Put another way, there is a lot less information
in a function that is nonzero only over a finite part of the image plane than
in one that is not.

To see this, consider the image plane tiled with copies of the image.
That is, extend the image in a doubly periodic fashion into a function

f̃(x, y) =
{

f(x, y), for |x| ≤ W/2 and |y| ≤ H/2;
f(x − kW, y − lH), for |x| > W/2 or |y| > H/2,

where

k =
⌊

x + W/2
W

⌋
and l =

⌊
y + H/2

H

⌋
.

Here �x� is the largest integer that is not larger than x. The Fourier
transform of the repeated image is

F̃ (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f̃(x, y)e−i(ux+vy) dx dy

=
∞∑

k=−∞

∞∑
l=−∞

∫ H/2

−H/2

∫ W/2

−W/2
f(x, y) e−i(u(x−kW )+v(y−lH)) dx dy

=
∞∑

k=−∞

∞∑
l=−∞

eiukW eivlHF (u, v).

It is shown in exercise 7-1, using suitable convergence factors, that

∞∑
k=−∞

eikx = 2π

∞∑
k=−∞

δ(x − 2πk).
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Thus

F̃ (u, v) = 4π2
∞∑

k=−∞

∞∑
l=−∞

δ(uW − 2πk) δ(vH − 2πl) F (u, v)

= 4π2 1
WH

∞∑
k=−∞

∞∑
l=−∞

δ

(
u − 2π

W
k

)
δ

(
v − 2π

H
l

)
F (u, v),

from which we see that F̃ (u, v) is zero except at a discrete set of frequencies,

(u, v) =
(

2π

W
k,

2π

H
l

)
.

Thus, to find f̃(x, y) we only need to know F (u, v) at these frequencies.
But f(x, y) can be obtained from f̃(x, y) by just “cutting out” the piece
for which |x| < W/2 and |y| < H/2. So we only need to know

Fkl = F

(
2π

W
k,

2π

H
l

)

for all k and l to recover f(x, y). This is a countable set of numbers.
Note that the transform of a periodic function is discrete. The inverse

transform can be expressed in the form of a series, since

f̃(x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e+i(ux+vy) dx dy

=
1

WH

∞∑
k=−∞

∞∑
l=−∞

∫ ∞

−∞

∫ ∞

−∞
δ

(
u − 2π

W
k

)
δ

(
v − 2π

H
l

)

× F (u, v)e+i(ux+vy)dxdy

=
1

WH

∞∑
k=−∞

∞∑
l=−∞

Fkl e
2πi( k

W x+ l
H y).

Another way to look at this is to consider f(x, y) a windowed version
of some f̃(x, y), where f̃(x, y) = f(x, y) within the window. That is,

f(x, y) = f̃(x, y) w(x, y),

where the window function w(x, y) is defined as

w(x, y) =
{

1, for |x| ≤ W/2 and |y| ≤ H/2;
0, for |x| > W/2 or |y| > H/2.



7.2 Discrete Image Sampling 147

The transform of f(x, y) is then just the convolution of the transform of
f̃(x, y) with the transform of w(x, y). The latter is

WH
sin(uW/2)

uW/2
sin(vH/2)

vH/2
.

The Fourier transform of f(x, y) is thus a highly smoothed version of the
transform of f̃(x, y). We shall see later that such a filtered function can
be fully specified by suitably chosen samples. The function at points other
than the given sample points can easily be found by interpolation from the
given samples.

7.2 Discrete Image Sampling

When the image is digitized, the brightness is known only at a discrete set
of locations. We can think of the result as defined by a discrete grid of
impulses,

f(x, y) = wh
∞∑

k=−∞

∞∑
l=−∞

fkl δ(x − kw, y − lh),

where w and h are the horizontal and vertical sampling intervals, respec-
tively. The Fourier transform now becomes

F (u, v) = wh

∫ ∞

−∞

∫ ∞

−∞

∞∑
k=−∞

∞∑
l=−∞

fkl δ(x − kw, y − lh)e−i(ux+vy) dx dy

= wh

∞∑
k=−∞

∞∑
l=−∞

fkl e
−i(ukw+vlh).

This is a periodic function. The period in u is 2π/w and that in v is 2π/h.
Thus a discrete function transforms into a periodic one. This means that
we can forget the part of F (u, v) for |u| > π/w and |v| > π/h. We do not
need it to recover f(x, y).

It is of interest to recover the inverse transform of a function that is
equal to F (u, v) in this region and zero outside:

F̃ (u, v) =
{

F (u, v), for |u| ≤ π/w and |v| ≤ π/h;
0, for |u| > π/w or |v| > π/h.

The inverse transform is

f̃(x, y) =
1

4π2

∫ π/h

−π/h

∫ π/w

−π/w

F (u, v)e+i(ux+vy) dx dy.
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This function is defined for all x and y, but we are particularly interested
in its values at the grid points (x, y) = (kw, lh). We can write the function
as

f̃(x, y) =
wh

4π2

∫ π/h

−π/h

∫ π/w

−π/w

∞∑
k=−∞

∞∑
l=−∞

fkl e
−i(ukw+vlh)e+i(ux+vy) du dv

=
wh

4π2

∞∑
k=−∞

∞∑
l=−∞

fkl

∫ π/h

−π/h

∫ π/w

−π/w

ei(u(x−kw)+v(y−lh)) du dv

=
∞∑

k=−∞

∞∑
l=−∞

fkl

sin
(
π(x/w − k)

)
π(x/w − k)

sin
(
π(y/h − l)

)
π(y/h − l)

.

At (x, y) = (kw, lh) the above reduces to fkl. Between grid points, f̃(x, y)
is interpolated using a kernel that is the product of a sin(x)/x term and a
sin(y)/y term.

Another way to look at this is to consider the function created by
multiplying f(x, y) by the sampling grid:

g(x, y) = wh
∞∑

k=−∞

∞∑
l=−∞

δ(x − kw, y − lh).

The Fourier transform of the result is 1/(4π2) times the convolution of the
transform of f(x, y) with the transform of the sampling grid. The latter is

4π2
∞∑

k=−∞

∞∑
l=−∞

δ

(
u − 2πk

w
, v − 2πl

h

)
,

so that the Fourier transform of f(x, y) times g(x, y) is a sampled version
of the transform F (u, v) of f(x, y), namely

∞∑
k=−∞

∞∑
l=−∞

F

(
2π

w
k,

2π

h
l

)
δ

(
u − 2πk

w
, v − 2πl

h

)
.

7.3 The Sampling Theorem

From the foregoing discussion we see that a function that is bandlimited
is fully specified by samples on a regular grid. This result is known as the
sampling theorem. If F (u, v) = 0 for |u| > π/w or |v| > π/h, then f(x, y)
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can be recovered from the set f(kw, lh) for all integers k and l. In fact, we
have an explicit interpolation formula,

f(x, y) =
∞∑

k=−∞

∞∑
l=−∞

fkl

sin
(
π(x/w − k)

)
π(x/w − k)

sin
(
π(y/h − l)

)
π(y/h − l)

,

that does not involve the Fourier transform.
This is an important result because it justifies sampling the image. No

information is lost, provided that the function sampled is “smooth” enough,
that is, provided that it is bandlimited. The required sampling interval is
also specified. If only frequencies less than B occur, the sampling interval
can be as large as δ = π/B. Stated in a different way, the sampling interval
should be less than λ/2 when λ is the wavelength of the highest frequency
present. If δ is the sampling interval, the result can be expressed in terms
of the Nyquist frequency, π/δ. The signal can contain frequencies only up
to the Nyquist frequency if it is to be faithfully reconstructed from samples.

The sampling theorem makes clear the dangers of applying this method
to functions that are not limited in this way. Information is lost, and the
original function cannot be recovered. What happens specifically is that
higher frequencies, when sampled, look no different than frequencies within
the acceptable interval. It is as if their frequencies were “folded back” at
the frequency π/B. This is also called aliasing, since a wave of frequency
ω > B produces the same samples as one of frequency 2B − ω.

One of the advantages of sampling an image with a sensor that has a
finite area also becomes clear now. If each sensor element has a response
function r(x, y), the image is effectively convolved with r(x, y) before sam-
pling. This amounts to multiplication of the transform by the Fourier
transform of r(x, y). This smoothing operation will have the effect of at-
tenuating the higher frequencies.

Suppose, for example, that rectangular sensors of width w and height
h are tightly packed on the rectangular grid

r(x, y) =
{

1, for |x| ≤ w/2 and |y| ≤ h/2;
0, for |x| > w/2 or |y| > h/2.

Then

R(u, v) = wh
sin(uw/2)

uw/2
sin(vh/2)

vh/2
.

This transfer function becomes zero for u = ±(2π/w) and v = ±(2π/h).
This is twice the maximum frequency allowed by the sampling theorem.
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While this filter does pass some of the higher frequencies, it at least atten-
uates them significantly. To do better, adjacent sensing areas would have
to overlap, and each sensing element would have to have sensitivity falling
off toward its edge. Another way to achieve the desired effect is to have the
imaging system itself introduce blurring of the right magnitude in order to
lowpass filter the image sufficiently. The overall point-spread function is
then equal to the convolution of the optical system point-spread function
with the sensing element response function r(x, y).

Ideally the sensor spacing should match the resolution of the optical
elements. If they are too far apart, the conditions of the sampling theorem
are violated. It is wasteful, on the other hand, to pack them too closely,
since no new information is picked up by the extra sensing elements. The
human visual system, for example, appears to have a reasonable match
between resolution and sensor spacing, at least for intermediate opening of
the pupil.

Filtering after sampling, of course, does no good. The damage has
already been done. It is certainly possible to suppress higher frequencies
within the acceptable band, but even higher frequencies in the original
image have already been aliased down to lower frequencies in the sampled
image. One cannot recover from such errors.

Bandlimited functions are “smooth” because their higher derivatives
are limited in amplitude. For example, the transform of

f ′′(x, y) =
∂2f

∂x2 +
∂2f

∂y2

is

F ′′(u, v) = −(u2 + v2)F (u, v).

So if F (u, v) = 0 for |u| > B or |v| > B, then

|F ′′(u, v)| ≤ B2 |F (u, v)| .

Now the power in the signals f(x, y) and f ′′(x, y) is given by

P =
∫ ∞

−∞

∫ ∞

−∞
f2(x, y) dx dy =

1
4π2

∫ ∞

−∞

∫ ∞

−∞
|F (u, v)|2 du dv

and

P ′′ =
∫ ∞

−∞

∫ ∞

−∞

(
f ′′(x, y)

)2
dx dy =

1
4π2

∫ ∞

−∞

∫ ∞

−∞
|F ′′(u, v)|2 du dv.



7.4 The Discrete Fourier Transform 151

Therefore P ′′ ≤ B4P . This places a constraint on how rapidly f(x, y) can
fluctuate.

So far we have assumed that the image is sampled at points lying on
a rectangular grid. It turns out that there are some advantages to other
sampling schemes. We can use hexagonal picture cells lying on a triangular
grid, for example. Fewer samples are required using this tessellation when
the image is limited to frequencies ρ < B, say. Such a circularly symmetric
cutoff in the frequency domain is more natural than the rectangular one,
for which the rectangular tessellation is well suited. The difference between
the two tessellations comes from the different regions in the transform space
that can be recovered without aliasing. For a square tessellation this region
is square. To fit all of the disk ρ < R into the square, its side must be of
length 2ρ. For the hexagonal tessellation this region is hexagonal. To fit all
of the disk ρ < R into the hexagon, however, the maximum cross section
need only be

√
3ρ.

7.4 The Discrete Fourier Transform

A discrete image has a periodic transform. If we think of the image as
part of a periodic infinite image, then the transform is also discrete. Thus
both the image and its transform are periodic and discrete. Both are fully
defined by a finite number of values. If the image is specified by the values
fkl of f(x, y) at points (kw, lh) for k = 0, 1, . . . , M − 1 and l = 0, 1, . . . ,
N − 1, the transform can be written as

Fmn =
M−1∑
k=0

N−1∑
l=0

fkl e
−πi( km

M + ln
N ),

and the inverse transform as

fkl =
1

MN

M−1∑
k=0

N−1∑
l=0

Fmn e+πi( km
M + ln

N ),

where again we have near symmetry in the definitions of the forward and
inverse transforms. There is never any question about the existence of the
transforms, since they consist of finite sums of finite values.

Note that this transform is based on an image that is doubly periodic.
Unless the brightness of the left edge of the image happens to match that
of the right edge, there will be a step discontinuity in brightness where
adjacent copies of the image touch. Even if the image itself is very smooth,
this discontinuity will introduce some high-frequency components into the
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transform. There are a number of ways to suppress this undesirable effect.
One is to flip copies of the image over sideways before attaching them on
the left and on the right. Similarly, copies of the image can be flipped
over top to bottom before being attached at the top and the bottom. The
brightness of the resulting doubly periodic function is continuous across the
image border, but the odd derivatives of brightness are still discontinuous.
Spurious spectral components will result, but at least these are typically
smaller than those due to discontinuities in brightness itself.

The resulting function is periodic, though the period is twice as long
as it was earlier when we simply replicated the image unchanged. On the
other hand, the function is even in both x and y, so that only cosinusoidal
components can occur. The discrete transform obtained, called the cosine
transform, is explored further in exercise 7-6.

Another way to ameliorate effects of potential discontinuities at the
image borders is to modulate the image by multiplying it by a function
that drops to zero on the border. Adjacent copies will then automatically
match. The modulation function itself should vary smoothly, so that it will
not introduce spurious effects. Such a function is often called a window
function since it provides us with a look through a weighted window into
the potentially infinite image.

An example of a simple window function is

1
2

(
1 + cos

(
2π

x

W

)) 1
2

(
1 + cos

(
2π

y

H

))
= cos2

(
π

x

W

)
cos2

(
π

y

H

)
.

We saw earlier that, just as convolution in the image domain is equivalent
to multiplication in the frequency domain, so multiplication in the image
domain is equivalent to convolution in the frequency domain. Thus the
transform of the windowed image is 4π2 times the transform of the original
image convolved with the transform of the window function. Thus the
transform is smeared out somewhat by windowing. The transform of the
above window function is

1
2

(
1
2
δ
(2π

W
− u

)
+ δ(u) +

1
2
δ
(2π

W
+ u

))

× 1
2

(
1
2
δ
(2π

H
− v

)
+ δ(v) +

1
2
δ
(2π

H
+ v

))
;

each value in the transform is a local weighted average over a 3 × 3 neigh-
borhood. The center is multiplied by the weight 1/4, the four edge-adjacent
neighbors by 1/8, and the four neighbors on the corners by 1/16. This con-
volutional weighting scheme can be represented by the following stencil:
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1
16

1 2 1

2 4 2

1 2 1

A stencil is a pattern of weights used in computing a convolution, arranged
in such a way as to suggest the spatial relationships between the places
where the weights are applied.

One of the reasons for the attention given the discrete Fourier trans-
form is that an algorithm has been discovered for computing it efficiently.
The obvious implementation, in which each term fkl is computed sepa-
rately, requires MN multiplications for each of MN results, that is, M2N2

multiplications overall. The Fast Fourier Transform (FFT) takes only
4MN log2 MN multiplications to compute all results by clever sharing of
intermediate terms. This makes it reasonable to compute convolutions by
Fourier transformation, multiplication, and inverse transformation. Mod-
ern developments in parallel hardware, however, often favor direct convo-
lution methods.

We now turn to a consideration of noise in images. The discrete Fourier
transform of an image that is just noise will of course depend on the par-
ticular values at each picture cell. Can we say something in general about
the transform? We are interested in the expected values of each of the
transformed numbers. We have

Fmn =
M−1∑
k=0

N−1∑
l=0

fkl e
−πi( km

M + ln
N ).

Here, each fkl is a random value independent of the others. For the mo-
ment, allow fkl to take on complex values. Note that

fkl e
−πi( km

M + ln
N )

is also a random value, with random phase, provided that fkl has ran-
dom phase. Thus each value Fmn is obtained by adding MN independent
random complex numbers.

Now, if we further assume that fkl has a normal distribution with zero
mean and standard deviation σ, we can conclude that Fmn also has zero
mean. The standard deviation will be

√
MN σ since the standard deviation

of the sum of the MN values is
√

MN times their individual standard de-
viation. It can further be shown that the resulting values are independent.
Thus the transform has properties identical to those of the original image
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(except for a scale factor); that is, the transform is a set of independent
random numbers of mean zero and standard deviation

√
MN σ.

7.5 Circular Convolution

The interest in the discrete Fourier transform stems in large part from the
fact that convolutions can be computed by multiplying Fourier transforms.
Note, however, that there are problems at the edges of the window and the
filter function. It is assumed that both are periodic. Thus near the left
edge of the image the output will be affected somewhat by what appears
near the right edge of the image.

This may be undesirable. An alternative is to extend the image with a
border of zeros. The border should be as wide as the support of the filter,
that is, the region over which the point-spread function of the filter is
nonzero. Many filters do not have finite support and have to be artificially
truncated. This includes the Gaussian blob, one of our favorites.

Adding a border of zeros has its own drawbacks since the output near
the border will be affected by the image extension. This is not surprising if
we consider the available image to be part of an unknown larger image. We
have to guess at how the image can be extended. The part of the image
affected this way is a border of width equal to the support of the filter.
Only the part inside this border is trustworthy. If this is all that will be
used, there is no point, of course, in adding a border of zeros outside the
original image.

In summary, we have seen how imaging systems can be character-
ized by their point spread function or their modulation-transfer function.
Shortcomings in such systems can be analyzed by studying the resulting
point-spread function. The sampling theorem allows us to rationally match
image sensors to image-forming systems. The optimal filtering methods al-
low us to design systems for extracting signals of interest in the presence
of noise. Convolutional methods will also be useful in edge detection.

7.6 Some Useful Rules

Some of the results we have developed can be summarized in a short table:
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Spatial domain Frequency domain

Periodic Discrete
Symmetric Real
Sum of two functions Sum of two transforms
Convolution of two functions Product of two transforms
Periodic sampling Periodic copies

The implications go both ways in this table. Thus, for example, the trans-
form of a periodic function is discrete, and a function with a discrete trans-
form is periodic. Furthermore, the columns can be relabeled in inverted
order. That is, the transform of a discrete function is periodic, and a
function with a periodic transform is discrete. There are many more such
helpful relationships.

When the scale is compressed in one domain, it is expanded propor-
tionally in the other, so that the product of corresponding measures of size
is constant. For example, the product of the width of a Gaussian in the
spatial domain and the width of its transform in the frequency domain is
a constant.

A function has finite support when it is nonzero only over a bounded
region. It can be shown that the transform of a function with finite support
cannot also have finite support.

7.7 References

Many of the basic references on image processing were given at the end of
the previous chapter. Hamming first presented fast methods for computing
the discrete Fourier transform in Numerical Methods for Scientists and
Engineers [1962]. Somehow his method was overlooked, to be rediscovered
much later, as he observes dryly in another excellent book, Digital Filters
[1977, 1983]. He treated relatively short vectors since he was interested in
calculations that could be done by hand. It may not have been obvious to
others how his technique generalized to input vectors of arbitrary lengths.
Fast Algorithms for Digital Signal Processing by Blahut [1985] summarizes
what is known about fast algorithms for the discrete Fourier transform and
related problems.

The sampling theorem gives the conditions under which discrete sam-
ples contain enough information to fully describe a continuous image.
Mersereau [1979] shows the advantage of hexagonal image tessellations for
representing two-dimensional signals. Recovering the continuous image re-
quires interpolation and convolution methods. A discrete image can be
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enlarged or reduced by sampling an interpolated version of the original.
Hou & Andrews [1978] discuss one approach to this. Ahmed, Natarjan,
& Rao [1974] discuss the discrete cosine transform, while Chen, Smith, &
Fralick [1977] describe fast ways of computing it.

Image restoration has been one of the main applications of the results
of the field of image processing. This is still an active area, as shown by
the recent paper by Ramakrishna, Mullick, & Rathore [1985].

7.8 Exercises

7-1 Show that
∞∑

k=−∞
eikx = 2π

∞∑
k=−∞

δ(x − 2πk).

Hint: A Gaussian makes a suitable convergence factor for use in evaluating this
sum.

7-2 A discrete two-dimensional system is characterized by the point-spread
function {hij}. The output {gij} is computed from the input {fij} according to
the rule

fi,j =
∞∑

k=−∞

∞∑
l=−∞

fi−k,j−l hk,l.

Compute the modulation-transfer function. Hint: Is the modulation-transfer
function discrete? Is it periodic?

7-3 A discrete two-dimensional system performs a convolution, as in the pre-
vious exercise. Now suppose that the input {fij} is just noise. That is, each of
the fij is an independent random variable with zero mean and with variance σ2.

(a) What are the mean and variance of the output gij?

(b) What point-spread function satisfying the constraint

∞∑
k=−∞

∞∑
l=−∞

hkl = 1

minimizes the noise in the output? Hint: You may want to use a Lagrange
multiplier to enforce the constraint in the minimization (see the appendix).

(c) What point-spread function satisfying the constraint

∞∑
k=−∞

∞∑
l=−∞

(k2 + l2)hkl = 1
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minimizes the noise in the output? Warning: This part is harder than the
rest of the problem.

7-4 Consider the discrete approximation of the Laplacian given by convolution
with the following pattern of weights:

1
6ε2

1 4 1

4 −20 4

1 4 1

where ε is the spacing between picture cells. Write this weighting scheme as the
sum of nine impulse functions. Find the Fourier transform and show that near
the origin it tends to −(u2 + v2) as ε → 0.

7-5 Consider the discrete approximation of the Laplacian used in the previous
exercise. Apply this convolutional weighting scheme to a Taylor series expan-
sion of the image brightness about the central point. Show that the result is
independent of the constant and the linear terms. Show that it computes the
expected combination of the second-order terms. Also work out the lowest-order
error terms.

7-6 Suppose that an image f(x, y) lies in the region 0 ≤ x ≤ W , 0 ≤ y ≤
H. To avoid discontinuities in brightness at the borders, extend this by mirror
imaging. For example, let f̃(x, y) = f(2W − x, y) for W ≤ x ≤ 2W , while
f̃(x, y) = f(x, 2H − y) for H ≤ y ≤ 2H.

(a) Show that the extended image has period 2W in the x-direction and period
2H in the y-direction. Also show that the extended image is an even function
of both x and y.

(b) Show that the extended image can be represented by the cosine series

f̃(x, y) =
∞∑

k=0

∞∑
l=0

Ckl cos
(

x

W
πk

)
cos

(
y

H
πl

)
.

(c) Show that the coefficients of the cosine series can be found using

Cij =
4

WH

∫ +H

0

∫ +W

0
f(x, y) cos

(
x

W
πi

)
cos

(
y

H
πj

)
dx dy,

for i �= 0 and j �= 0. Find the corresponding result for the cases where i = 0
or j = 0.

(d) How can the above method be modified to deal with an image that lies in
the region −W/2 ≤ x ≤ W/2, −H/2 ≤ y ≤ H/2?
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(e) Is it possible to replicate a hexagonal image region in a way that will ensure
continuity in brightness across the image borders?

7-7 Show that, at least formally,

1 +

(
σ2

2
∇2

)
+

1
2!

(
σ2

2
∇2

)
2

+
1
3!

(
σ2

2
∇2

)
3

+ · · ·

is the inverse of convolution with the Gaussian

1
2πσ2 e

− 1
2

x2+y2

σ2 .

Hint: Expand e
1
2 σ2ω2

in a Taylor series.
Suppose that the first n terms of the series above are to be used to partially

undo the blurring introduced by convolution with a Gaussian. Let the blurred
image be f(x, y), while the partially deblurred version is g(x, y). Show that
g(x, y) can be found using the iterative scheme

g0 = f,

gk+1 = f +
1

n − k

(
σ2

2
∇2

)
gk for k = 0, 1, . . . , n − 1.

7-8 An image can be smoothed by means of a simple 2 × 2 averaging filter.
The point-spread function of this filter can be written

hij =

{
1/4, for i = 0, 1, j = 0, 1;
0, otherwise.

Consider the function

h′
ij =

{
1, for i = −1, 0, j = −1, 0;
even

(
|x + 1/2| − 1/2

)
even

(
|y + 1/2| − 1/2

)
, otherwise,

where

even(z) =

{
+1, when z is even;
−1, when z is odd.

Show that h′
ij is a convolutional inverse to hij . (Note that, except near the axes,

h′
ij is just a checkerboard of +1s and −1s.)

Discuss the difficulties we would encounter if we attempted to use this result
in practice. Suggest a suitable window function that can be employed to attenuate
the convolutional inverse for large arguments i and j. How would convolution
of a filtered image with the product of this window function and h′

ij differ from
convolution with the “exact” inverse?
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7-9 Here we establish a useful correspondence between power series and discrete
point-spread functions. We also show a way to approximate continuous Gaussian
filters using a discrete filter. Consider two polynomials f(x) and g(x).

(a) Show how the set coefficients of the product polynomial f(x)g(x) can be
obtained by discrete convolution of the sets of coefficients of the individual
polynomials f(x) and g(x). Extend this to power series that include negative
powers of x.

This result can be extended to two dimensions. That is, the coefficients of the
power series f(x, y)g(x, y) can be obtained by two-dimensional discrete convo-
lution of the coefficients of the power series f(x, y) and g(x, y). Note that as-
sociativity and commutativity of multiplication of power series follows from the
corresponding properties of discrete convolution. We now consider a particular
example.

(b) Show how convolution with a filter whose weights are given by the pattern

1
16

1 2 1

2 4 2

1 2 1

can be accomplished by repeated convolution with a filter that has the pat-
tern

1
4

1 1

1 1

Show the weighting scheme that results when we convolve one more time
with the 2 × 2 pattern shown.

(c) Show that the modulation-transfer function of a discrete convolutional fil-
ter can be obtained by substituting e−iuw for x and e−ivh for y in the
corresponding power series, where w and h are the horizontal and vertical
sampling intervals, respectively.

(d) What is the Fourier transform of the convolutional filter corresponding to
the polynomial 1 + x + y + xy?

A polynomial of particular interest is obtained by expanding (1 + x)n:

(1 + x)n =

(
n

0

)
+

(
n

1

)
x +

(
n

2

)
x2 + · · · +

(
n

n − 1

)
xn−1 +

(
n

n

)
xn,
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where the binomial coefficients are(
n

r

)
=

n!
(n − r)! r!

.

(e) Suppose that we convolve the filter in part (d) with itself n times to obtain
the two-dimensional binomial distribution whose general term is(

n

k

)(
n

l

)
xkyl for 0 ≤ x ≤ n, 0 ≤ y ≤ n.

Show that the magnitude of the modulation-transfer function is

4n cosn( 1
2uw) cosn( 1

2vh).

How can you remove the scale factor 4n? How can you arrange for the
modulation-transfer function to be real, at least when n is odd?

(f) The binomial distribution of order n approximates a Gaussian with mean
(n− 1)/2 and variance 2n−1. The amplitude of this Gaussian is about 2n−1.

The modulation-transfer function also approximates a Gaussian. Find the
amplitude, mean, and variance of the Gaussian approximated by

4n cosn( 1
2uw) cosn( 1

2vh).

Hint: Find the first few terms in the Taylor series expansion of the two
functions being compared and match coefficients.

The above analysis is useful when we wish to approximate a Gaussian with a
finite, discrete filter. This is a better approach than simply truncating the contin-
uous Gaussian after it becomes “small” enough. The latter approach introduces
spurious high-frequency components due to the arbitrary cutoff.

7-10 Suppose that samples are taken not only of image brightness but also of
the first partial derivatives of brightness. Show that fewer samples are required to
capture all the information about a bandlimited image than are necessary when
only brightness is sampled. Show how to recover the bandlimited image from its
samples. Warning: This is not an easy problem.

7-11 How would you interpolate a bandlimited function from its samples on a
hexagonal grid? Hint: What is the inverse Fourier transform of a function that
is one inside a hexagonal region in the frequency domain and zero elsewhere?


