Table 3.1: The story of the four generations of apparatus. | | M1 | M2 | M3 | M4 | |----------------------------------|--|--|--|--| | Number of beams | 2 | 41 | 15 | 15 | | Beam-
splitter | Beam-splitting cube | Hologram | Digital Optic | | | Beam
phase
modulator | Translating wedge | Piezo-driven
mirrors | Electrostatically
driven MEMS
mirror array | Acousto-optic
modulator | | Beam am-
plitude
modulator | none | none | none | | | Beam
delivery to
sample | Mirrors | Gratings, mir-
rors, and one
spherical lens | Single-mode
polarization-
preserving
fiber and
spherical
lenses | Mirrors
and cylindrical
lenses | | Spatial filtering | Pinhole-type | Custom-
etched copper
slit array | Fiber optic as pinhole | none | | Phase
reference | Photodiode
with slit in
magnified path | 0.5 NA micro-
scope objec-
tive + CCD in
magnified path | Far-field CCD | 1.25 NA microscope objective + CCD in unmagnified path | | Laser type | He-Ne | Argon ion | Argon ion | Diode | | Wavelength | 633 nm (red) | 488 nm (blue) | 514 nm (green) | 685 nm (red) | | Spectral | multiple cavity | single- | single- | Single longitu- | | purity | modes | line and single-
frequency | line and single-
frequency | dinal mode | Table 3.2: Key specifications of the four prototypes. | | M4 SAM pro-
totype (N.A.
≈ 0.92) | SAM in theory | Conventional
0.95 N.A. lens
(63× Zeiss) | Lens technology | |---------------------|---|---|---|--| | Working
Distance | >30,000 μm | Set by low-N.A.
lens | 120 μm | Practical limit:
decreases with
N.A. according
to a power law | | Depth of
field | >20\lambda | Set by low-N.A.
lens | 0.35λ | Theoretical limit: | | Field of
view | $>$ 5,000 μ m available, 560 μ m used | Set by low-N.A.
lens or size of
region of beam
overlap | 317 μm
available | Practical limit:
decreases with
N.A. according
to a power law | | Resolution | >200 sub-
pixels per pixel | Goes
as the square of
the number of
beams | 1 pixel per
pixel | Always 1 | | Composition | No precision optics | | Precision optics | | Table 4.1: A comparison of the final SAM prototype with state-of-the-art microscope lens performance and of SAM and lenses in general.